Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,103)

Search Parameters:
Keywords = high-frequency operation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3030 KiB  
Article
Predicting Landslide Susceptibility Using Cost Function in Low-Relief Areas: A Case Study of the Urban Municipality of Attecoube (Abidjan, Ivory Coast)
by Frédéric Lorng Gnagne, Serge Schmitz, Hélène Boyossoro Kouadio, Aurélia Hubert-Ferrari, Jean Biémi and Alain Demoulin
Earth 2025, 6(3), 84; https://doi.org/10.3390/earth6030084 (registering DOI) - 1 Aug 2025
Abstract
Landslides are among the most hazardous natural phenomena affecting Greater Abidjan, causing significant economic and social damage. Strategic planning supported by geographic information systems (GIS) can help mitigate potential losses and enhance disaster resilience. This study evaluates landslide susceptibility using logistic regression and [...] Read more.
Landslides are among the most hazardous natural phenomena affecting Greater Abidjan, causing significant economic and social damage. Strategic planning supported by geographic information systems (GIS) can help mitigate potential losses and enhance disaster resilience. This study evaluates landslide susceptibility using logistic regression and frequency ratio models. The analysis is based on a dataset comprising 54 mapped landslide scarps collected from June 2015 to July 2023, along with 16 thematic predictor variables, including altitude, slope, aspect, profile curvature, plan curvature, drainage area, distance to the drainage network, normalized difference vegetation index (NDVI), and an urban-related layer. A high-resolution (5-m) digital elevation model (DEM), derived from multiple data sources, supports the spatial analysis. The landslide inventory was randomly divided into two subsets: 80% for model calibration and 20% for validation. After optimization and statistical testing, the selected thematic layers were integrated to produce a susceptibility map. The results indicate that 6.3% (0.7 km2) of the study area is classified as very highly susceptible. The proportion of the sample (61.2%) in this class had a frequency ratio estimated to be 20.2. Among the predictive indicators, altitude, slope, SE, S, NW, and NDVI were found to have a positive impact on landslide occurrence. Model performance was assessed using the area under the receiver operating characteristic curve (AUC), demonstrating strong predictive capability. These findings can support informed land-use planning and risk reduction strategies in urban areas. Furthermore, the prediction model should be communicated to and understood by local authorities to facilitate disaster management. The cost function was adopted as a novel approach to delineate hazardous zones. Considering the landslide inventory period, the increasing hazard due to climate change, and the intensification of human activities, a reasoned choice of sample size was made. This informed decision enabled the production of an updated prediction map. Optimal thresholds were then derived to classify areas into high- and low-susceptibility categories. The prediction map will be useful to planners in helping them make decisions and implement protective measures. Full article
Show Figures

Figure 1

20 pages, 4765 KiB  
Article
Ultrasonic EDM for External Cylindrical Surface Machining with Graphite Electrodes: Horn Design and Hybrid NSGA-II–AHP Optimization of MRR and Ra
by Van-Thanh Dinh, Thu-Quy Le, Duc-Binh Vu, Ngoc-Pi Vu and Tat-Loi Mai
Machines 2025, 13(8), 675; https://doi.org/10.3390/machines13080675 (registering DOI) - 1 Aug 2025
Abstract
This study presents the first investigation into the application of ultrasonic vibration-assisted electrical discharge machining (UV-EDM) using graphite electrodes for external cylindrical surface machining—an essential surface in the production of tablet punches and sheet metal-forming dies. A custom ultrasonic horn was designed and [...] Read more.
This study presents the first investigation into the application of ultrasonic vibration-assisted electrical discharge machining (UV-EDM) using graphite electrodes for external cylindrical surface machining—an essential surface in the production of tablet punches and sheet metal-forming dies. A custom ultrasonic horn was designed and fabricated using 90CrSi material to operate effectively at a resonant frequency of 20 kHz, ensuring stable vibration transmission throughout the machining process. A Box–Behnken experimental design was employed to explore the effects of five process parameters—vibration amplitude (A), pulse-on time (Ton), pulse-off time (Toff), discharge current (Ip), and servo voltage (SV)—on two key performance indicators: material removal rate (MRR) and surface roughness (Ra). The optimization process was conducted in two stages: single-objective analysis to maximize MRR while ensuring Ra < 4 µm, followed by a hybrid multi-objective approach combining NSGA-II and the Analytic Hierarchy Process (AHP). The optimal solution achieved a high MRR of 9.28 g/h while maintaining Ra below the critical surface finish threshold, thus meeting the practical requirements for punch surface quality. The findings confirm the effectiveness of the proposed horn design and hybrid optimization strategy, offering a new direction for enhancing productivity and surface integrity in cylindrical EDM applications using graphite electrodes. Full article
(This article belongs to the Section Advanced Manufacturing)
Show Figures

Figure 1

39 pages, 21783 KiB  
Article
Leveraging High-Frequency UAV–LiDAR Surveys to Monitor Earthflow Dynamics—The Baldiola Landslide Case Study
by Francesco Lelli, Marco Mulas, Vincenzo Critelli, Cecilia Fabbiani, Melissa Tondo, Marco Aleotti and Alessandro Corsini
Remote Sens. 2025, 17(15), 2657; https://doi.org/10.3390/rs17152657 (registering DOI) - 31 Jul 2025
Abstract
UAV platforms equipped with RTK positioning and LiDAR sensors are increasingly used for landslide monitoring, offering frequent, high-resolution surveys with broad spatial coverage. In this study, we applied high-frequency UAV-based monitoring to the active Baldiola earthflow (Northern Apennines, Italy), integrating 10 UAV–LiDAR and [...] Read more.
UAV platforms equipped with RTK positioning and LiDAR sensors are increasingly used for landslide monitoring, offering frequent, high-resolution surveys with broad spatial coverage. In this study, we applied high-frequency UAV-based monitoring to the active Baldiola earthflow (Northern Apennines, Italy), integrating 10 UAV–LiDAR and photogrammetric surveys, acquired at average intervals of 14 days over a four-month period. UAV-derived orthophotos and DEMs supported displacement analysis through homologous point tracking (HPT), with robotic total station measurements serving as ground-truth data for validation. DEMs were also used for multi-temporal DEM of Difference (DoD) analysis to assess elevation changes and identify depletion and accumulation patterns. Displacement trends derived from HPT showed strong agreement with RTS data in both horizontal (R2 = 0.98) and vertical (R2 = 0.94) components, with cumulative displacements ranging from 2 m to over 40 m between April and August 2024. DoD analysis further supported the interpretation of slope processes, revealing sector-specific reactivations and material redistribution. UAV-based monitoring provided accurate displacement measurements, operational flexibility, and spatially complete datasets, supporting its use as a reliable and scalable tool for landslide analysis. The results support its potential as a stand-alone solution for both monitoring and emergency response applications. Full article
21 pages, 14026 KiB  
Article
Development of PEO in Low-Temperature Ternary Nitrate Molten Salt on Ti6V4Al
by Michael Garashchenko, Yuliy Yuferov and Konstantin Borodianskiy
Materials 2025, 18(15), 3603; https://doi.org/10.3390/ma18153603 (registering DOI) - 31 Jul 2025
Abstract
Titanium alloys are frequently subjected to surface treatments to enhance their biocompatibility and corrosion resistance in biological environments. Plasma electrolytic oxidation (PEO) is an environmentally friendly electrochemical technique capable of forming oxide layers characterized by high corrosion resistance, biocompatibility, and strong adhesion to [...] Read more.
Titanium alloys are frequently subjected to surface treatments to enhance their biocompatibility and corrosion resistance in biological environments. Plasma electrolytic oxidation (PEO) is an environmentally friendly electrochemical technique capable of forming oxide layers characterized by high corrosion resistance, biocompatibility, and strong adhesion to the substrate. In this study, the PEO process was performed using a low-melting-point ternary eutectic electrolyte composed of Ca(NO3)2–NaNO3–KNO3 (41–17–42 wt.%) with the addition of ammonium dihydrogen phosphate (ADP). The use of this electrolyte system enables a reduction in the operating temperature from 280 to 160 °C. The effects of applied voltage from 200 to 400V, current frequency from 50 to 1000 Hz, and ADP concentrations of 0.1, 0.5, 1, 2, and 5 wt.% on the growth of titanium oxide composite coatings on a Ti-6Al-4V substrate were investigated. The incorporation of Ca and P was confirmed by phase and chemical composition analysis, while scanning electron microscopy (SEM) revealed a porous surface morphology typical of PEO coatings. Corrosion resistance in Hank’s solution, evaluated via Tafel plot fitting of potentiodynamic polarization curves, demonstrated a substantial improvement in electrochemical performance of the PEO-treated samples. The corrosion current decreased from 552 to 219 nA/cm2, and the corrosion potential shifted from −102 to 793 mV vs. the Reference Hydrogen Electrode (RHE) compared to the uncoated alloy. These findings indicate optimal PEO processing parameters for producing composite oxide coatings on Ti-6Al-4V alloy surfaces with enhanced corrosion resistance and potential bioactivity, which are attributed to the incorporation of Ca and P into the coating structure. Full article
(This article belongs to the Special Issue Microstructure Engineering of Metals and Alloys, 3rd Edition)
Show Figures

Figure 1

32 pages, 9710 KiB  
Article
Early Detection of ITSC Faults in PMSMs Using Transformer Model and Transient Time-Frequency Features
by Ádám Zsuga and Adrienn Dineva
Energies 2025, 18(15), 4048; https://doi.org/10.3390/en18154048 - 30 Jul 2025
Viewed by 41
Abstract
Inter-turn short-circuit (ITSC) faults in permanent magnet synchronous machines (PMSMs) present a significant reliability challenge in electric vehicle (EV) drivetrains, particularly under non-stationary operating conditions characterized by inverter-driven transients, variable loads, and magnetic saturation. Existing diagnostic approaches, including motor current signature analysis (MCSA) [...] Read more.
Inter-turn short-circuit (ITSC) faults in permanent magnet synchronous machines (PMSMs) present a significant reliability challenge in electric vehicle (EV) drivetrains, particularly under non-stationary operating conditions characterized by inverter-driven transients, variable loads, and magnetic saturation. Existing diagnostic approaches, including motor current signature analysis (MCSA) and wavelet-based methods, are primarily designed for steady-state conditions and rely on manual feature selection, limiting their applicability in real-time embedded systems. Furthermore, the lack of publicly available, high-fidelity datasets capturing the transient dynamics and nonlinear flux-linkage behaviors of PMSMs under fault conditions poses an additional barrier to developing data-driven diagnostic solutions. To address these challenges, this study introduces a simulation framework that generates a comprehensive dataset using finite element method (FEM) models, incorporating magnetic saturation effects and inverter-driven transients across diverse EV operating scenarios. Time-frequency features extracted via Discrete Wavelet Transform (DWT) from stator current signals are used to train a Transformer model for automated ITSC fault detection. The Transformer model, leveraging self-attention mechanisms, captures both local transient patterns and long-range dependencies within the time-frequency feature space. This architecture operates without sequential processing, in contrast to recurrent models such as LSTM or RNN models, enabling efficient inference with a relatively low parameter count, which is advantageous for embedded applications. The proposed model achieves 97% validation accuracy on simulated data, demonstrating its potential for real-time PMSM fault detection. Additionally, the provided dataset and methodology contribute to the facilitation of reproducible research in ITSC diagnostics under realistic EV operating conditions. Full article
(This article belongs to the Special Issue Application of Artificial Intelligence in Power and Energy Systems)
Show Figures

Figure 1

14 pages, 3505 KiB  
Article
The Influence of Operating Pressure Oscillations on the Machined Surface Topography in Abrasive Water Jet Machining
by Dejan Ž. Veljković, Jelena Baralić, Predrag Janković, Nedeljko Dučić, Borislav Savković and Aleksandar Jovičić
Materials 2025, 18(15), 3570; https://doi.org/10.3390/ma18153570 - 30 Jul 2025
Viewed by 35
Abstract
The aim of this study was to determine the connection between oscillations in operating pressure values and the appearance of various irregularities on machined surfaces. Such oscillations are a consequence of the high water pressure generated during abrasive water jet machining. Oscillations in [...] Read more.
The aim of this study was to determine the connection between oscillations in operating pressure values and the appearance of various irregularities on machined surfaces. Such oscillations are a consequence of the high water pressure generated during abrasive water jet machining. Oscillations in the operating pressure values are periodic, namely due to the cyclic operation of the intensifier and the physical characteristics of water. One of the most common means of reducing this phenomenon is installing an attenuator in the hydraulic system or a phased intensifier system. The main hypothesis of this study was that the topography of a machined surface is directly influenced by the inability of the pressure accumulator to fully absorb water pressure oscillations. In this study, we monitored changes in hydraulic oil pressure values at the intensifier entrance and their connection with irregularities on the machined surface—such as waviness—when cutting aluminum AlMg3 of different thicknesses. Experimental research was conducted in order to establish this connection. Aluminum AlMg3 of different thicknesses—from 6 mm to 12 mm—was cut with different traverse speeds while hydraulic oil pressure values were monitored. The pressure signals thus obtained were analyzed by applying the fast Fourier transform (FFT) algorithm. We identified a single-sided pressure signal amplitude spectrum. The frequency axis can be transformed by multiplying inverse frequency data with traverse speed; in this way, a single-sided amplitude spectrum can be obtained, examined against the period in which striations are expected to appear (in millimeters). In the lower zone of the analyzed samples, striations are observed at intervals determined by the dominant hydraulic oil pressure harmonics, which are transferred to the operating pressure. In other words, we demonstrate how the machined surface topography is directly induced by water jet pressure frequency characteristics. Full article
(This article belongs to the Special Issue High-Pressure Water Jet Machining in Materials Engineering)
Show Figures

Figure 1

19 pages, 9566 KiB  
Article
A Zenith Tropospheric Delay Modeling Method Based on the UNB3m Model and Kriging Spatial Interpolation
by Huineng Yan, Zhigang Lu, Fang Li, Yu Li, Fuping Li and Rui Wang
Atmosphere 2025, 16(8), 921; https://doi.org/10.3390/atmos16080921 - 30 Jul 2025
Viewed by 38
Abstract
To accurately estimate Zenith Tropospheric Delay (ZTD) for high-precision positioning of the Global Navigation Satellite System (GNSS), this study proposes a modeling method of ZTD based on the UNB3m model and Kriging spatial interpolation, in which the optimal spatial interpolation parameters are determined [...] Read more.
To accurately estimate Zenith Tropospheric Delay (ZTD) for high-precision positioning of the Global Navigation Satellite System (GNSS), this study proposes a modeling method of ZTD based on the UNB3m model and Kriging spatial interpolation, in which the optimal spatial interpolation parameters are determined based on the errors corresponding to different combinations of the interpolation parameters, and the spatial distribution of the GNSS modeling stations is determined by the interpolation errors of the randomly selected GNSS stations for several times. To verify the accuracy and reliability of the proposed model, the ZTD estimates of 132,685 epochs with 1 h or 2 h temporal resolution for 28 years from 1997 to 2025 of the global network of continuously operating GNSS tracking stations are used as inputs; the ZTD results at any position and the corresponding observation moment can be obtained with the proposed model. The experimental results show that the model error is less than 30 mm in more than 85% of the observation epochs, the ZTD estimation results are less affected by the horizontal position and height of the GNSS stations than traditional models, and the ZTD interpolation error is improved by 10–40 mm compared to the GPT3 and UNB3m models at the four GNSS checking stations. Therefore, this technology can provide ZTD estimation results for single- and dual-frequency hybrid deformation monitoring, as well as dense ZTD data for Precipitable Water Vapor (PWV) inversion. Since the proposed method has the advantages of simple implementation, high accuracy, high reliability, and ease of promotion, it is expected to be fully applied in other high-precision positioning applications. Full article
(This article belongs to the Special Issue GNSS Remote Sensing in Atmosphere and Environment (2nd Edition))
Show Figures

Figure 1

32 pages, 5581 KiB  
Article
Composite Noise Reduction Method for Internal Leakage Acoustic Emission Signal of Safety Valve Based on IWTD-IVMD Algorithm
by Shuxun Li, Xiaoqi Meng, Jianjun Hou, Kang Yuan and Xiaoya Wen
Sensors 2025, 25(15), 4684; https://doi.org/10.3390/s25154684 - 29 Jul 2025
Viewed by 184
Abstract
As the core device for protecting the safety of the pressure-bearing system, the spring full-open safety valve is prone to various forms of valve seat sealing surface damage after long-term opening and closing impact, corrosion, and medium erosion, which may lead to internal [...] Read more.
As the core device for protecting the safety of the pressure-bearing system, the spring full-open safety valve is prone to various forms of valve seat sealing surface damage after long-term opening and closing impact, corrosion, and medium erosion, which may lead to internal leakage. In view of the problems that the high-frequency acoustic emission signal of the internal leakage of the safety valve has, namely, a large number of energy-overlapping areas in the frequency domain, the overall signal presents broadband characteristics, large noise content, and no obvious time–frequency characteristics. A composite denoising method, IWTD, improved wavelet threshold function with dual adjustable factors, and the improved VMD algorithm is proposed. In view of the problem that the optimal values of the dual adjustment factors a and b of the function are difficult to determine manually, an improved dung beetle optimization algorithm is proposed, with the maximum Pearson coefficient as the optimization target; the optimization is performed within the value range of the dual adjustable factors a and b, so as to obtain the optimal value. In view of the problem that the key parameters K and α in VMD decomposition are difficult to determine manually, the maximum Pearson coefficient is taken as the optimization target, and the improved dung beetle algorithm is used to optimize within the value range of K and α, so as to obtain the IVMD algorithm. Based on the IVMD algorithm, the characteristic decomposition of the internal leakage acoustic emission signal occurs after the denoising of the IWTD function is performed to further improve the denoising effect. The results show that the Pearson coefficients of all types of internal leakage acoustic emission signals after IWTD-IVMD composite noise reduction are greater than 0.9, which is much higher than traditional noise reduction methods such as soft and hard threshold functions. Therefore, the IWTD-IVMD composite noise reduction method can extract more main features out of the measured spring full-open safety valve internal leakage acoustic emission signals, and has a good noise reduction effect. Feature recognition after noise reduction can provide a good evaluation for the safe operation of the safety valve. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

13 pages, 2826 KiB  
Article
Design and Application of p-AlGaN Short Period Superlattice
by Yang Liu, Changhao Chen, Xiaowei Zhou, Peixian Li, Bo Yang, Yongfeng Zhang and Junchun Bai
Micromachines 2025, 16(8), 877; https://doi.org/10.3390/mi16080877 - 29 Jul 2025
Viewed by 147
Abstract
AlGaN-based high-electron-mobility transistors are critical for next-generation power electronics and radio-frequency applications, yet achieving stable enhancement-mode operation with a high threshold voltage remains a key challenge. In this work, we designed p-AlGaN superlattices with different structures and performed energy band structure simulations using [...] Read more.
AlGaN-based high-electron-mobility transistors are critical for next-generation power electronics and radio-frequency applications, yet achieving stable enhancement-mode operation with a high threshold voltage remains a key challenge. In this work, we designed p-AlGaN superlattices with different structures and performed energy band structure simulations using the device simulation software Silvaco. The results demonstrate that thin barrier structures lead to reduced acceptor incorporation, thereby decreasing the number of ionized acceptors, while facilitating vertical hole transport. Superlattice samples with varying periodic thicknesses were grown via metal-organic chemical vapor deposition, and their crystalline quality and electrical properties were characterized. The findings reveal that although gradient-thickness barriers contribute to enhancing hole concentration, the presence of thick barrier layers restricts hole tunneling and induces stronger scattering, ultimately increasing resistivity. In addition, we simulated the structure of the enhancement-mode HEMT with p-AlGaN as the under-gate material. Analysis of its energy band structure and channel carrier concentration indicates that adopting p-AlGaN superlattices as the under-gate material facilitates achieving a higher threshold voltage in enhancement-mode HEMT devices, which is crucial for improving device reliability and reducing power loss in practical applications such as electric vehicles. Full article
(This article belongs to the Special Issue III–V Compound Semiconductors and Devices, 2nd Edition)
Show Figures

Figure 1

26 pages, 7150 KiB  
Article
Design and Validation of the MANTiS-32 Wireless Monitoring System for Real-Time Performance-Based Structural Assessment
by Jaehoon Lee, Geonhyeok Bang, Yujae Lee and Gwanghee Heo
Appl. Sci. 2025, 15(15), 8394; https://doi.org/10.3390/app15158394 - 29 Jul 2025
Viewed by 161
Abstract
This study aims to develop an integrated wireless monitoring system named MANTiS-32, which leverages an open-source platform to enable autonomous modular operation, high-speed large-volume data transmission via Wi-Fi, and the integration of multiple complex sensors. The MANTiS-32 system is composed of ESP32-based MANTiS-32 [...] Read more.
This study aims to develop an integrated wireless monitoring system named MANTiS-32, which leverages an open-source platform to enable autonomous modular operation, high-speed large-volume data transmission via Wi-Fi, and the integration of multiple complex sensors. The MANTiS-32 system is composed of ESP32-based MANTiS-32 hubs connected to eight MPU-6050 sensors each via RS485. Four MANTiS-32 hubs transmit data to a main PC through an access point (AP), making the system suitable for real-time monitoring of modal information necessary for structural performance evaluation. The fundamental performance of the developed MANTiS-32 system was validated to demonstrate its effectiveness. The evaluation included assessments of acceleration and frequency response measurement performance, wireless communication capabilities, and real-time data acquisition between the MANTiS-32 hub and the eight connected MPU-6050 sensors. To assess the feasibility of using MANTiS-32 for performance monitoring, a flexible model cable-stayed bridge, representing a mid- to long-span bridge, was designed. The system’s ability to perform real-time monitoring of the dynamic characteristics of the bridge model was confirmed. A total of 26 MPU-6050 sensors were distributed across four MANTiS-32 hubs, and real-time data acquisition was successfully achieved through an AP (ipTIME A3004T) without any bottleneck or synchronization issues between the hubs. Vibration data collected from the model bridge were analyzed in real time to extract dynamic characteristics, such as natural frequencies, mode shapes, and damping ratios. The extracted dynamic characteristics showed a measurement error of less than approximately 1.6%, validating the high-precision performance of the MANTiS-32 wireless monitoring system for real-time structural performance evaluation. Full article
(This article belongs to the Special Issue Structural Health Monitoring in Bridges and Infrastructure)
Show Figures

Figure 1

28 pages, 2918 KiB  
Article
Machine Learning-Powered KPI Framework for Real-Time, Sustainable Ship Performance Management
by Christos Spandonidis, Vasileios Iliopoulos and Iason Athanasopoulos
J. Mar. Sci. Eng. 2025, 13(8), 1440; https://doi.org/10.3390/jmse13081440 - 28 Jul 2025
Viewed by 218
Abstract
The maritime sector faces escalating demands to minimize emissions and optimize operational efficiency under tightening environmental regulations. Although technologies such as the Internet of Things (IoT), Artificial Intelligence (AI), and Digital Twins (DT) offer substantial potential, their deployment in real-time ship performance analytics [...] Read more.
The maritime sector faces escalating demands to minimize emissions and optimize operational efficiency under tightening environmental regulations. Although technologies such as the Internet of Things (IoT), Artificial Intelligence (AI), and Digital Twins (DT) offer substantial potential, their deployment in real-time ship performance analytics is at an emerging state. This paper proposes a machine learning-driven framework for real-time ship performance management. The framework starts with data collected from onboard sensors and culminates in a decision support system that is easily interpretable, even by non-experts. It also provides a method to forecast vessel performance by extrapolating Key Performance Indicator (KPI) values. Furthermore, it offers a flexible methodology for defining KPIs for every crucial component or aspect of vessel performance, illustrated through a use case focusing on fuel oil consumption. Leveraging Artificial Neural Networks (ANNs), hybrid multivariate data fusion, and high-frequency sensor streams, the system facilitates continuous diagnostics, early fault detection, and data-driven decision-making. Unlike conventional static performance models, the framework employs dynamic KPIs that evolve with the vessel’s operational state, enabling advanced trend analysis, predictive maintenance scheduling, and compliance assurance. Experimental comparison against classical KPI models highlights superior predictive fidelity, robustness, and temporal consistency. Furthermore, the paper delineates AI and ML applications across core maritime operations and introduces a scalable, modular system architecture applicable to both commercial and naval platforms. This approach bridges advanced simulation ecosystems with in situ operational data, laying a robust foundation for digital transformation and sustainability in maritime domains. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

26 pages, 4687 KiB  
Article
Geant4-Based Logging-While-Drilling Gamma Gas Detection for Quantitative Inversion of Downhole Gas Content
by Xingming Wang, Xiangyu Wang, Qiaozhu Wang, Yuanyuan Yang, Xiong Han, Zhipeng Xu and Luqing Li
Processes 2025, 13(8), 2392; https://doi.org/10.3390/pr13082392 - 28 Jul 2025
Viewed by 252
Abstract
Downhole kick is one of the most severe safety hazards in deep and ultra-deep well drilling operations. Traditional monitoring methods, which rely on surface flow rate and fluid level changes, are limited by their delayed response and insufficient sensitivity, making them inadequate for [...] Read more.
Downhole kick is one of the most severe safety hazards in deep and ultra-deep well drilling operations. Traditional monitoring methods, which rely on surface flow rate and fluid level changes, are limited by their delayed response and insufficient sensitivity, making them inadequate for early warning. This study proposes a real-time monitoring technique for gas content in drilling fluid based on the attenuation principle of Ba-133 γ-rays. By integrating laboratory static/dynamic experiments and Geant4-11.2 Monte Carlo simulations, the influence mechanism of gas–liquid two-phase media on γ-ray transmission characteristics is systematically elucidated. Firstly, through a comparative analysis of radioactive source parameters such as Am-241 and Cs-137, Ba-133 (main peak at 356 keV, half-life of 10.6 years) is identified as the optimal downhole nuclear measurement source based on a comparative analysis of penetration capability, detection efficiency, and regulatory compliance. Compared to alternative sources, Ba-133 provides an optimal energy range for detecting drilling fluid density variations, while also meeting exemption activity limits (1 × 106 Bq) for field deployment. Subsequently, an experimental setup with drilling fluids of varying densities (1.2–1.8 g/cm3) is constructed to quantify the inverse square attenuation relationship between source-to-detector distance and counting rate, and to acquire counting data over the full gas content range (0–100%). The Monte Carlo simulation results exhibit a mean relative error of 5.01% compared to the experimental data, validating the physical correctness of the model. On this basis, a nonlinear inversion model coupling a first-order density term with a cubic gas content term is proposed, achieving a mean absolute percentage error of 2.3% across the full range and R2 = 0.999. Geant4-based simulation validation demonstrates that this technique can achieve a measurement accuracy of ±2.5% for gas content within the range of 0–100% (at a 95% confidence interval). The anticipated field accuracy of ±5% is estimated by accounting for additional uncertainties due to temperature effects, vibration, and mud composition variations under downhole conditions, significantly outperforming current surface monitoring methods. This enables the high-frequency, high-precision early detection of kick events during the shut-in period. The present study provides both theoretical and technical support for the engineering application of nuclear measurement techniques in well control safety. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

14 pages, 2299 KiB  
Article
Ergodicity Breaking and Ageing in a Vibrational Motor
by Yaqin Yang, Hongda Shi, Luchun Du and Wei Guo
Entropy 2025, 27(8), 802; https://doi.org/10.3390/e27080802 - 28 Jul 2025
Viewed by 157
Abstract
The ergodicity and ageing phenomena in a vibrational motor system driven by a periodic external force are investigated. Within the tailored parameter regime, the amplitude and frequency demonstrate contrasting effects on ergodicity. An increase of amplitude induces a transition from non-ergodic to ergodic [...] Read more.
The ergodicity and ageing phenomena in a vibrational motor system driven by a periodic external force are investigated. Within the tailored parameter regime, the amplitude and frequency demonstrate contrasting effects on ergodicity. An increase of amplitude induces a transition from non-ergodic to ergodic behavior, whereas a higher driving frequency leads to a transition from ergodic to non-ergodic dynamics. These transitions are attributed to the enhanced ability of larger amplitudes to overcome potential energy barriers and the improved responsiveness of the system to external variations at lower frequencies. Moreover, pronounced ageing effects are observed at low amplitudes or high frequencies. These findings offer new insights into the intrinsic dynamical mechanisms of vibrational motor systems and provide a theoretical foundation for predicting their long-term operational performance. Full article
(This article belongs to the Special Issue Non-Equilibrium Dynamics in Ultra-Cold Quantum Gases)
Show Figures

Figure 1

21 pages, 11260 KiB  
Article
GaN HEMT Oscillators with Buffers
by Sheng-Lyang Jang, Ching-Yen Huang, Tzu Chin Yang and Chien-Tang Lu
Micromachines 2025, 16(8), 869; https://doi.org/10.3390/mi16080869 - 28 Jul 2025
Viewed by 188
Abstract
With their superior switching speed, GaN high-electron-mobility transistors (HEMTs) enable high power density, reduce energy losses, and increase power efficiency in a wide range of applications, such as power electronics, due to their high breakdown voltage. GaN-HEMT devices are subject to long-term reliability [...] Read more.
With their superior switching speed, GaN high-electron-mobility transistors (HEMTs) enable high power density, reduce energy losses, and increase power efficiency in a wide range of applications, such as power electronics, due to their high breakdown voltage. GaN-HEMT devices are subject to long-term reliability due to the self-heating effect and lattice mismatch between the SiC substrate and the GaN. Depletion-mode GaN HEMTs are utilized for radio frequency applications, and this work investigates three wide-bandgap (WBG) GaN HEMT fixed-frequency oscillators with output buffers. The first GaN-on-SiC HEMT oscillator consists of an HEMT amplifier with an LC feedback network. With the supply voltage of 0.8 V, the single-ended GaN oscillator can generate a signal at 8.85 GHz, and it also supplies output power of 2.4 dBm with a buffer supply of 3.0 V. At 1 MHz frequency offset from the carrier, the phase noise is −124.8 dBc/Hz, and the figure of merit (FOM) of the oscillator is −199.8 dBc/Hz. After the previous study, the hot-carrier stressed RF performance of the GaN oscillator is studied, and the oscillator was subject to a drain supply of 8 V for a stressing step time equal to 30 min and measured at the supply voltage of 0.8 V after the step operation for performance benchmark. Stress study indicates the power oscillator with buffer is a good structure for a reliable structure by operating the oscillator core at low supply and the buffer at high supply. The second balanced oscillator can generate a differential signal. The feedback filter consists of a left-handed transmission-line LC network by cascading three unit cells. At a 1 MHz frequency offset from the carrier of 3.818 GHz, the phase noise is −131.73 dBc/Hz, and the FOM of the 2nd oscillator is −188.4 dBc/Hz. High supply voltage operation shows phase noise degradation. The third GaN cross-coupled VCO uses 8-shaped inductors. The VCO uses a pair of drain inductors to improve the Q-factor of the LC tank, and it uses 8-shaped inductors for magnetic coupling noise suppression. At the VCO-core supply of 1.3 V and high buffer supply, the FOM at 6.397 GHz is −190.09 dBc/Hz. This work enhances the design techniques for reliable GaN HEMT oscillators and knowledge to design high-performance circuits. Full article
(This article belongs to the Special Issue Research Trends of RF Power Devices)
Show Figures

Figure 1

10 pages, 2001 KiB  
Article
Low Phase Noise Millimeter-Wave Generation Based on Optoelectronic Feed-Forward
by Tong Yang, Yiwen Lu, Qizhuang Cen, Xinpeng Wang, Zhen Feng, Chong Liu, Feifei Yin, Kun Xu, Ming Li and Yitang Dai
Photonics 2025, 12(8), 757; https://doi.org/10.3390/photonics12080757 - 28 Jul 2025
Viewed by 134
Abstract
In this paper, we propose an optoelectronic feed-forward millimeter-wave generator based on the Mach–Zehnder interferometer (MZI) structure. The phase noise of the local oscillation (LO) input is extracted by loop design and used for phase noise suppression of the output, thereby optimizing the [...] Read more.
In this paper, we propose an optoelectronic feed-forward millimeter-wave generator based on the Mach–Zehnder interferometer (MZI) structure. The phase noise of the local oscillation (LO) input is extracted by loop design and used for phase noise suppression of the output, thereby optimizing the phase noise performance of the generator output. The scheme achieves separation of the phase noise by using an MZI structure and a mixing-frequency oscillator to realize the differential and integration process of the phase noise from the LO input source, respectively. Then, it is combined with a feed-forward operation to skillfully realize phase noise rejection of the resulting high-frequency output. The proposed scheme has been demonstrated to facilitate millimeter-wave generation at 40 GHz and 50 GHz. The measured phase noise is as low as −120 dBc/Hz at a 10 kHz offset, and the experimental setup achieves phase noise suppression of up to 36 dB at this frequency offset. Through systematic theoretical analysis and experimental verification, the excellent capabilities of the proposed scheme in high-frequency signal generation and phase noise suppression are fully demonstrated, which provides a new technological path for high-performance millimeter-wave generation, avoiding the deterioration of the phase noise introduced using high-frequency optoelectronic devices other than photodetectors (PDs) to process the signals. Full article
(This article belongs to the Special Issue Optoelectronic Oscillators (OEO): Principles and Applications)
Show Figures

Figure 1

Back to TopTop