Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (41)

Search Parameters:
Keywords = high-altitude fungi

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1217 KiB  
Article
Genomic Analysis of Laccaria Genomes at High Altitude
by Yu Bao, Ye Mu, Jinghuan Hu, Mengchao Chen and Jing Xing
J. Fungi 2025, 11(8), 592; https://doi.org/10.3390/jof11080592 - 14 Aug 2025
Viewed by 178
Abstract
The Qinghai–Tibet Plateau (QTP) harbors extreme environmental conditions (e.g., low temperature, intense UV radiation, and hypoxia), presenting unique challenges for biological adaptation. However, the genetic mechanisms underlying the adaptation of macrofungi to high-altitude environments on the QTP remain poorly understood. In this study, [...] Read more.
The Qinghai–Tibet Plateau (QTP) harbors extreme environmental conditions (e.g., low temperature, intense UV radiation, and hypoxia), presenting unique challenges for biological adaptation. However, the genetic mechanisms underlying the adaptation of macrofungi to high-altitude environments on the QTP remain poorly understood. In this study, we de novo sequenced and assembled the genomes of three Laccaria species collected from the QTP, aiming to unravel the genomic basis of their adaptation to high altitudes. The genomic data indicates that the genome of high-altitude species is slightly larger than that of their low-altitude relatives, particularly due to LTR retrotransposons, which also show a negative correlation with altitude. The expanded and positively selected gene families in high-altitude species were enriched in pathways related to DNA damage repair, maintenance of cell membrane stability, signal transduction, enzyme activity, stress response, and reproduction. In contrast, contracted gene families in high-altitude species were primarily associated with disease and immune responses, likely due to the reduced pathogen pressure in extreme high-altitude environments. Additionally, species-specific genes of high-altitude Laccaria were enriched in functions related to enzyme activity, membrane stability, and signal transduction, further supporting their adaptive roles. Analysis of carbohydrate-active enzymes (CAZymes) showed distinct gene family distributions between high- and low-altitude species, with several families absent in the low-altitude species, suggesting their potential involvement in environmental adaptation. Overall, our findings indicate that genome size expansion driven by LTR retrotransposons, coordinated evolution of gene families, positive selection, and divergence in CAZymes collectively may contribute to the adaptation of Laccaria to extreme high-altitude environments. This study provides basic data into the genetic mechanisms of fungal adaptation to harsh plateau environments and lays a foundation for further research on extremophilic fungi. Full article
(This article belongs to the Section Fungal Genomics, Genetics and Molecular Biology)
Show Figures

Figure 1

24 pages, 4193 KiB  
Article
Evaluation of Bioactive Compounds, Antioxidant Activity, and Anticancer Potential of Wild Ganoderma lucidum Extracts from High-Altitude Regions of Nepal
by Ishor Thapa, Ashmita Pandey, Sunil Tiwari and Suvash Chandra Awal
Curr. Issues Mol. Biol. 2025, 47(8), 624; https://doi.org/10.3390/cimb47080624 - 5 Aug 2025
Viewed by 464
Abstract
Wild Ganoderma lucidum from Nepal’s high-altitude regions was studied to identify key bioactive compounds and assess the influence of solvent type—water, ethanol, methanol, and acetone—on extraction efficiency and biological activity. Extracts were evaluated for antioxidant potential, cytotoxicity against HeLa cells, and phytochemical composition [...] Read more.
Wild Ganoderma lucidum from Nepal’s high-altitude regions was studied to identify key bioactive compounds and assess the influence of solvent type—water, ethanol, methanol, and acetone—on extraction efficiency and biological activity. Extracts were evaluated for antioxidant potential, cytotoxicity against HeLa cells, and phytochemical composition via gas chromatography–mass spectrometry (GC-MS). Solvent type significantly affected both yield and bioactivity. Acetone yielded the highest crude extract (5.01%), while ethanol extract exhibited the highest total phenolic (376.5 ± 9.3 mg PG/g) and flavonoid content (30.3 ± 0.5 mg QE/g). Methanol extract was richest in lycopene (0.07 ± 0.00 mg/g) and β-carotene (0.45 ± 0.02 mg/g). Ethanol extract demonstrated consistently strong DPPH, superoxide, hydroxyl, and nitric oxide radical scavenging activity, along with high reducing power. All extracts showed dose-dependent cytotoxicity against HeLa cells, with ethanol and water extracts showing the greatest inhibition (>65% at 1000 µg/mL). GC-MS profiling identified solvent-specific bioactive compounds including sterols, terpenoids, polyphenols, and fatty acids. Notably, pharmacologically relevant compounds such as hinokione, ferruginol, ergosterol, and geranylgeraniol were detected. These findings demonstrate the therapeutic potential of G. lucidum, underscore the importance of solvent selection, and suggest that high-altitude ecological conditions may influence its bioactive metabolite profile. Full article
Show Figures

Graphical abstract

18 pages, 4241 KiB  
Article
Distribution Patterns and Assembly Mechanisms of Rhizosphere Soil Microbial Communities in Schisandra sphenanthera Across Altitudinal Gradients
by Weimin Li, Luyao Yang, Xiaofeng Cong, Zhuxin Mao and Yafu Zhou
Biology 2025, 14(8), 944; https://doi.org/10.3390/biology14080944 - 27 Jul 2025
Viewed by 283
Abstract
To investigate the characteristics of rhizosphere soil microbial communities associated with Schisandra sphenanthera across different altitudinal gradients and to reveal the driving factors of microbial community dynamics, this study collected rhizosphere soil samples at four elevations: 900 m (HB1), 1100 m (HB2), 1300 [...] Read more.
To investigate the characteristics of rhizosphere soil microbial communities associated with Schisandra sphenanthera across different altitudinal gradients and to reveal the driving factors of microbial community dynamics, this study collected rhizosphere soil samples at four elevations: 900 m (HB1), 1100 m (HB2), 1300 m (HB3), and 1500 m (HB4). High-throughput sequencing and molecular ecological network analysis were employed to analyze the microbial community composition and species interactions. A null model was applied to elucidate community assembly mechanisms. The results demonstrated that bacterial communities were dominated by Proteobacteria, Acidobacteriota, Actinobacteriota, and Chloroflexi. The relative abundance of Proteobacteria increased with elevation, while that of Acidobacteriota and Actinobacteriota declined. Fungal communities were primarily composed of Ascomycota and Basidiomycota, with both showing elevated relative abundances at higher altitudes. Diversity indices revealed that HB2 exhibited the highest bacterial Chao, Ace, and Shannon indices but the lowest Simpson index. For fungi, HB3 displayed the highest Chao and Ace indices, whereas HB4 showed the highest Shannon index and the lowest Simpson index. Ecological network analysis indicated stronger bacterial competition at lower elevations and enhanced cooperation at higher elevations, contrasting with fungal communities that exhibited increased competition at higher altitudes. Altitude and soil nutrients were negatively correlated with soil carbon content, while plant nutrients and fungal diversity positively correlated with soil carbon. Null model analysis suggested that deterministic processes dominated bacterial community assembly, whereas stochastic processes governed fungal assembly. These findings highlight significant altitudinal shifts in the microbial community structure and assembly mechanisms in S. sphenanthera rhizosphere soils, driven by the synergistic effects of soil nutrients, plant growth, and fungal diversity. This study provides critical insights into microbial ecology and carbon cycling in alpine ecosystems, offering a scientific basis for ecosystem management and conservation. Full article
(This article belongs to the Section Ecology)
Show Figures

Graphical abstract

25 pages, 4954 KiB  
Article
Local Fungi Promote Plant Growth by Positively Affecting Rhizosphere Metabolites to Drive Beneficial Microbial Assembly
by Deyu Dong, Zhanling Xie, Jing Guo, Bao Wang, Qingqing Peng, Jiabao Yang, Baojie Deng, Yuan Gao, Yuting Guo, Xueting Fa and Jianing Yu
Microorganisms 2025, 13(8), 1752; https://doi.org/10.3390/microorganisms13081752 - 26 Jul 2025
Viewed by 432
Abstract
Ecological restoration in the cold and high-altitude mining areas of the Qinghai–Tibet Plateau is faced with dual challenges of extreme environments and insufficient microbial adaptability. This study aimed to screen local microbial resources with both extreme environmental adaptability and plant-growth-promoting functions. Local fungi [...] Read more.
Ecological restoration in the cold and high-altitude mining areas of the Qinghai–Tibet Plateau is faced with dual challenges of extreme environments and insufficient microbial adaptability. This study aimed to screen local microbial resources with both extreme environmental adaptability and plant-growth-promoting functions. Local fungi (DK; F18-3) and commercially available bacteria (B0) were used as materials to explore their regulatory mechanisms for plant growth, soil physicochemical factors, microbial communities, and metabolic profiles in the field. Compared to bacterial treatments, local fungi treatments exhibited stronger ecological restoration efficacy. In addition, the DK and F18-3 strains, respectively, increased shoot and root biomass by 23.43% and 195.58% and significantly enhanced soil nutrient content and enzyme activity. Microbiome analysis further implied that, compared with the CK, DK treatment could significantly improve the α-diversity of fungi in the rhizosphere soil (the Shannon index increased by 14.27%) and increased the amount of unique bacterial genera in the rhizosphere soil of plants, totaling fourteen genera. Meanwhile, this aggregated the most biomarkers and beneficial microorganisms and strengthened the interactions among beneficial microorganisms. After DK treatment, twenty of the positively accumulated differential metabolites (DMs) in the plant rhizosphere were highly positively associated with six plant traits such as shoot length and root length, as well as beneficial microorganisms (e.g., Apodus and Pseudogymnoascus), but two DMs were highly negatively related to plant pathogenic fungi (including Cistella and Alternaria). Specifically, DK mainly inhibited the growth of pathogenic fungi through regulating the accumulation of D-(+)-Malic acid and Gamma-Aminobutyric acid (Cistella and Alternaria decreased by 84.20% and 58.53%, respectively). In contrast, the F18-3 strain mainly exerted its antibacterial effect by enriching Acidovorax genus microorganisms. This study verified the core role of local fungi in the restoration of mining areas in the Qinghai–Tibet Plateau and provided a new direction for the development of microbial agents for ecological restoration in the Qinghai–Tibet Plateau. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

14 pages, 1849 KiB  
Article
Climate-Driven Microbial Communities Regulate Soil Organic Carbon Stocks Along the Elevational Gradient on Alpine Grassland over the Qinghai–Tibet Plateau
by Xiaomei Mo, Jinhong He, Guo Zheng, Xiangping Tan and Shuyan Cui
Agronomy 2025, 15(8), 1810; https://doi.org/10.3390/agronomy15081810 - 26 Jul 2025
Viewed by 439
Abstract
The Qinghai–Tibet Plateau, a region susceptible to global change, stores substantial amounts of soil organic carbon (SOC) in its alpine grassland. However, little is known about how SOC is regulated by soil microbial communities, which vary with elevation, mean annual temperature (MAT), and [...] Read more.
The Qinghai–Tibet Plateau, a region susceptible to global change, stores substantial amounts of soil organic carbon (SOC) in its alpine grassland. However, little is known about how SOC is regulated by soil microbial communities, which vary with elevation, mean annual temperature (MAT), and mean annual precipitation (MAP). This study integrates phospholipid fatty acid (PLFA) analysis to simultaneously resolve microbial biomass, community composition, and membrane lipid adaptations along an elevational gradient (2861–5090 m) on the Qinghai–Tibet Plateau. This study found that microbial PLFAs increased significantly with rising MAP, while the relationship with MAT was nonlinear. PLFAs of different microbial groups all had a positive effect on SOC storage. At higher altitudes (characterized by lower MAP and lower MAT), Gram-positive bacteria dominated bacterial communities, and fungi dominated the overall microbial community, highlighting microbial structural adaptations as key regulators of carbon storage. Saturated fatty acids with branches of soil microbial membrane dominated across sites, but their prevalence over unsaturated fatty acids decreased at high elevations. These findings establish a mechanistic link between climate-driven microbial community restructuring and SOC vulnerability on the QTP, providing a predictive framework for carbon–climate feedbacks in alpine systems under global warming. Full article
(This article belongs to the Special Issue Soil Carbon Sequestration for Mitigating Climate Change in Grasslands)
Show Figures

Figure 1

16 pages, 1535 KiB  
Article
Effects of Altitude on Tea Composition: Dual Regulation by Soil Physicochemical Properties and Microbial Communities
by Xirong Ren, Minyao Lin, Jiani Liu, Waqar Khan, Hongbo Zhao, Binmei Sun, Shaoqun Liu and Peng Zheng
Plants 2025, 14(11), 1642; https://doi.org/10.3390/plants14111642 - 28 May 2025
Viewed by 609
Abstract
Soil chemical properties and soil microbial communities are the key factors affecting the content of tea. The mechanism by which altitude changes soil’s chemical properties and microbial community structure to affect tea content is unclear. This study was conducted on a typical tea [...] Read more.
Soil chemical properties and soil microbial communities are the key factors affecting the content of tea. The mechanism by which altitude changes soil’s chemical properties and microbial community structure to affect tea content is unclear. This study was conducted on a typical tea plantation in the Fenghuang Mountains of Chaozhou, China. It systematically revealed the relationship between soil chemical properties and microbial communities with tea quality components between different altitudes (396 m/517 m/623 m). We discovered that soil pH and soil Catalase activity appeared to decrease and then increase with altitude, and soil SOM content and soil Acid Phosphatase activity were significantly higher at mid-altitude. Soil TP and TK content were lowest at high altitudes (0.20 mg/kg, 5.98 mg/kg). Non-significant differences were found in the spatial composition of microbial communities at different altitudes. The abundance of fungi (Sobol index) was significantly higher (p < 0.05) at low altitudes than in other altitude groups. Redundancy analysis indicated that soil pH and TP are drivers of changes in bacterial community structure. The abundance of Fibrobacteres, a key functional group of bacteria, showed a decreasing trend with increasing altitude, and Stachybotrys (fungi) likewise had the lowest abundance at high altitude (p < 0.05). The catechin, theanine, and caffeine content of tea leaves accumulated the least at high altitude (12.91%, 0.39%, 2.88%). Fibrobacteres and Stachybotrys, as well as soil TK and TP content, were strongly associated with the accumulation of major contents in tea leaves. Meanwhile, fungal abundance was significantly and positively correlated with theanine (p < 0.05). This study enhances our understanding of soil chemical property–soil microbial community–tea tree interactions. By exploring the differences in soil key nutrient content and the abundance of functional flora driving tea quality at different altitudes, it provides a basis for the precise microecological management of tea gardens. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

17 pages, 4468 KiB  
Article
Integrated Amino Acid Profiling and 4D-DIA Proteomics Reveal Protein Quality Divergence and Metabolic Adaptation in Cordyceps Species
by Chuyu Tang, Yuejun Fan, Tao Wang, Jie Wang, Mengjun Xiao, Min He, Xiyun Chang, Yuling Li and Xiuzhang Li
J. Fungi 2025, 11(5), 365; https://doi.org/10.3390/jof11050365 - 8 May 2025
Viewed by 894
Abstract
To explore the differences in protein quality among classic medicinal entomopathogenic fungi and to evaluate their metabolic adaptability, we analyzed the amino acid composition and proteomic characteristics of Cordyceps sinensis (CS), Cordyceps militaris (CM), and Cordyceps cicadae (CC). Quantitative analysis showed CM contained [...] Read more.
To explore the differences in protein quality among classic medicinal entomopathogenic fungi and to evaluate their metabolic adaptability, we analyzed the amino acid composition and proteomic characteristics of Cordyceps sinensis (CS), Cordyceps militaris (CM), and Cordyceps cicadae (CC). Quantitative analysis showed CM contained the highest crude protein and lysine, methionine, threonine, and valine. CS adapted to high-altitude hypoxia and exhibited lower protein but elevated leucine, isoleucine, and histidine contents, which may contribute to membrane stabilization and oxidative stress resistance. CC displayed higher non-essential amino acids such as arginine, proline, and tyrosine, reflecting active nitrogen metabolism. Four-dimensional data-independent acquisition (4D-DIA) proteomics identified 495 differentially expressed proteins (DEPs). Compared with CS, CM and CC displayed upregulated glutamate oxaloacetate transaminases 2 (GOT2), glutamate dehydrogenase (GDH), and argininosuccinate synthase 1 (ASS1) coordinately regulate nitrogen flux through the alanine-aspartate-glutamate metabolic network and urea cycle, supporting metabolic intermediate replenishment for energy metabolism. The upregulation of branched-chain keto acid dehydrogenase E1 subunit alpha (BCKDHA) and acyl-CoA dehydrogenase short/branched chain (ACADSB) in CM and CC facilitated the integration of branched-chain amino acid catabolism with the TCA cycle, explaining species-specific differences in protein content. This study presents the first application of 4D-DIA proteomics to compare CS, CM, and CC, providing insights into quality divergence mechanisms in medicinal fungi. Full article
(This article belongs to the Special Issue Fungal Metabolomics and Genomics)
Show Figures

Figure 1

19 pages, 14137 KiB  
Article
Morphology and Phylogeny Reveal New Species and Records of Diplodia, Dothiorella, and Phaeobotryon Associated with Tree Cankers in Xizang, China
by Jia Zhou, Aining Li and Ning Jiang
J. Fungi 2025, 11(5), 331; https://doi.org/10.3390/jof11050331 - 22 Apr 2025
Viewed by 762
Abstract
The fungal family Botryosphaeriaceae, which includes genera such as Diplodia, Dothiorella, and Phaeobotryon, comprises species commonly associated with woody plants such as endophytes, pathogens, and saprophytes. The Xizang Autonomous Region of China, known for its rich forest resources, harbors significant [...] Read more.
The fungal family Botryosphaeriaceae, which includes genera such as Diplodia, Dothiorella, and Phaeobotryon, comprises species commonly associated with woody plants such as endophytes, pathogens, and saprophytes. The Xizang Autonomous Region of China, known for its rich forest resources, harbors significant fungal diversity. However, limited research has been conducted on plant-disease-associated fungi in this region. In this study, we employed morphological characteristics and molecular phylogenetic analyses of the internal transcribed spacer region of rDNA (ITS), the ribosomal large subunit (LSU), the translation elongation factor 1-alpha (tef1) gene, and the partial beta-tubulin (tub2) gene to identify fungal species. As a result, two new species, Diplodia salicicola sp. nov. and Phaeobotryon xizangense sp. nov., are proposed and described herein. Additionally, Di. corticola, Di. mutila, Do. acericola, Do. magnoliae, Do. vidmadera, Do. yunnana comb. nov., and Do. zanthoxyli are reported for the first time in Xizang. Our findings contribute to advancing the knowledge of fungal biodiversity in Xizang’s high-altitude ecosystems. Full article
(This article belongs to the Special Issue Advanced Research of Ascomycota)
Show Figures

Figure 1

21 pages, 5976 KiB  
Article
Diversity and Correlation Analysis of Endophytes and Top Metabolites in Phlomoides rotata Roots from High-Altitude Habitats
by Zuxia Li, Huichun Xie, Guigong Geng, Chongxin Yin, Xiaozhuo Wu, Jianxia Ma, Rui Su, Zirui Wang and Feng Qiao
Microorganisms 2025, 13(3), 503; https://doi.org/10.3390/microorganisms13030503 - 25 Feb 2025
Viewed by 655
Abstract
Phlomoides rotata, a traditional medicinal plant, always grows on the Tibetan Plateau at a high altitude of 3100–5200 m. The major active ingredients in P. rotata were used in medicines due to their diverse pharmacological effects, including hemostatic, anti-inflammatory, antitumor, immuno-modulatory, and [...] Read more.
Phlomoides rotata, a traditional medicinal plant, always grows on the Tibetan Plateau at a high altitude of 3100–5200 m. The major active ingredients in P. rotata were used in medicines due to their diverse pharmacological effects, including hemostatic, anti-inflammatory, antitumor, immuno-modulatory, and antioxidant activities. This study screened 15 top endophytic genus through the analysis of OTUs and the top 30 metabolites with relatively high content in P. rotata roots from four different habitats (HN, GL, YS, and CD regions) in Qinghai Province. Twelve physicochemical indicators were measured and analyzed in the rhizosphere soils of P. rotata habitats. The results indicated that the top 30 metabolites compounds included 7 amino acids, 5 sugars and alcohols, 4 phenylpropanoids, 3 Organic acids, and 3 Alkaloids. Four endophytic bacteria (Acidibacter, Sphingomonas, Variovorax, and Sphingobium) and three endophytic fungi (Tetracladium, Cadophora, and Minimelanolocus) were dominant genera in P. rotata roots from four habitats. There were 109 positive significant correlations and 57 negative correlations between OTUs of endophytic bacteria and contents of top 30 metabolites, and 59 positive significant correlations and 58 negative correlations between OTUs of endophytic fungus and contents of top 30 metabolites. The OTUs of Acidibacter were significantly positively correlated with the content of 5 soil physicochemical indicators (total phosphorus, amylase, sucrase, total potassium, or soil organic carbon) and significantly negatively correlated with the content of acid protease. OTUs of Tetracladium or Cadophora showed a positive correlation with the content of total phosphorus and a negative correlation with that of alkaline phosphatase. This study provides a theoretical basis for the study of the correlation between endophytes and metabolites in P. rotata roots. Full article
Show Figures

Figure 1

18 pages, 3375 KiB  
Article
Growth Characteristics and Freezing Tolerance of Ectomycorrhizal and Saprotrophic Fungi: Responses to Normal and Freezing Temperatures
by Hangyu Lan, Markus Gorfer, Burenjargal Otgonsuren and Douglas L. Godbold
Forests 2025, 16(2), 191; https://doi.org/10.3390/f16020191 - 21 Jan 2025
Viewed by 3069
Abstract
In boreal and temperate forests, symbiotroph and saprotroph soil fungi must survive months of low temperatures or freezing during winter. In the temperate biome, this is particularly the case for high-elevation mountain forests. Soil freezing is thus an important stress factor in these [...] Read more.
In boreal and temperate forests, symbiotroph and saprotroph soil fungi must survive months of low temperatures or freezing during winter. In the temperate biome, this is particularly the case for high-elevation mountain forests. Soil freezing is thus an important stress factor in these forests. The objective of this study was to assess how temperature and freezing conditions affect the growth and survival of symbiotic and saprotrophic fungi. To assess the cold and freezing tolerance of ectomycorrhizal (EM) and saprotrophic (SAP) fungi, we conducted a study from 2021 to 2023, using isolates from forests located at lower and high-elevation mountain sites, as well as from forests in Mongolia, at altitudes ranging from 525 m to 1800 m. The isolates were grown in vitro at temperatures of 22, 15, and 4 °C and exposed to freezing conditions at −4 or −18 °C. The response to temperature and freezing was determined based on radial growth. Triphenyltetrazolium chloride (TTC) reduction was used to measure relative metabolic activity and viability. Fungi that originated from higher-elevation mountain sites, and thus colder climate conditions, tended to have a lower response to temperature and a higher tolerance to freezing. We could find no evidence of a higher freezing tolerance among different exploration types of ectomycorrhizal fungi. Sensitivity to low temperatures appears to be taxa-specific rather than exploration-type-specific. Full article
(This article belongs to the Section Forest Biodiversity)
Show Figures

Figure 1

13 pages, 2570 KiB  
Article
Phylogeny and Taxonomy of the Naematelia aurantialba Complex in Southwestern China
by Jin-Yan Tang and Zhu-Liang Yang
J. Fungi 2024, 10(12), 845; https://doi.org/10.3390/jof10120845 - 6 Dec 2024
Cited by 2 | Viewed by 2225
Abstract
Naematelia aurantialba and its allies are important edible and medicinal mushrooms in China. They are usually called Jiner (金耳) and have been cultivated on a commercial scale. However, due to the lack of DNA sequences from the holotype of Naematelia aurantialba, the [...] Read more.
Naematelia aurantialba and its allies are important edible and medicinal mushrooms in China. They are usually called Jiner (金耳) and have been cultivated on a commercial scale. However, due to the lack of DNA sequences from the holotype of Naematelia aurantialba, the taxonomic issues of the species complex are unresolved. In this study, the authors successfully generated DNA sequences from the holotype of N. aurantialba by a genome skimming approach and additional allied species by Sanger sequencing. Based on morphological characteristics, molecular phylogenetic data, and geographic distribution patterns, four species, including three new ones, in the complex in southwestern China were uncovered. Naematelia aurantialba occurs at high altitudes (over 3000 m above sea level), with subalpine dead plants as its substrates, and has larger basidiospores, while the commonly cultivated species, described as N. sinensis in this work, is distributed in subtropical areas at altitudes between 1800 m and 2600 m on the dead wood of subtropical plants and has smaller basidiospores. The third species, namely N. nodulosa, has habitats similar to those of N. sinensis but differs from the latter in its basidiomata with an uneven nodulose surface, a loose context with small internal cavities, and numerous conidia. The fourth species, N. pedicellata, is easily distinguished from the others by its basidia, with long basal stalks and broadly ellipsoid basidiospores measuring 10.5–12.5 × 8.0–10.0 μm. All these species are parasitic on Stereum species. This study provides a solid basis for future guidance for the selection of new strains and cultivation practices of these valuable fungi. Full article
(This article belongs to the Section Fungal Evolution, Biodiversity and Systematics)
Show Figures

Figure 1

22 pages, 12908 KiB  
Article
Elevation Determines Fungal Diversity, and Land Use Governs Community Composition: A Dual Perspective from Gaoligong Mountains
by Zhuanfei Zeng, Ruilong Huang and Wei Li
Microorganisms 2024, 12(11), 2378; https://doi.org/10.3390/microorganisms12112378 - 20 Nov 2024
Cited by 1 | Viewed by 1260
Abstract
Soil fungi are closely tied to their surrounding environment. While numerous studies have reported the effects of land-use practices or elevations on soil fungi, our understanding of how their community structure and diversity vary with elevation across different land-use practices remains limited. In [...] Read more.
Soil fungi are closely tied to their surrounding environment. While numerous studies have reported the effects of land-use practices or elevations on soil fungi, our understanding of how their community structure and diversity vary with elevation across different land-use practices remains limited. In the present study, by collecting soil samples from four different land uses in the Gaoligong Mountain area, namely shrublands (SLs), coffee plantations (CPs), cornfields (CFs), and citrus orchards (COs), and combining them with the changes in altitude gradients (low: 900 m, medium: 1200 m, high: 1500 m), high-throughput sequencing technology was used to analyze the composition and diversity of soil fungal communities based on the collected soil samples. The results showed that the interaction between land-use types and elevation significantly influenced the structure and diversity of fungal communities, although their relative importance in shaping fungal diversity or community structure varied. Specifically, elevation posed a stronger effect on fungal community alpha-diversity and functional guilds, whereas land-use types had a greater influence over fungal community composition. Our study reveals the individual and combined effects of land-use practices and elevation on the structure and diversity of soil fungal communities in the Gaoligong Mountain region, enhancing our understanding of the distribution patterns and driving mechanisms of soil fungal communities in this biodiversity-rich region. Full article
(This article belongs to the Special Issue Soil Microbial Communities and Ecosystem Functions, 2nd Edition)
Show Figures

Figure 1

19 pages, 2293 KiB  
Article
Fungal Diversity in Fire-Affected Pine Forest Soils at the Upper Tree Line
by Jelena Lazarević, Ana Topalović and Audrius Menkis
Forests 2024, 15(11), 2012; https://doi.org/10.3390/f15112012 - 15 Nov 2024
Cited by 1 | Viewed by 1185
Abstract
Forest fires represent a significant ecological disturbance in ecosystems that increasingly affects Pinus heldreichii H. Christ forests at the upper tree line in Montenegro, due to climate change and anthropogenic factors. Soil samples were collected from five high-altitude sites in the Kuči Mountains, [...] Read more.
Forest fires represent a significant ecological disturbance in ecosystems that increasingly affects Pinus heldreichii H. Christ forests at the upper tree line in Montenegro, due to climate change and anthropogenic factors. Soil samples were collected from five high-altitude sites in the Kuči Mountains, including three post-fire sites (2-, 4-, and 6-years post-fire) and two unburned control sites. High-throughput sequencing and soil chemical analyses were conducted to assess fungal diversity, community composition, and soil nutrient properties. The results showed that fungal diversity was significantly higher in unburned soils compared to post-fire soils, with the most prominent changes in ectomycorrhizal fungi, which are crucial for pine regeneration. The fungal community composition differed markedly between the post-fire and unburned sites, with specific taxa such as Hygrocybe conica (Schaeff.) P. Kumm. and Solicoccozyma aeria (Saito) Yurkov dominating the post-fire environments. Despite this, the fungal richness did not significantly change over time (2-, 4-, or 6-years post-fire), suggesting the slow recovery of fungal communities in high-altitude environments. In addition to shifts in fungal biodiversity, the post-fire soils exhibited higher levels of available phosphorus, likely due to the conversion of organic phosphorus into soluble forms during combustion. However, the organic matter content remained unchanged. This study provided important insights into the long-term ecological impacts of forest fires on high-altitude P. heldreichii forests and underlined the importance of preserving unburned forest areas to maintain fungal biodiversity and support natural regeneration, as well as the potential need for active restoration strategies in fire-affected regions. Full article
(This article belongs to the Section Natural Hazards and Risk Management)
Show Figures

Figure 1

15 pages, 2401 KiB  
Article
Diversity and Anti-Infectious Components of Cultivable Rhizosphere Fungi Derived from Three Species of Astragalus Plants in Northwestern Yunnan, China
by Guo-Jun Zhou, Wei-Jia Xiong, Wei Xu, Zheng-Rong Dou, Bo-Chao Liu, Xue-Li Li, Hao Du, Hai-Feng Li, Yong-Zeng Zhang, Bei Jiang and Kai-Ling Wang
J. Fungi 2024, 10(11), 736; https://doi.org/10.3390/jof10110736 - 24 Oct 2024
Cited by 1 | Viewed by 1149
Abstract
Astragalus, a group of legume plants, has a pronounced rhizosphere effect. Many species of Astragalus with limited resource reserves are distributed in the high-altitude area of northern Yunnan, China. Although some of these plants have high medicinal value, the recognition of them [...] Read more.
Astragalus, a group of legume plants, has a pronounced rhizosphere effect. Many species of Astragalus with limited resource reserves are distributed in the high-altitude area of northern Yunnan, China. Although some of these plants have high medicinal value, the recognition of them is still at a low level. The aim of this research is to explore the species diversity of cultivable rhizofungi derived from Astragalus acaulis, A. forrestii and A. ernestii growing in a special high–cold environment of northwest Yunnan and discover anti-infective components from these fungi. A total of 93 fungal strains belonging to 38 species in 18 genera were isolated and identified. Antibacterial and antimalarial screening yielded 10 target strains. Among them, the ethyl acetate crude extract of the fermented substrate of the rhizofungus Aspergillus calidoustus AA12 derived from the plant A. acaulis showed broad-spectrum antibacterial activity and the best antimalarial activity. Further chemical investigation led to the first discovery of seven compounds from the species A. calidoustus, including sesterterpine 6-epi-ophiobolin G; three sesquiterpenes, penicisochroman A, pergillin and 7-methyl-2-(1-methylethylethlidene)-furo [3,2-H]isoquinoline-3-one; and three polyketides, trypacidin, 1,2-seco-trypacidin and questin. Among them, the compound 6-epi-ophiobolin G exhibited moderate to strong antibacterial activity against six Gram-positive pathogens with the minimum inhibitory concentration (MIC) ranging from 25 to 6.25 μg/mL and a prominent inhibitory effect on the biofilm of Streptococcus agalactiae at an MIC value of 3.125 μg/mL. This compound also displayed potent antimalarial activity against Plasmodium falciparum strains 3D7 and chloroquine-resistant Dd2 at the half-maximal inhibitory concentration (IC50) values of 3.319 and 4.340 µmol/L at 72 h, respectively. This study contributed to our understanding of the cultivable rhizofungi from characteristic Astragalus plants in special high–cold environments and further increased the library of fungi available for natural anti-infectious product screening. Full article
(This article belongs to the Section Fungal Evolution, Biodiversity and Systematics)
Show Figures

Figure 1

18 pages, 4062 KiB  
Article
Altitude Distribution Patterns and Driving Factors of Rhizosphere Soil Microbial Diversity in the Mountainous and Hilly Region of Southwest, China
by Yanlin Li, Yonggang Wang, Yunpeng Liu, Yangyang Chen and Shuangrong Yang
Agronomy 2024, 14(10), 2441; https://doi.org/10.3390/agronomy14102441 - 21 Oct 2024
Viewed by 1374
Abstract
The distribution characteristics of the microbial community in rhizosphere soils of different altitudinal gradients were explored to uncover ecological factors affecting microbial community composition. In this study, the community variations of bacteria and fungi in the rhizosphere soil of Chrysanthemum indicum L. were [...] Read more.
The distribution characteristics of the microbial community in rhizosphere soils of different altitudinal gradients were explored to uncover ecological factors affecting microbial community composition. In this study, the community variations of bacteria and fungi in the rhizosphere soil of Chrysanthemum indicum L. were analyzed. Samples were distributed along an altitudinal gradient of 300–1500 m above sea level in the Fuling watershed of the Three Gorges Reservoir area, China. The analysis was conducted using Illumina MiSeq high-throughput sequencing and bioinformatics analyses. Through correlation analysis with ecological factors, the altitude distribution pattern and driving factors of soil microbial diversity in the mountainous and hilly region of Chongqing were explored. According to the results, the richness and diversity of rhizosphere soil bacteria increased with altitude, while fungi were the richest and most diverse at an altitude of 900 m. The composition of the microbial community differed among different altitudes. Actinobacteria, Proteobacteria, Acidobacteriota, Chloroflexi, Bacteroidota, Ascomycota, unclassified_k_Fungi, Basidiomycota, and Mortierellomycota dominated the microbial community in rhizosphere soil. Correlation analysis showed that the distribution of rhizosphere soil microbial communities correlated with soil ecological factors at different altitudes. Moisture, pH, total nitrogen, total potassium, available potassium, urease, and catalase were significantly positively correlated with rhizosphere soil bacterial α-diversity, while their correlations with fungi were not significant. Variation partition analysis showed that the combined effects of soil physical and chemical factors, enzyme activity, and microbial quantity regulated bacterial community structure and composition. Their combined contributions (19.21%) were lower than the individual effects of soil physical and chemical factors (48.49%), enzyme activity (53.24%), and microbial quantity (60.38%). The effects of ecological factors on fungal communities differed: While the soil physical and chemical factors (44.43%) alone had a clear effect on fungal community structures, their combined contributions had no apparent effect. The results of this study not only contribute to a deeper understanding of the impact mechanism of altitude gradient on the diversity of rhizosphere soil microbial communities, but also provide a scientific basis for the protection and management of mountainous and hilly ecosystems. It lays a foundation for the future exploration of the relationship between microbial communities and plant–soil interactions. Full article
(This article belongs to the Special Issue Nutrient Cycling and Microorganisms in Agroecosystems)
Show Figures

Graphical abstract

Back to TopTop