Research on the Enhancement of Provincial AC/DC Ultra-High Voltage Power Grid Security Based on WGAN-GP
Abstract
1. Introduction
2. Fault Diagnosis and Data Augmentation Principles
2.1. Fault Diagnosis Principles Based on Convolutional Neural Networks
- (1)
- Fault Feature Extraction Network
- (2)
- Fault Classification Network
2.2. Based on the Data Augmentation Principle of Generative Adversarial Networks
3. Data Augmentation Model Based on WGAN-GP
3.1. WGAN-GP Network
3.2. Data Augmentation of Fault Samples Based on WGAN-GP
3.3. Comprehensive Evaluation Indicators for Fault Diagnosis
4. Verification with Examples
4.1. AC/DC Hybrid System Model and Dataset
4.2. A Fault Diagnosis Model Based on CNN
4.3. Data Augmentation Model and Training Effects Based on WGAN-GP
4.3.1. Parameters of the Data Augmentation Model Based on WGAN-GP
4.3.2. Training Effects of Data Augmentation Model Based on WGAN-GP
4.4. Analysis of Fault Diagnosis Effect
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, H.; Liu, D.; Yao, D. Analysis and Reflection on the Development of Power System Towards the Goal of Carbon Emission Peak and Carbon Neutrality. In Proceedings of the CSEE 2021, Lisbon, Portugal, 21–23 June 2021; pp. 6245–6259. [Google Scholar]
- Lv, P. Research on HVDC Operation Characteristics Under Influence of Hybrid AC/DC Power Grids. Power. Syst. Technol. 2022, 46, 503–510. [Google Scholar]
- Zhang, T.; Yao, J.; Lin, Y.; Jin, R.; Zhao, L. Impact of Control Interaction of Wind Farm with MMC-HVDC Transmission System on Distance Protection Adaptability under Symmetric Fault. Prot. Control. Mod. Power. Syst. 2025, 10, 83–101. [Google Scholar] [CrossRef]
- Xu, X.; Chen, W.; Sun, Y. Over-sampling algorithm for imbalanced data classification. J. Syst. Eng. Electron. 2019, 30, 1182–1191. [Google Scholar] [CrossRef]
- Ileberi, E.; Sun, Y. Advancing Model Performance with ADASYN and Recurrent Feature Elimination and Cross-Validation in Machine Learning-Assisted Credit Card Fraud Detection: A Comparative Analysis. IEEE Access. 2024, 12, 133315–133327. [Google Scholar] [CrossRef]
- Li, J.; Pan, S.; Zhang, X.; Lin, C.T.; Stayman, J.W.; Gang, G.J. Generative Adversarial Networks with Radiomics Supervision for Lung Lesion Generation. IEEE Trans. Biomed. Eng. 2024, 72, 286–296. [Google Scholar] [CrossRef] [PubMed]
- True, P.; Graef, T.; Menge, M. Detection of partial discharges in high voltage DC cable systems using current pulse waveform analyses and generative adversarial networks. In Proceedings of the VDE High Voltage Technology; 4. ETG-Symposium, Berlin, Germany, 8–10 November 2022; pp. 1–6. [Google Scholar]
- Zheng, X.; Wu, C.; Sun, J.; He, H.; Wu, C. Research on Commutation Failure Fault Diagnosis in HVDC Transmission Systems Based on WGAN and DT-SVM. In Proceedings of the 2024 5th International Conference on Computer, Big Data and Artificial Intelligence (ICCBD+AI), Jingdezhen, China, 1–3 November 2024; pp. 513–519. [Google Scholar]
- He, Y.H.; Song, Y.H.; He, S.; Zhou, Z.Z.; Sun, M.; Chen, Y.; Yan, Y.F. Few-Shot Image Generation Method for Power Defect Detection. In Proceedings of the Annual Meeting of CSEE Study Committee of HVDC and Power Electronics (HVDC 2023), Nanjing, China, 22–25 October 2023; pp. 349–355. [Google Scholar]
- Hu, L.; Wang, W.; Xiang, Y.; Zhang, J. Flow Field Reconstructions with GANs Based on Radial Basis Functions. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 3460–3476. [Google Scholar] [CrossRef]
- Chen, K.; Hu, J.; He, J. Detection and Classification of Transmission Line Faults Based on Unsupervised Feature Learning and Convolutional Sparse Autoencoder. In Proceedings of the 2017 IEEE Power & Energy Society General Meeting (PESGM), Chicago, IL, USA, 16–20 July 2017; pp. 1–1. [Google Scholar]
- Lv, K.; Wang, D.; Huang, W.; Liu, H.; Jiang, Y.; Hu, J. Multiple Fault Diagnosis of PMSM Based on Stator Tooth Flux and Parallel Residual Convolutional Neural Network. IEEE Trans. Transp. Electrif. 2024, 10, 9727–9738. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, X.; Sun, H.; He, J. Fault Diagnosis for AC/DC Transmission System Based on Convolutional Neural Net-work. Autom. Electric. Power. Syst. 2022, 46, 132–145. [Google Scholar]
- Liang, Y.; Zhang, J.; Shi, Z.; Zhao, H.; Wang, Y.; Xing, Y.; Zhang, X.; Wang, Y.; Zhu, H. A Fault Identification Method of Hybrid HVDC System Based on Wavelet Packet Energy Spectrum and CNN. Electronics 2024, 13, 2788. [Google Scholar] [CrossRef]
- Li, M.; Chen, K.; He, J.; Luo, Y.; Wang, X.; Luo, G.; Zhang, D. Analysis of Fault Characteristics of Hybrid Multiterminal HVDC Transmission System. In Proceedings of the 2020 2nd International Conference on Smart Power & Internet Energy Systems (SPIES), Bangkok, Thailand, 15–18 September 2020; pp. 88–93. [Google Scholar]
- Wu, S.; Ma, G.; Yao, C.; Sun, Z.; Xu, S. Current Sensor Fault Detection and Identification for PMSM Drives Using Multichannel Global Maximum Pooling CNN. IEEE Trans. Power. Electron. 2024, 39, 10311–10325. [Google Scholar] [CrossRef]
- Kiranyaz, S.; Gastli, A.; Ben-Brahim, L.; Al-Emadi, N.; Gabbouj, M. Real-Time Fault Detection and Identification for MMC Using 1-D Convolutional Neural Networks. IEEE Trans. Ind. Electron. 2018, 66, 8760–8771. [Google Scholar] [CrossRef]
- Li, X.; Li, P.; Zhang, Z.; Yin, J.; Sheng, Y.; Zhang, L.; Zhou, W.; Zhuang, X. CNN-LSTM-Based Fault Diagnosis and Adaptive Multichannel Fusion Calibration of Filament Current Sensor for Mass Spectrometer. IEEE Sens. J. 2023, 24, 2255–2269. [Google Scholar] [CrossRef]
- Lan, J.; Zhou, Y.; Guo, Q.; Sun, H. Data Augmentation for Data-Driven Methods in Power System Operation: A Novel Framework Using Improved GAN and Transfer Learning. IEEE Trans. Power. Syst. 2024, 39, 6399–6411. [Google Scholar] [CrossRef]
- Kang, M.; Zhu, R.; Chen, D.; Li, C.; Gu, W.; Qian, X.; Yu, W. A Cross-Modal Generative Adversarial Network for Scenarios Generation of Renewable Energy. IEEE Trans. Power. Syst. 2023, 39, 2630–2640. [Google Scholar] [CrossRef]
- Shao, Z.; Zhang, C.; Chen, F.; Xie, Y. A Review on Generative Adversarial Networks for Power System Applications. In Proceedings of the CSEE 2023, Lisbon, Portugal, 29–31 March 2023; pp. 987–1004. [Google Scholar]
- Zhang, X.; Zhao, Z.; Shao, R.; Li, C.; Tang, H. Mechanical Anomaly Detection and Early Warning for Ultrahigh-Voltage Shunt Reactors via Adaptive Thresholds and WGAN-GP. IEEE Sens. J. 2024, 24, 20219–20230. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, S.; Ten, C.-W.; Liu, T.; Pang, X.; Sun, H. Implementation of Risk-Aggregated Substation Testbed Using Generative Adversarial Networks. IEEE Trans. Smart. Grid 2022, 14, 677–689. [Google Scholar] [CrossRef]
- Gondhi, S.R.; Janak, U.R.; Raja, A.; Asrari, A. WGAN-Based Synthetic Data Generation for Modeling Cyberattacks in Power Transmission Systems. In Proceedings of the 2024 8th International Symposium on Innovative Approaches in Smart Technologies (ISAS), İstanbul, Turkey, 6–7 December 2024; pp. 1–5. [Google Scholar]
- Yao, J.; Zhao, S.; Wei, Z.; Zhang, H. Day-ahead dispatch and its fast solution method of power system based on scenario analysis. Electric. Power. Autom. Equip. 2022, 42, 50–56+110. [Google Scholar]
- Guo, K.; Liu, Y.; Yang, Q. WGAN-GP Based Data Reconstruction for Operational Faults of Power Distribution Networks. In Proceedings of the 2023 IEEE 7th Conference on Energy Internet and Energy System Integration (EI2), Hangzhou, China, 15–18 December 2023; pp. 2138–2144. [Google Scholar]
System Parameters | Parameter Values |
---|---|
Rated voltage of the AC side (1, 2, 3) | 525 kV |
DC rated voltage | ±800 kV |
Length of DC line L1 | 932 km |
Length of DC line L2 | 557 km |
Rated capacity of converter station 1 | 8000 MW |
Rated capacity of converter station 2 | 5000 MW |
Rated capacity of converter station 3 | 3000 MW |
Inductance value of the smoothing reactor for converter station 1 | 300 mH |
Inductance value of the neutral bus current-limiting reactor for converter stations 2 and 3 | 75 mH |
Inductance value of the DC pole line current-limiting reactor for converter stations 2 and 3 | 75 mH |
Length of AC line L3 | 30 km |
Parameter | DC Line L1 | DC Line L2 | AC Line L3 |
---|---|---|---|
Fault initiation point (km) | 15 | 30 | 1 |
Spacing distance (km) | 20 | 20 | 2 |
Fault end (km) | 905 | 520 | 30 |
Fault type | Positive pole fault Negative pole fault Inter-pole short circuit | AG, BG, CG, AB, AC, BC, ABG, ACG, BCG, ABC | |
Transition resistance () | 0.0140, 80, 120, 160, 200, 240, 280, 320, 360 | 0, 10, 40 |
Structure Layer | Network Parameters | |||
---|---|---|---|---|
Faulty Line | Line 1 Fault Type | Line 2 Fault Type | Line 3 Fault Type | |
Input layer | — | — | — | — |
2D Convolutional Layer 1 | 5 × 5, 29, (1) | 3 × 4, 52, (1) | 3 × 5, 53, (1) | 7 × 5, 70, (1) |
Max Pooling Layer 1 | 2 × 2, (2) | 2 × 2, (2) | 2 × 2, (2) | 2 × 2, (2) |
2D Convolutional Layer 2 | 3 × 4, 6, (1) | 3 × 2, 20, (1) | 3 × 3, 24, (1) | 6 × 3, 36, (1) |
Max Pooling Layer 2 | 2 × 2, (2) | 2 × 2, (2) | 2 × 2, (2) | 2 × 2, (2) |
Fully Connected Layer 1 | 128 | 128 | 128 | 128 |
Fully Connected Layer 2 | 3 | 3 | 3 | 10 |
Learning Rate | 0.001 | 0.0033 | 0.001 | 0.001 |
Network Layer | Type | Network Layer Parameters |
---|---|---|
1 | Input Layer | Input Noise Data Dimension: 4 |
2 | Signal Reshaping Layer | Network Layer Size: 1 × 50 × 32 |
3 | Transposed Convolution Layer | 1 × 2, 32, (1) Activation Function: Relu |
4 | Transposed Convolution Layer | 1 × 3, 16, (1) Activation Function: Relu |
5 | Transposed Convolution Layer | 1 × 3, 1, (1) Activation Function: Relu |
6 | Fully Connected Layer | Output data dimension: 500 Activation Function: tanh |
Network Layer | Type | Network Layer Parameters |
---|---|---|
1 | Input Layer | Input Noise Data Dimension: 1 × 500 |
2 | Convolutional Layer | 1 × 3, 16, (1) Activation Function: LeakyRelu |
3 | Convolutional Layer | 1 × 3, 32, (1) Activation Function: LeakyRelu |
4 | Convolutional Layer | 1 × 3, 64, (1) Activation Function: LeakyRelu |
5 | Convolutional Layer | 1 × 3, 1, (1) Activation Function: LeakyRelu |
6 | Fully Connected Layer | Output Dimension: 1 Activation Function: sigmoid |
Faulty Line | Total Number of Generated Samples | Number of Test Set Samples | Number of Misdiagnosed Samples | Diagnostic Accuracy Rate/% |
---|---|---|---|---|
DC Line 1 | 5400 | 1620 | 0 | 100 |
DC Line 2 | 3000 | 900 | 0 | 100 |
AC Line | 1800 | 540 | 4 | 99.26 |
Fault Type | Total Number of Generated Samples | Number of Misdiagnosed Samples | Diagnostic Accuracy Rate/% | |
---|---|---|---|---|
DC Line 1 | Positive pole fault | 540 | 0 | 100 |
Negative pole fault | 540 | 0 | 100 | |
Inter-pole short circuit | 540 | 0 | 100 | |
Total | 1620 | 0 | 100 | |
DC Line 2 | Positive pole fault | 300 | 0 | 100 |
Negative pole fault | 300 | 0 | 100 | |
Inter-pole short circuit | 300 | 0 | 100 | |
Total | 900 | 0 | 100 | |
AC Line | Single-phase grounding | 162 | 2 | 98.77 |
Phase-to-phase short circuit | 162 | 0 | 100 | |
Two-phase grounding | 162 | 2 | 98.77 | |
Three-phase short circuit | 54 | 0 | 100 | |
Total | 540 | 4 | 99.26 |
Sample Conditions | Number of Training Set Samples | Number of Test Set Samples | Number of Misdiagnosed Samples | Diagnostic Accuracy Rate/% | Diagnostic Duration/ms |
---|---|---|---|---|---|
Original Dataset | 1645 | 705 | 3 | 99.57 | 0.646 |
GAN Augmented Dataset | 8225 | 3525 | 2 | 99.94 | 0.641 |
WGAN Augmented Dataset | 8225 | 3525 | 2 | 99.94 | 0.639 |
WGAN-GP Augmented Dataset | 8225 | 3525 | 0 | 100 | 0.637 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Z.; Zhang, Y.; Hu, Z.; Wang, Y.; Liang, Y.; Deng, J.; Chen, J.; An, D. Research on the Enhancement of Provincial AC/DC Ultra-High Voltage Power Grid Security Based on WGAN-GP. Electronics 2025, 14, 2897. https://doi.org/10.3390/electronics14142897
Shi Z, Zhang Y, Hu Z, Wang Y, Liang Y, Deng J, Chen J, An D. Research on the Enhancement of Provincial AC/DC Ultra-High Voltage Power Grid Security Based on WGAN-GP. Electronics. 2025; 14(14):2897. https://doi.org/10.3390/electronics14142897
Chicago/Turabian StyleShi, Zheng, Yonghao Zhang, Zesheng Hu, Yao Wang, Yan Liang, Jiaojiao Deng, Jie Chen, and Dingguo An. 2025. "Research on the Enhancement of Provincial AC/DC Ultra-High Voltage Power Grid Security Based on WGAN-GP" Electronics 14, no. 14: 2897. https://doi.org/10.3390/electronics14142897
APA StyleShi, Z., Zhang, Y., Hu, Z., Wang, Y., Liang, Y., Deng, J., Chen, J., & An, D. (2025). Research on the Enhancement of Provincial AC/DC Ultra-High Voltage Power Grid Security Based on WGAN-GP. Electronics, 14(14), 2897. https://doi.org/10.3390/electronics14142897