Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,317)

Search Parameters:
Keywords = high salinity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 44344 KB  
Article
The “Greenness-Quality Paradox” in the Arid Region of Northwest China: Disentangling Non-Linear Drivers via Interpretable Machine Learning
by Chen Yang, Xuemin He, Qianhong Tang, Jing Liu and Qingbin Xu
Remote Sens. 2026, 18(2), 363; https://doi.org/10.3390/rs18020363 - 21 Jan 2026
Abstract
The Arid Region of Northwest China (ARNC) functions as a critical ecological barrier for the Eurasian hinterland. To clarify the non-linear drivers of eco-environmental dynamics, a long-term (2000–2024) Remote Sensing Ecological Index (RSEI) time series was constructed and analyzed using an interpretable machine [...] Read more.
The Arid Region of Northwest China (ARNC) functions as a critical ecological barrier for the Eurasian hinterland. To clarify the non-linear drivers of eco-environmental dynamics, a long-term (2000–2024) Remote Sensing Ecological Index (RSEI) time series was constructed and analyzed using an interpretable machine learning framework (XGBoost-SHAP). The analysis reveals pronounced spatial asymmetry in ecological evolution: improvements are concentrated in localized, human-managed areas, while degradation occurs as a diffuse process driven by geomorphological inertia. The ARNC exhibits low-level stability (mean RSEI 0.25–0.30) and marked unbalanced dynamics, with significant degradation (19.9%) affecting more than twice the area of improvement (6.5%). Attribution analysis identifies divergent driving mechanisms: ecological improvement (R2 = 0.559) is primarily anthropogenic (58.3%), whereas degradation (R2 = 0.692) is mainly governed by natural constraints (58.4%), particularly structural topographic factors, where intrinsic landscape vulnerability is exacerbated by human activities. SHAP analysis corroborates a “Greenness-Quality Paradox” in stable agroecosystems, where high vegetation cover coincides with reduced evaporative cooling and secondary salinization from irrigation, resulting in declining Eco-Environmental Quality (EEQ). A zero-threshold effect for grazing intensity is also identified, indicating that any increase beyond the baseline immediately initiates ecological decline. In response, a Resist-Accept-Direct (RAD) framework is proposed: direct salt-water balance regulation in oases, resist hydrological cutoff in ecotones, and accept natural dynamics in the desert matrix. These findings provide a scientific basis for reconciling artificial greening initiatives with hydrological sustainability in water-limited regions. Full article
31 pages, 49028 KB  
Article
Genesis and Reservoir Implications of Multi-Stage Siliceous Rocks in the Middle–Lower Ordovician, Northwestern Tarim Basin
by Jinyu Luo, Tingshan Zhang, Pingzhou Shi, Zhou Xie, Jianli Zeng, Lubiao Gao, Zhiheng Ma and Xi Zhang
Minerals 2026, 16(1), 107; https://doi.org/10.3390/min16010107 - 21 Jan 2026
Abstract
Siliceous rocks of various colors and types are extensively developed within the Middle–Lower Ordovician carbonate along the Northwest Tarim Basin. Their genesis provides important insights into the evolution of basinal fluids and the associated diagenetic alterations of the carbonates. Based on petrographic, geochemical, [...] Read more.
Siliceous rocks of various colors and types are extensively developed within the Middle–Lower Ordovician carbonate along the Northwest Tarim Basin. Their genesis provides important insights into the evolution of basinal fluids and the associated diagenetic alterations of the carbonates. Based on petrographic, geochemical, fluid inclusion, and petrophysical analyses, this study investigates the origin of siliceous rocks within the Middle–Lower Ordovician carbonate formations (Penglaiba, Yingshan, and Dawangou formations) in the Kalpin area, Tarim Basin, and investigates the impact on hydrothermal reservoirs. The results reveal two distinct episodes of siliceous diagenetic fluids: The first during the Late Ordovician involved mixed hydrothermal fluids derived from deep magmatic–metamorphic sources, formation brines, and seawater. Characterized by high temperature and moderate salinity, it generated black chert dominated by cryptocrystalline to microcrystalline quartz through replacement processes. The second episode developed in the Middle–Late Devonian as a mixture of silicon-rich fluids from deep heat sources and basinal brines. In conditions of low temperature and high salinity, it generated gray-white siliceous rocks composed of micro- to fine crystalline quartz, spherulitic-fibrous chalcedony, and quartz cements via a combination of hydrothermal replacement and precipitation. A reservoir analysis reveals that the multi-layered black siliceous rocks possess significant reservoir potential amplified by the syndiagenetic tectonic fracturing. In contrast, the white siliceous rocks, despite superior petrophysical properties, are limited in scale as they predominantly infill late-stage fractures and vugs, mainly enhancing local flow conduits. Hydrothermal alteration in black siliceous rocks is more intense in dolostone host rocks than in limestone. Thus, thick (10–20 m), continuous black siliceous layers in dolostone and the surrounding medium-crystalline dolostone alteration zones, are promising exploration targets. This study elucidates the origins of Ordovician siliceous rocks and their implications for carbonate reservoir properties. The findings may offer valuable clues for deciphering the evolution and predicting the distribution of hydrothermal reservoirs, both within the basin and in other analogous regions worldwide. Full article
(This article belongs to the Special Issue Element Enrichment and Gas Accumulation in Black Rock Series)
19 pages, 1188 KB  
Article
Photosynthetic Responses of Cup Plant (Silphium perfoliatum L.) to Salinity Stress in the Context of Sustainable Biomass Production
by Marta Jańczak-Pieniążek, Mateusz Koszorek, Karol Skrobacz and Dagmara Migut
Sustainability 2026, 18(2), 1088; https://doi.org/10.3390/su18021088 - 21 Jan 2026
Abstract
Soil salinity is recognized as a critical abiotic stress that limits plant growth on marginal lands. The cup plant (Silphium perfoliatum L.), a perennial bioenergy species with high biomass potential, has been proposed for cultivation on saline-degraded soils; however, its physiological responses [...] Read more.
Soil salinity is recognized as a critical abiotic stress that limits plant growth on marginal lands. The cup plant (Silphium perfoliatum L.), a perennial bioenergy species with high biomass potential, has been proposed for cultivation on saline-degraded soils; however, its physiological responses to different types of salinity stress, particularly alkaline and neutral salt stress, remain insufficiently characterized. In the present study, the physiological responses of the cup plant to neutral (NaCl) and alkaline (NaHCO3) salt stress at concentrations of 100, 200, and 300 mM were evaluated in a pot experiment conducted under controlled conditions. The assessed indicators included relative chlorophyll content (CCI), chlorophyll fluorescence parameters (Fv/Fm, Fv/F0, PI), and gas exchange characteristics, namely net photosynthetic rate (PN), stomatal conductance (gs), transpiration rate (E), and intercellular CO2 concentration (Ci). Salinity reduced most physiological parameters, although some, such as maximum photochemical efficiency of PSII (Fv/Fm) and transpiration rate (E), did not show a clear dose-dependent response. Alkaline salt stress induced more pronounced reductions in the physiological parameters than neutral salt stress. At the first measurement, at the highest salt concentration, the chlorophyll content decreased by 49.0% and the PN parameter by 77.8% under NaHCO3 treatment, whereas under NaCl conditions the decreases were 29.0% and 51.3%, respectively, compared to the control. At 300 mM NaHCO3, the chlorophyll content and photosynthetic rate were substantially reduced compared with those recorded under the corresponding NaCl treatment. Even at the moderate salinity level of 100 mM NaHCO3, reductions in photosynthetic performance were detected relative to the control. Overall, photosynthetic efficiency and gas exchange in the cup plant were markedly impaired by salinity, particularly under conditions of high bicarbonate concentration. The results offer a deeper understanding of the physiological limitations of S. perfoliatum under acute salt stress and demonstrate that alkaline salinity, associated with elevated pH due to HCO3, exacerbates stress effects beyond the osmotic and ionic impacts of neutral salinity. These results highlight the potential of S. perfoliatum for sustainable biomass production on salt-affected soils, supporting renewable energy generation and environmentally responsible land use. Full article
Show Figures

Figure 1

20 pages, 3146 KB  
Article
Diversity and Ecology of Thrips (Thysanoptera, Insecta) Assemblages in Słowiński National Park—A Biosphere Reserve on the Baltic Coast (Northern Poland)
by Halina Kucharczyk, Marek Kucharczyk and Irena Zawirska
Insects 2026, 17(1), 119; https://doi.org/10.3390/insects17010119 - 21 Jan 2026
Abstract
Słowiński National Park is one of the 23 national parks in Poland and one of the two situated on the Baltic Coast in the country. It was established in 1967 to protect the most valuable ecosystems: coastal lakes, marshes, peat bogs, meadows, forests, [...] Read more.
Słowiński National Park is one of the 23 national parks in Poland and one of the two situated on the Baltic Coast in the country. It was established in 1967 to protect the most valuable ecosystems: coastal lakes, marshes, peat bogs, meadows, forests, and, above all, the dune belt of the Łebska Spit with its unique moving dunes. We aimed to 1. determine the species diversity and structure of thrips assemblages in the most important biotopes of the Park; 2. determine the geographical distribution and food preferences of thrips species; and 3. determine which environmental factors influence the diversity of insect assemblages and which thrips species distinguish these assemblages. The method used in the quantitative research was based on the use of a scoop method; it was supplemented by qualitative research (shaking branches of trees and searching for insects on their host plants). The studies were carried out in 1991 and 1999–2001 in fourteen plant associations. A total of 90 thrips species (nearly 40% of the Polish fauna) were recorded, including 71 in quantitative and 74 in qualitative samples. The study also revealed a significant correlation between the thrips assemblage composition and the following environmental factors: soil moisture, light intensity, general nutrient availability, and soil salinity. In addition, the thrips species with the most significant impact on assemblage composition were identified. The relatively high number of species found, including Taeniothrips zurstrassenii Zawirska, a species new to science, and others rarely recorded in Poland, highlights the value of the SNP habitat diversity in maintaining high Thysanoptera diversity. Full article
Show Figures

Graphical abstract

19 pages, 3154 KB  
Article
Subsurface Irrigation Depth Affects High-Yield Triticum aestivum Cultivation in Saline-Alkali Soils: Evidence from Soil–Microbe–Crop Interaction
by Tieqiang Wang, Hanbo Wang, Kai Guo, Xiaobin Li, Weidong Li, Zhenxing Yan and Wenbin Chen
Agronomy 2026, 16(2), 245; https://doi.org/10.3390/agronomy16020245 - 20 Jan 2026
Abstract
Drip irrigation burial depth is a critical management factor for saline-alkali agriculture, yet its mechanisms of influencing crop productivity through soil–microbe–plant interactions remain poorly understood. To explore the regulatory effects of drip irrigation burial depth on the growth and rhizosphere microenvironment of dryland [...] Read more.
Drip irrigation burial depth is a critical management factor for saline-alkali agriculture, yet its mechanisms of influencing crop productivity through soil–microbe–plant interactions remain poorly understood. To explore the regulatory effects of drip irrigation burial depth on the growth and rhizosphere microenvironment of dryland wheat in saline-alkali soil, three treatments (no irrigation control, CK; 5 cm shallow-buried drip irrigation, T5; 25 cm deep-buried drip irrigation, T25) were set up, with soil physicochemical properties, microbial community characteristics, and crop yield analyzed. The results showed that drip irrigation significantly improved soil environment and yield, and T25 exhibited superior comprehensive benefits: soil electrical conductivity was reduced by 63%, organic matter content increased by 44%, and water-salt status was significantly optimized; meanwhile, microbial community structure was altered and root nutrient uptake capacity was enhanced, ultimately achieving a yield of 5347.1 kg ha−1, 55.0% higher than CK. In conclusion, 25 cm deep-buried drip irrigation may provide advantages for wheat cultivation primarily through improved water distribution, desalination, and soil structure enhancement. Full article
Show Figures

Figure 1

22 pages, 6317 KB  
Article
High-Spatiotemporal-Resolution GPP Mapping via a Fusion–VPM Framework: Quantifying Trends and Drivers in the Yellow River Delta from 2000 to 2021
by Ziqi Mai, Pan Li, Xiaomin Sun, Qian Chen, Chongbin Xu, Buli Cui, Yu Wu, Bin Wang and Zhongen Niu
Land 2026, 15(1), 184; https://doi.org/10.3390/land15010184 - 20 Jan 2026
Abstract
Tracking ecosystem productivity in fast-evolving estuarine wetlands is often constrained by the trade-off between spatial detail and temporal continuity in satellite observations. To address this, we developed a reproducible fusion–VPM framework that integrates multi-sensor data to map Gross Primary Production (GPP) at a [...] Read more.
Tracking ecosystem productivity in fast-evolving estuarine wetlands is often constrained by the trade-off between spatial detail and temporal continuity in satellite observations. To address this, we developed a reproducible fusion–VPM framework that integrates multi-sensor data to map Gross Primary Production (GPP) at a high spatiotemporal resolution. By combining the Flexible Spatiotemporal Data Fusion (FSDAF) method with a Time-Series Linear Fitting Model (TSLFM), we constructed a continuous 30 m, 8-day vegetation index record for China’s Yellow River Delta (YRD) from 2000 to 2021. This record was propagated through the Vegetation Photosynthesis Model (VPM) to simulate GPP and quantify the relative contributions of land-use/land-cover change (LUCC) versus environmental factors. The results show a marginally significant increase in total GPP (9.74 Gg C a−1, p = 0.074) over the last two decades. Deconvolution of driving factors reveals that 87.45% of the GPP increase occurred in stable land-cover areas, where the Enhanced Vegetation Index (EVI) was the dominant driver (explaining 79.97% of the variability). In areas undergoing LUCC, the net effect on GPP primarily reflected the combined influences of artificial saline–alkali wetland expansion and cropland expansion: water-to-vegetation conversions enhanced GPP, whereas vegetation-to-water conversions fully offset these gains. This study demonstrates the efficacy of spatiotemporal data fusion in overcoming observational gaps and provides a transferable analytical framework for diagnosing carbon dynamics in complex, dynamic deltaic ecosystems. This study not only provides a critical, high-resolution assessment of carbon dynamics for the YRD but also delivers a generalizable analytical framework for mapping and attributing GPP trends in complex deltaic ecosystems worldwide. Full article
Show Figures

Figure 1

12 pages, 8971 KB  
Article
Salmonella enterica as a Complementary Model to LPS for Immune Stress in Weaned Piglets: Systemic and Intestinal Alterations
by Li Dong, Zhiyan Liu, Wenxi Li, Changwei Zhang, Haoyang Yuan, Jun Liu, Hongrong Wang and Lihuai Yu
Animals 2026, 16(2), 311; https://doi.org/10.3390/ani16020311 - 20 Jan 2026
Abstract
Lipopolysaccharide (LPS) is widely used to model immune stress in weaned piglets, but it does not fully replicate the pathophysiological alterations induced by live bacterial infection. This study therefore established an oral Salmonella enterica (SE) challenge model and systematically compared its [...] Read more.
Lipopolysaccharide (LPS) is widely used to model immune stress in weaned piglets, but it does not fully replicate the pathophysiological alterations induced by live bacterial infection. This study therefore established an oral Salmonella enterica (SE) challenge model and systematically compared its effects with those of LPS to evaluate its potential as a complementary immune stress paradigm. Forty piglets were assigned to five groups: control (saline), LPS (intraperitoneal, 100 μg/kg BW), and three SE groups receiving low-, middle-, or high-dose oral SE (1 × 108 CFU/mL, 2 × 108 CFU/mL, or 3 × 108 CFU/mL in a 10 mL saline volume, respectively). Both LPS and SE significantly reduced average daily gain, while only SE challenge decreased colon length. A transient rectal temperature elevation occurred at 8 h in all challenged groups, persisting at 12 h in the LPS and high-dose SE groups. Serum cytokine analysis revealed that LPS induced early but transient interleukin-12 and tumor necrosis factor-α elevation at 8 h, followed by sustained suppression of interferon-γ, interleukin-6, and interleukin-8. In contrast, the middle-dose SE triggered robust increases in multiple pro-inflammatory cytokines at 24 h. Both challenges significantly reduced the CD4+/CD8+ T cell ratios in blood and lymphoid organs and decreased intestinal interleukin-10 levels. SE infection produced more severe intestinal pathology, including dose-dependent villus perforations, microvillus disorganization, and mitochondrial cristae vacuolization, beyond the villus shortening and goblet cell reduction observed in both groups. While both LPS and SE induced immune stress and intestinal injury, SE infection caused more severe and comprehensive pathophysiological alterations. Oral administration of 2 × 109 CFU SE for 24 h established a physiologically relevant immune stress model that effectively mimics natural Salmonella infection in weaned piglets, providing a valuable tool for studying enteric diseases and evaluating interventions. Full article
(This article belongs to the Section Animal Physiology)
Show Figures

Figure 1

21 pages, 4949 KB  
Article
Corrosion Resistance of Fly Ash-Enhanced Cement-Based Materials in High-Chloride Gas Storage Reservoirs
by Hong Fu, Defei Chen, Bao Zhang, Hongjun Wu, Sheng Huang, Weizhi Tuo, Kun Chen, Hexiang Zhou and Yuanwu Dong
Materials 2026, 19(2), 406; https://doi.org/10.3390/ma19020406 - 20 Jan 2026
Abstract
This study investigates the use of fly ash to mitigate the long-term performance degradation of Portland cement-based sealing materials in high-salinity environments, such as those found in gas storage reservoirs. We systematically evaluated the evolution of material properties under different temperatures and curing [...] Read more.
This study investigates the use of fly ash to mitigate the long-term performance degradation of Portland cement-based sealing materials in high-salinity environments, such as those found in gas storage reservoirs. We systematically evaluated the evolution of material properties under different temperatures and curing periods. Our integrated methodology combining mechanical tests, microstructural analysis, and chloride migration assessment, reveals a multi-faceted mechanism by which fly ash enhances chloride resistance. The key findings demonstrate that reactive Al2O3 in fly ash promotes the formation of Friedel’s salt, increasing chemical chloride binding and reducing the chloride ingress rate in the Portland cement–Fly ash system (PFS) to only 26.6% of that in the Portland Cement system (PCS). Concurrently, the pozzolanic reaction consumes portlandite (Ca(OH)2), forming stable C-A-S-H gel and refining the pore structure by filling interconnected channels. This nanoscale pore refinement decreased permeability by nearly an order of magnitude. After 90 days of curing in 90 °C saline solution, PFS achieved a compressive strength of 28.2 MPa and maintained an exceptionally low internal chloride content of 0.08 wt.%, demonstrating superior long-term durability. This work clarifies the synergistic mechanisms of fly ash modification and temperature effects, providing a theoretical basis for optimizing sealing materials for deep geological reservoirs and experimental support for the application of fly ash in high-temperature, high-salinity engineering environments. Full article
(This article belongs to the Special Issue Advances in Hydration Chemistry for Low-Carbon Cementitious Materials)
Show Figures

Figure 1

14 pages, 13319 KB  
Article
A Study on the Micro-Scale Flow Patterns and Ion Regulation Mechanisms in Low-Salinity Water Flooding
by Xiong Liu, Tuanqi Yao, Yueqi Cui, Lingxuan Peng and Yirui Ren
Energies 2026, 19(2), 509; https://doi.org/10.3390/en19020509 - 20 Jan 2026
Abstract
As an effective technology for enhancing oil recovery, low-salinity water flooding requires further investigation into its microscopic displacement mechanisms and the regulatory roles of key ions. Based on microscopic visualization displacement experiments, this study systematically investigated the effects of injected water salinity, key [...] Read more.
As an effective technology for enhancing oil recovery, low-salinity water flooding requires further investigation into its microscopic displacement mechanisms and the regulatory roles of key ions. Based on microscopic visualization displacement experiments, this study systematically investigated the effects of injected water salinity, key ion types (Na+, K+, Ca2+, Mg2+, HCO3, CO32−, SO42−, and OH), and their concentrations on crude oil displacement behavior in both high- and low-permeability zones. Experimental results indicate that no significant correlation exists between displacement efficiency and injected water salinity in high-permeability zones. In low-permeability zones, displacement efficiency increases with decreasing salinity, peaking at 26.5% when injected water salinity reaches 5000 mg/L. The cation displacement efficiency in the formation, from highest to lowest, is Ca2+ > K+ > Mg2+ > Na+. The anion displacement efficiency, from highest to lowest, is OH > SO42− > CO32− > HCO3. When the CaCl2 concentration decreased from 100 wt% to 50 wt%, the displacement effect in the low-permeability zone improved further, indicating that a higher concentration of the divalent cation Ca2+ is not necessarily better. In medium-to-high salinity formation water reservoirs, and under conditions where the influence of clay minerals is disregarded, ion type and reservoir permeability are the most significant factors affecting oil recovery efficiency. These findings provide theoretical support for elucidating the micro-dynamic mechanisms of low-salinity water flooding in low-permeability zones and optimizing injection water formulations. Full article
Show Figures

Figure 1

17 pages, 2752 KB  
Article
Evaluation of Chromium-Crosslinked AMPS-HPAM Copolymer Gels: Effects of Key Parameters on Gelation Time and Strength
by Maryam Sharifi Paroushi, Baojun Bai, Thomas P. Schuman, Yin Zhang and Mingzhen Wei
Gels 2026, 12(1), 87; https://doi.org/10.3390/gels12010087 - 19 Jan 2026
Viewed by 41
Abstract
Controlling CO2 channeling in heterogeneous reservoirs remains a major challenge for both enhanced oil recovery (EOR) and secure geological storage. AMPS-HPAM copolymers exhibit high-temperature resistance and brine tolerance compared with conventional HPAM gels, making them well suited for the harsh environments associated [...] Read more.
Controlling CO2 channeling in heterogeneous reservoirs remains a major challenge for both enhanced oil recovery (EOR) and secure geological storage. AMPS-HPAM copolymers exhibit high-temperature resistance and brine tolerance compared with conventional HPAM gels, making them well suited for the harsh environments associated with CO2 injection. Chromium-based crosslinkers (CrAc and CrCl3) were investigated because sulfonic acid groups in AMPS can coordinate with trivalent chromium ions, enabling dual ionic crosslinking and the formation of a robust gel network. While organic crosslinked AMPS-HPAM gels have been widely studied, the behavior of chromium-crosslinked AMPS-containing systems, particularly their gelation kinetics under CO2 exposure, remains less explored. This experimental study evaluates the gelation behavior and stability of chromium-crosslinked AMPS-HPAM gels by examining the effects of the polymer concentration, molecular weight, polymer–crosslinker ratio, temperature, pH, salinity, and dissolved CO2. The results clarify the crosslinking behavior across a range of formulations and environmental conditions and establish criteria for designing robust gel systems. Gelation times can be controlled from 5 to 10 h, and the resulting gels maintained structural integrity under CO2 exposure with less than 3.6% dehydration. Long-term thermal testing has shown that the gel remains stable after 10 months at 100 °C, with evaluation still ongoing. These results demonstrate that chromium-crosslinked AMPS-HPAM gels provide both durability and tunability for diverse subsurface conditions. Full article
(This article belongs to the Special Issue State-of-the Art Gel Research in USA)
Show Figures

Graphical abstract

23 pages, 2278 KB  
Article
Experimental and Numerical Investigation of an Adsorption Desalination Exchanger for High-Purity Water Production in Hydrogen Systems
by Piotr Boruta, Tomasz Bujok, Karol Sztekler, Łukasz Mika, Wojciech Kalawa and Agata Mlonka-Mędrala
Energies 2026, 19(2), 484; https://doi.org/10.3390/en19020484 - 19 Jan 2026
Viewed by 55
Abstract
Hydrogen-based energy systems require large amounts of high-purity water, motivating thermally driven desalination that can recover low-grade heat. This study evaluates a silica gel–water adsorption chiller–desalination unit as a coupled source of cooling and pre-treated water for electrolysers. A laboratory two-bed system was [...] Read more.
Hydrogen-based energy systems require large amounts of high-purity water, motivating thermally driven desalination that can recover low-grade heat. This study evaluates a silica gel–water adsorption chiller–desalination unit as a coupled source of cooling and pre-treated water for electrolysers. A laboratory two-bed system was tested on saline feed using 300 s valve-switching periods at an 80 °C driving temperature and 20–30 °C cooling water. Dynamic vapour sorption measurements provided Dubinin–Astakhov equilibrium and linear driving force kinetic parameters, implemented in a CFD porous bed model via user-defined source terms. Experiments yielded COP values of 0.29–0.41, an SCP of 165 W·kg−1 of adsorbent, and an average distillate production of 1.68–1.82 kg·h−1, while distillate conductivity remained ≈2.3 μS·cm−1. The model reproduced the mean condensate production with a ≈6% underprediction. It was then used to compare six alternative fin geometries with a constant heat-transfer area. Fin-shape modifications changed inter-fin heating by <2 K and cumulative desorbed mass by <0.05%, indicating limited sensitivity to subtle local refinements. Performance gains are more likely to arise from operating conditions and exchanger-scale architecture than from minor fin-shape changes. Full article
(This article belongs to the Special Issue Advances in Numerical and Experimental Heat Transfer)
Show Figures

Figure 1

14 pages, 7040 KB  
Article
Mechanism of Hydrogen Bonding at Oil–Water Interfaces on Crude Oil Migration Under Nanoconfinement
by Xiong Liu, Yuchan Cheng, Lingxuan Peng, Yueqi Cui and Yue Gong
Processes 2026, 14(2), 343; https://doi.org/10.3390/pr14020343 - 19 Jan 2026
Viewed by 93
Abstract
Aiming at the unclear mechanisms of fluid migration in nanopore-throat systems within tight oil reservoirs, this study focuses on the microscopic interactions at the oil–water interface in nanoconfined spaces. Based on molecular dynamics simulation, water-flooding models within nanopores of tight oil reservoirs under [...] Read more.
Aiming at the unclear mechanisms of fluid migration in nanopore-throat systems within tight oil reservoirs, this study focuses on the microscopic interactions at the oil–water interface in nanoconfined spaces. Based on molecular dynamics simulation, water-flooding models within nanopores of tight oil reservoirs under varying salinity conditions were constructed. The microscopic flow behaviors of oil and water in the pores were investigated, and the mechanism by which interfacial hydrogen bonding influences displacement efficiency under nanoconfinement was elucidated. The results demonstrate that due to the strong hydrogen bonding interactions between acetic acid and water, it is impossible to establish an effective displacement process or form stable displacement pathways within the pores. The extensive hydrogen-bonding network formed by acetic acid molecules at the oil–water interface severely restricts the transport capacity of water. Salinity exerts a nonlinear regulatory effect on hydrogen bonding. High-salinity (246.5 g/L) waterflooding shortens hydrogen bond lengths, enhances local bonding strength, and restricts the expansion of water channels; low-salinity (21.9 g/L) waterflooding mitigates ionic interference, resulting in the highest diffusion capacity of alkanes. The diffusion coefficient increases by 1.4 times compared to that under high-salinity conditions, leading to the highest degree of crude oil mobility. The research findings provide important guidance for enhanced oil recovery in tight oil reservoirs. Full article
(This article belongs to the Section Petroleum and Low-Carbon Energy Process Engineering)
Show Figures

Figure 1

22 pages, 5030 KB  
Article
Features of Uranium Recovery from Complex Aqueous Solutions Using Composite Sorbents Based on Se-Derivatives of Amidoximes
by Eduard A. Tokar’, Anna I. Matskevich, Konstantin V. Maslov, Veronika A. Prokudina, Alena N. Popova and Dmitry K. Patrushev
Gels 2026, 12(1), 84; https://doi.org/10.3390/gels12010084 - 18 Jan 2026
Viewed by 60
Abstract
The article presents a comprehensive comparative performance evaluation and validation of composite adsorbents based on the Se-derivative of 4-amino-N′-hydroxy-1,2,5-oxadiazole-3-carboximidamide for U (VI) recovery from complex multicomponent aqueous media. Our results indicate the composite materials to be comparable to, and in some cases to [...] Read more.
The article presents a comprehensive comparative performance evaluation and validation of composite adsorbents based on the Se-derivative of 4-amino-N′-hydroxy-1,2,5-oxadiazole-3-carboximidamide for U (VI) recovery from complex multicomponent aqueous media. Our results indicate the composite materials to be comparable to, and in some cases to surpass, existing adsorbents in recovery efficiency. Under static sorption conditions for trace U (VI) from real multicomponent solutions (tap, river, and sea water), the sorption efficiency reached 80–98%, while the distribution coefficients ranged from 104 to 106 cm3 g−1. The sorption-selectivity properties of the materials were evaluated in the presence of competing ions (EDTA and oxalate ions), which possess a high chelating capacity and a strong tendency to form complexes with uranium. The dependence of sorption efficiency on the concentration of these ions and the solution pH was investigated. The possibility of reusing the materials over multiple sorption-desorption cycles was assessed. An optimal regenerating eluent agent was identified (NaHCO3/NH4NO3), providing a desorption efficiency of >95% without degrading the material’s sorption properties over repeated cycles. Using a combination of physicochemical methods, including sorption techniques, the mechanism of uranium sorption and its dependence on the material structure were determined. The efficiency of uranium recovery from multicomponent natural waters was also investigated under dynamic conditions over repeated sorption-desorption cycles. The results demonstrate through comparative analysis that the developed composites exhibit a high sorption capacity and possess a high practical potential for the concentration and recovery of uranium from high-salinity solutions with complex composition. Full article
(This article belongs to the Section Gel Analysis and Characterization)
Show Figures

Figure 1

22 pages, 2874 KB  
Article
Hydroponic Screening and Comprehensive Evaluation System for Salt Tolerance in Wheat Under Full-Fertility-Cycle Salt Stress Conditions
by Rongkai Li, Renyuan Wei, Yang Liu, Huimin Zhao, Zhibo Liu, Juge Liu, Huanhe Wei, Pinglei Gao, Qigen Dai and Yinglong Chen
Agronomy 2026, 16(2), 227; https://doi.org/10.3390/agronomy16020227 - 17 Jan 2026
Viewed by 105
Abstract
Soil salinity is a major constraint to wheat production worldwide. Efficient screening of salt-tolerant cultivars is essential for breeding programs, yet a rapid and reliable evaluation system based on full-life-cycle salt stress treatment is lacking. To address this, we conducted a hydroponic experiment [...] Read more.
Soil salinity is a major constraint to wheat production worldwide. Efficient screening of salt-tolerant cultivars is essential for breeding programs, yet a rapid and reliable evaluation system based on full-life-cycle salt stress treatment is lacking. To address this, we conducted a hydroponic experiment encompassing the entire growth cycle of 37 wheat cultivars under control and salt stress (85.5 mM NaCl). Using principal component and stepwise regression analyses on 15 agronomic and yield-related traits, we identified five key indicators—total dry weight, root dry weight, plant height, thousand-grain weight, and number of grains per spike—that effectively represent overall salt tolerance. Based on a comprehensive evaluation value (D-value), the cultivars were classified into five distinct categories: highly salt-tolerant, salt-tolerant, moderately salt-tolerant, weakly salt-tolerant, and salt-sensitive. Notably, the highly salt-tolerant cultivar ‘Yangfumai 8′ and the salt-sensitive cultivar ‘Yangmai 22’ were selected as representative extremes. A subsequent pot experiment confirmed significant physiological differences between them in antioxidant enzyme activities (SOD, POD, CAT) and proline accumulation under salt stress. This study establishes a practical and efficient screening framework, providing breeders with a simplified index set for high-throughput evaluation and offering ideal contrasting materials for in-depth physiological research on salt tolerance mechanisms in wheat. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

25 pages, 14882 KB  
Article
Tracing the Origin of Groundwater Salinization in Multilayered Coastal Aquifers Using Geochemical Tracers
by Mariana La Pasta Cordeiro, Johanna Wallström and Maria Teresa Condesso de Melo
Water 2026, 18(2), 252; https://doi.org/10.3390/w18020252 - 17 Jan 2026
Viewed by 111
Abstract
Salinization represents a significant threat to freshwater resources worldwide, compromising water quality and security. In the Vieira de Leiria–Marinha Grande aquifer, salinization mechanisms are a complex interaction between seawater intrusion and evaporite dissolution. Near the coast, groundwater is mainly influenced by seawater, evidenced [...] Read more.
Salinization represents a significant threat to freshwater resources worldwide, compromising water quality and security. In the Vieira de Leiria–Marinha Grande aquifer, salinization mechanisms are a complex interaction between seawater intrusion and evaporite dissolution. Near the coast, groundwater is mainly influenced by seawater, evidenced by Na-Cl hydrochemical facies, high electrical conductivity, and Na+/Cl, Cl/Br and SO42−/Cl molar ratios consistent with marine signatures. In areas affected by diapiric dissolution, besides elevated electrical conductivity, groundwater is enriched in SO42− and Ca2+ and in minor elements like K+, Li+, B3+, Ba2+ and Sr2+, and high SO42−/Cl and Ca2+/HCO3 molar ratios, indicative of gypsum/anhydrite dissolution. The relationship between δ18O and electrical conductivity further supports the identification of distinct salinity sources. This study integrates hydrogeochemical tracers to investigate hydrochemical evolution in the aquifer with increasing residence time and influence of water–rock interaction, as well as the accurate characterization of salinization mechanisms in multilayer aquifers. A comprehensive understanding of these processes is essential for identifying vulnerable zones and developing effective management strategies to ensure the protection and sustainable use of groundwater resources. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

Back to TopTop