Advanced Research of Ascomycota

A special issue of Journal of Fungi (ISSN 2309-608X). This special issue belongs to the section "Fungal Evolution, Biodiversity and Systematics".

Deadline for manuscript submissions: 31 May 2025 | Viewed by 9755

Special Issue Editors


E-Mail Website
Guest Editor
Kunming Institute of Botany Chinese Academy of Sciences, Kunming, China
Interests: Ascomycota; Dothideomycetes; Pleosporales; teleomorphs; fungal systematics; plant–fungi interactions; canopy research

E-Mail Website
Guest Editor
School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
Interests: ascomycetes taxonomy; fungal evolution; plant pathology; phylogenomics; Sordariomycetes
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue focuses on the critical yet underexplored world of Ascomycota, which is essential for both our ecosystem and biotechnology but remains largely undiscovered, with estimates suggesting that over 90% are unknown. The urgent need for comprehensive research is emphasized by the increasing threats of environmental change and global warming, which pose significant risks to their survival, potentially leading to extensive species loss. This Special Issue aims to address these challenges by showcasing studies that expand our taxonomic and ecological understanding of Ascomycota, utilizing extensive sampling across varied habitats. Through collaborative efforts, we seek to mitigate these potential losses and enhance our knowledge of Ascomycota, in turn ensuring the preservation of biodiversity for future generations.

In support of this endeavor, this Special Issue cordially invites both reviews and original research articles focusing on Ascomycota. We encourage contributions that explore taxonomy, molecular phylogeny, ecological roles, biogeographic distributions, host–fungi interactions, biotechnological applications, and co-evolutionary relationships.

We look forward to receiving your contributions.

Dr. Dhanushka N. Wanasinghe
Prof. Dr. Sajeewa Maharachchikumbura
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Fungi is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • diversity of ascomycota
  • taxonomic systematics
  • molecular phylogeny
  • ecological significance
  • biotechnological applications
  • geographic distribution
  • climate change impacts
  • environmental sensitivity
  • conservation strategies

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

19 pages, 14137 KiB  
Article
Morphology and Phylogeny Reveal New Species and Records of Diplodia, Dothiorella, and Phaeobotryon Associated with Tree Cankers in Xizang, China
by Jia Zhou, Aining Li and Ning Jiang
J. Fungi 2025, 11(5), 331; https://doi.org/10.3390/jof11050331 - 22 Apr 2025
Viewed by 207
Abstract
The fungal family Botryosphaeriaceae, which includes genera such as Diplodia, Dothiorella, and Phaeobotryon, comprises species commonly associated with woody plants such as endophytes, pathogens, and saprophytes. The Xizang Autonomous Region of China, known for its rich forest resources, harbors significant [...] Read more.
The fungal family Botryosphaeriaceae, which includes genera such as Diplodia, Dothiorella, and Phaeobotryon, comprises species commonly associated with woody plants such as endophytes, pathogens, and saprophytes. The Xizang Autonomous Region of China, known for its rich forest resources, harbors significant fungal diversity. However, limited research has been conducted on plant-disease-associated fungi in this region. In this study, we employed morphological characteristics and molecular phylogenetic analyses of the internal transcribed spacer region of rDNA (ITS), the ribosomal large subunit (LSU), the translation elongation factor 1-alpha (tef1) gene, and the partial beta-tubulin (tub2) gene to identify fungal species. As a result, two new species, Diplodia salicicola sp. nov. and Phaeobotryon xizangense sp. nov., are proposed and described herein. Additionally, Di. corticola, Di. mutila, Do. acericola, Do. magnoliae, Do. vidmadera, Do. yunnana comb. nov., and Do. zanthoxyli are reported for the first time in Xizang. Our findings contribute to advancing the knowledge of fungal biodiversity in Xizang’s high-altitude ecosystems. Full article
(This article belongs to the Special Issue Advanced Research of Ascomycota)
Show Figures

Figure 1

15 pages, 3117 KiB  
Article
Molluscicidal Screening of Hypocreales Fungi from a Brazilian Cerrado Cave Against Biomphalaria glabrata Snails
by Dominnyke Slater Santos Neves, Cyntia Ayumi Yokota Harayashiki, Pedro Henrique Félix de Oliveira, Thiago Lopes Rocha and Jadson Diogo Pereira Bezerra
J. Fungi 2025, 11(3), 173; https://doi.org/10.3390/jof11030173 - 21 Feb 2025
Viewed by 588
Abstract
Fungi play vital roles in ecosystems through parasitism, commensalism, and mutualism. Additionally, they are widely used in industry as bioactive compound producers and biological control agents. Biomphalaria glabrata is a freshwater snail often controlled with chemical molluscicides. However, developing effective alternatives to these [...] Read more.
Fungi play vital roles in ecosystems through parasitism, commensalism, and mutualism. Additionally, they are widely used in industry as bioactive compound producers and biological control agents. Biomphalaria glabrata is a freshwater snail often controlled with chemical molluscicides. However, developing effective alternatives to these chemical treatments is essential. This study evaluated the molluscicidal potential of culture supernatant from Hypocreales fungi isolated from a cave in the Brazilian Cerrado against the B. glabrata. The isolates were identified based on morphological features and ITS rDNA sequences. Fifteen filtrates of Hypocreales fungi were obtained and tested both pure and in different dilutions (10% and 50%) against newly hatched snails during 96 h of exposure. The fungal isolates were identified as belonging to the genera of Clonostachys (1), Cylindrocladiella (1), Fusarium (1), Gliocladiopsis (1), Keithomyces (1), Marquandomyces (1), Ovicillium (1), Pochonia (1), Purpureocillium (1), Sarcopodium (1), Sarocladium (1), Trichoderma (3), and Volutella (1). The results showed 93.33% (14) of the fungal filtrates induced significant mortality, indicating their molluscicidal activity, with Pochonia chlamydosporia FCCUFG 100 and Volutella aeria FCCUFG 107 causing 100% mortality in all dilutions. These results reveal the potential of Hypocreales fungi from a Brazilian Cerrado cave as a promising approach for snail control. Full article
(This article belongs to the Special Issue Advanced Research of Ascomycota)
Show Figures

Figure 1

37 pages, 27014 KiB  
Article
Five New Species of Pezizales from Northeastern China
by Zhengqing Chen and Tolgor Bau
J. Fungi 2025, 11(1), 60; https://doi.org/10.3390/jof11010060 - 14 Jan 2025
Viewed by 921
Abstract
Species belonging to the Pezizales are mainly saprobes in nature. They are most commonly observed in woodlands and humid environments. As a result of recent research conducted on the distribution of species in sandy areas and some National Forests Parks, five new species [...] Read more.
Species belonging to the Pezizales are mainly saprobes in nature. They are most commonly observed in woodlands and humid environments. As a result of recent research conducted on the distribution of species in sandy areas and some National Forests Parks, five new species belonging to three genera were identified. A total of five species of disk fungi from Northeast China were identified and described based on morphological classification and molecular phylogenetics. These included Pulvinula (Pulvinula elsenensis, Pulvinula sublaeterubra), Microstoma (Microstoma jilinense, Microstoma changchunense), and Sarcoscypha (Sarcoscypha hongshiensis). Maximum likelihood and Bayesian analyses were performed using a combined nuc rDNA internal transcribed spacer region (ITS) and nuc 28S rDNA (nrLSU) dataset for the construction of phylogenetic trees. Morphological descriptions, line illustrations, and photographs of the ascocarps of these new species are provided, along with lists of the salient attributes exhibited by the species in the three genera under consideration. Full article
(This article belongs to the Special Issue Advanced Research of Ascomycota)
Show Figures

Figure 1

24 pages, 14670 KiB  
Article
Multi-Gene Phylogenetic Analyses Reveals Heteroxylaria Gen. Nov. and New Contributions to Xylariaceae (Ascomycota) from China
by An-Hong Zhu, Zi-Kun Song, Jun-Fang Wang, Hao-Wen Guan, Zhi Qu and Hai-Xia Ma
J. Fungi 2024, 10(9), 645; https://doi.org/10.3390/jof10090645 - 11 Sep 2024
Cited by 1 | Viewed by 1276
Abstract
An in-depth study of the phylogenetic relationships of Xylaria species associated with nutshells of fruits and seeds within the genus Xylaria and related genera of Xylaceaecea was conducted in China. The multi-gene phylogenetic analyses were carried out based on ITS, RPB2, and TUB [...] Read more.
An in-depth study of the phylogenetic relationships of Xylaria species associated with nutshells of fruits and seeds within the genus Xylaria and related genera of Xylaceaecea was conducted in China. The multi-gene phylogenetic analyses were carried out based on ITS, RPB2, and TUB sequences of 100 species of 16 known genera in Xylariaceae around the world. Based on molecular phylogenetic analyses, morphological observations, and ecological habitats, a new genus, Heteroxylaria, is established to accommodate four new species, viz. H. cordiicola, H. juglandicola, H. meliicola, and H. terminaliicola, and four new combinations, viz. H. oxyacanthae, H. palmicola, H. reevesiae, and H. rohrensis. The genus is characterized by cylindrical stromata with conspicuous to inconspicuous perithecial mounds, surface black, having brown to dark brown ascospores with a germ slit, and it grows on nutshell of fruits. The combined ITS+RPB2+TUB sequence dataset of representative taxa in the Xylariaceae demonstrate that Heteroxylaria is grouped with Hypocreodendron but forms a monophyletic lineage. All novelties described herein are morphologically illustrated and compared to similar species and phylogeny is investigated to establish new genera and species. Full article
(This article belongs to the Special Issue Advanced Research of Ascomycota)
Show Figures

Figure 1

18 pages, 1337 KiB  
Article
Genomic Sequencing and Functional Analysis of the Ex-Type Strain of Malbranchea zuffiana
by Alan Omar Granados-Casas, Ana Fernández-Bravo, Alberto Miguel Stchigel and José Francisco Cano-Lira
J. Fungi 2024, 10(9), 600; https://doi.org/10.3390/jof10090600 - 24 Aug 2024
Cited by 1 | Viewed by 1476
Abstract
Malbranchea is a genus within the order Onygenales (phylum Ascomycota) that includes predominantly saprobic cosmopolitan species. Despite its ability to produce diverse secondary metabolites, no genomic data for Malbranchea spp. are currently available in databases. Therefore, in this study, we obtained, assembled, and [...] Read more.
Malbranchea is a genus within the order Onygenales (phylum Ascomycota) that includes predominantly saprobic cosmopolitan species. Despite its ability to produce diverse secondary metabolites, no genomic data for Malbranchea spp. are currently available in databases. Therefore, in this study, we obtained, assembled, and annotated the genomic sequence of the ex-type strain of Malbranchea zuffiana (CBS 219.58). For the genomic sequencing, we employed both the Illumina and PacBio platforms, followed by hybrid assembly using MaSuRCA. Quality assessment of the assembly was performed using QUAST and BUSCO tools. Annotation was conducted using BRAKER2, and functional annotation was completed with InterProScan. The resulting genome was of high quality, with a size of 26.46 Mbp distributed across 38 contigs and a BUSCO completion rate of 95.7%, indicating excellent contiguity and assembly completeness. A total of 8248 protein-encoding genes were predicted, with functional annotations assigned to 73.9% of them. Moreover, 82 genes displayed homology with entries in the Pathogen Host Interactions (PHI) database, while 494 genes exhibited similarity to entries in the Carbohydrate-Active Enzymes (CAZymes) database. Furthermore, 30 biosynthetic gene clusters (BGCs) were identified, suggesting significant potential for the biosynthesis of diverse secondary metabolites. Comparative functional analysis with closely related species unveiled a considerable abundance of domains linked to enzymes involved in keratin degradation, alongside a restricted number of domains associated with enzymes engaged in plant cell wall degradation in all studied species of the Onygenales. This genome-based elucidation not only enhances our comprehension of the biological characteristics of M. zuffiana but also furnishes valuable insights for subsequent investigations concerning Malbranchea species and the order Onygenales. Full article
(This article belongs to the Special Issue Advanced Research of Ascomycota)
Show Figures

Figure 1

20 pages, 7558 KiB  
Article
New and Interesting Pine-Associated Hyphomycetes from China
by Wen-Hui Tian, Yan Jin, Yue-Chi Liao, Turki Kh. Faraj, Xin-Yong Guo and Sajeewa S. N. Maharachchikumbura
J. Fungi 2024, 10(8), 546; https://doi.org/10.3390/jof10080546 - 3 Aug 2024
Cited by 3 | Viewed by 1089
Abstract
Pine trees play a crucial role in the forests of Sichuan Province, boasting rich species diversity and a lengthy evolutionary history. However, research and investigation on fungi associated with pine trees are insufficient. This study investigated the diversity of hyphomycetes fungi associated with [...] Read more.
Pine trees play a crucial role in the forests of Sichuan Province, boasting rich species diversity and a lengthy evolutionary history. However, research and investigation on fungi associated with pine trees are insufficient. This study investigated the diversity of hyphomycetes fungi associated with pine trees in Sichuan Province, China. During the survey, we collected five specimens of hyphomycetes from branches and bark of species of Pinus. Five barcodes were selected for study and sequenced, including ITS, SSU, LSU, TEF1, and RPB2. Morphological examination and multi-locus phylogenetic analyses revealed three new species, viz. Catenulostroma pini sp. nov. within Teratosphaeriaceae, Kirschsteiniothelia longisporum sp. nov. within Kirschsteiniotheliaceae, Sporidesmiella sichuanensis sp. nov. within Junewangiaceae, and two known species, Paradictyoarthrinium diffractum and P. hydei within Paradictyoarthriniaceae, which are the new host records from Pinus species. Catenulostroma pini, distinguished from other species in the genus by its unique morphology, has three conidial morphologies: small terminal helicoconidia, scolecoconidia with many septa, and phragmoconidia conidia. Kirschsteiniothelia longisporum has longer spores when compared to the other species in the genus. According to phylogenetic analysis, Sporidesmiella sichuanensis formed an independent clade sister to S. aquatica and S. juncicola, distinguished by differences in conidial size. Full article
(This article belongs to the Special Issue Advanced Research of Ascomycota)
Show Figures

Figure 1

Review

Jump to: Research

24 pages, 1331 KiB  
Review
A Review of the Biotechnological Potential of Cave Fungi: A Toolbox for the Future
by Renan N. Barbosa, Maria Tamara C. Felipe, Leticia F. Silva, Edna A. Silva, Sabrina A. Silva, Polyanna N. Herculano, José F. S. A. Prazeres, Joenny M. S. Lima, Jadson D. P. Bezerra, Keila A. Moreira, Oliane M. C. Magalhães and Cristina M. Souza-Motta
J. Fungi 2025, 11(2), 145; https://doi.org/10.3390/jof11020145 - 14 Feb 2025
Cited by 1 | Viewed by 1000
Abstract
The study of the intersection between biodiversity and biotechnology has revealed a rich source of innovations. Fungi, with their vast range of morphologies and lifestyles, thrive in various habitats, including caves. With impressive metabolic characteristics, they play a key role in producing essential [...] Read more.
The study of the intersection between biodiversity and biotechnology has revealed a rich source of innovations. Fungi, with their vast range of morphologies and lifestyles, thrive in various habitats, including caves. With impressive metabolic characteristics, they play a key role in producing essential biotechnological compounds for various economic sectors. This paper aims to consolidate evidence on the biotechnological potential of fungi isolated from caves, highlighting the urgency of conserving and exploring these ecosystems. For this purpose, we conducted a comprehensive literature search using scientific databases (SciELO, Medline Complete, Medline/PubMed, Web of Science, Scopus (Elsevier), and Google Scholar). We adopted an interdisciplinary approach by collecting information from 22 papers published between 2013 and 2024. Based on these data, our survey revealed broad potential, including antimicrobial compounds, antioxidants, antitumor agents, enzymes, and organic acids. We emphasize that accurately identifying and depositing fungal isolates in reference collections are crucial for reliable research and effective industrial applications, driving metabolic bioactivity and the production of substances with the potential to inhibit pathogens. Conserving and protecting the cave environment is imperative, considering its continuous potential for discovery and contribution to scientific advancement. Full article
(This article belongs to the Special Issue Advanced Research of Ascomycota)
Show Figures

Figure 1

33 pages, 5571 KiB  
Review
Exploring Endophytic Fungi as Natural Antagonists against Fungal Pathogens of Food Crops
by Kumudu K. Manathunga, Niranjan W. Gunasekara, Muditha K. Meegahakumbura, Pamoda B. Ratnaweera, Turki Kh. Faraj and Dhanushka N. Wanasinghe
J. Fungi 2024, 10(9), 606; https://doi.org/10.3390/jof10090606 - 26 Aug 2024
Cited by 2 | Viewed by 2884
Abstract
The yield and quality of cultivated food crops are frequently compromised by the prevalent threat from fungal pathogens that can cause widespread damage in both the pre-harvest and post-harvest stages. This paper investigates the challenges posed by fungal pathogens to the sustainability and [...] Read more.
The yield and quality of cultivated food crops are frequently compromised by the prevalent threat from fungal pathogens that can cause widespread damage in both the pre-harvest and post-harvest stages. This paper investigates the challenges posed by fungal pathogens to the sustainability and yield of essential food crops, leading to significant economic and food security repercussions. The paper critiques the long-standing reliance on synthetic fungicides, emphasizing the environmental and health concerns arising from their widespread and occasionally inappropriate use. In response, the paper explores the potential of biological control agents, specifically endophytic fungi in advancing sustainable agricultural practices. Through their diverse symbiotic relationships with host plants, these fungi exhibit strong antagonistic capabilities against phytopathogenic fungi by producing various bioactive compounds and promoting plant growth. The review elaborates on the direct and indirect mechanisms of endophytic antagonism, such as antibiosis, mycoparasitism, induction of host resistance, and competition for resources, which collectively contribute to inhibiting pathogenic fungal growth. This paper consolidates the crucial role of endophytic fungi, i.e., Acremonium, Alternaria, Arthrinium, Aspergillus, Botryosphaeria, Chaetomium, Cladosporium, Cevidencealdinia, Epicoccum, Fusarium, Gliocladium, Muscodor, Nigrospora, Paecilomyces, Penicillium, Phomopsis, Pichia, Pochonia, Pythium, Ramichloridium, Rosellinia, Talaromyces, Trichoderma, Verticillium, Wickerhamomyces, and Xylaria, in biological control, supported by the evidence drawn from more than 200 research publications. The paper pays particular attention to Muscodor, Penicillium, and Trichoderma as prominent antagonists. It also emphasizes the need for future genetic-level research to enhance the application of endophytes in biocontrol strategies aiming to highlight the importance of endophytic fungi in facilitating the transition towards more sustainable and environmentally friendly agricultural systems. Full article
(This article belongs to the Special Issue Advanced Research of Ascomycota)
Show Figures

Figure 1

Back to TopTop