High-Spatiotemporal-Resolution GPP Mapping via a Fusion–VPM Framework: Quantifying Trends and Drivers in the Yellow River Delta from 2000 to 2021
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.2.1. Remote Sensing Data
2.2.2. Meteorological Data
2.2.3. Observation Data
2.2.4. Land-Use/Land-Cover Data
2.3. Methods
2.3.1. Construction of the High-Spatiotemporal-Resolution EVI Dataset
2.3.2. VPM-Based GPP Simulation
2.3.3. Spatial Fidelity Evaluation Scheme
2.4. Statistical Analyses
2.5. Contribution Analysis
2.6. Pixel-Level Dominance Analysis
3. Results
3.1. Accuracy Assessment of GPP
3.2. Spatial Distribution of GPP
3.3. Temporal Trends in GPP
3.4. Effects of Land-Use/Land-Cover Change on GPP
3.5. Drivers of GPP in ConVeg Areas
4. Discussion
4.1. Validation of the High-Spatiotemporal-Resolution Fused Dataset
4.2. Comparison with Related Studies
4.3. Mechanisms and Management Implications
4.4. Uncertainty Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mitsch, W.J.; Bernal, B.; Hernandez, M.E. Ecosystem services of wetlands. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2015, 11, 1–4. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, X.; Xu, X.; Zou, Z.; Chen, B.; Qin, Y.; Zhang, X.; Dong, J.; Liu, D.; Pan, L. Rebound in China’s coastal wetlands following conservation and restoration. Nat. Sustain. 2021, 4, 1076–1083. [Google Scholar] [CrossRef]
- Quevedo, J.M.D.; Kohsaka, R. A systematic review of cultural ecosystem services of blue carbon ecosystems: Trends, gaps, and challenges in Asia and beyond. Mar. Policy 2024, 159, 105898. [Google Scholar] [CrossRef]
- Zhu, W.; Xie, Z.; Zhao, C.; Zheng, Z.; Qiao, K.; Peng, D.; Fu, Y.H. Remote sensing of terrestrial gross primary productivity: A review of advances in theoretical foundation, key parameters and methods. GISci. Remote Sens. 2024, 61, 2318846. [Google Scholar] [CrossRef]
- Gong, E.; Zhang, J.; Wang, Z.; Wang, J. Estimating the dynamics and driving factors of gross primary productivity over the Chinese Loess Plateau by the modified vegetation photosynthesis model. Ecol. Inform. 2024, 83, 102838. [Google Scholar] [CrossRef]
- Zhu, W.; Zhao, C.; Xie, Z. An end-to-end satellite-based GPP estimation model devoid of meteorological and land cover data. Agric. For. Meteorol. 2023, 331, 109337. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, S. Dynamic Characteristics and Influencing Factors of Carbon and Water Flux in Reed Wetland Ecosystem in the Yellow River Delta. Ecol. Environ. Manag. 2021, 30, 949. [Google Scholar] [CrossRef]
- Li, H.; He, Y.; Zhang, L.; Cao, S.; Sun, Q. Spatiotemporal changes of Gross Primary Production in the Yellow River Basin of China under the influence of climate-driven and human-activity. Glob. Ecol. Conserv. 2023, 46, e02550. [Google Scholar] [CrossRef]
- Jia, L.; Zhang, B. Simulating the Vegetation Gross Primary Productivity by the Biome-BGC Model in the Yellow River Basin of China. Water 2024, 16, 3468. [Google Scholar] [CrossRef]
- Tian, J.; Zhu, X.; Shen, M.; Chen, J.; Cao, R.; Qiu, Y.; Xu, Y.N. Effectiveness of spatiotemporal data fusion in fine-scale land surface phenology monitoring: A simulation study. J. Remote Sens. 2024, 4, 0118. [Google Scholar] [CrossRef]
- Chi, Y.; Shi, H.; Sun, J.; Li, J.; Yang, F.; Fu, Z. Spatio-temporal characteristics and main influencing factors of vegetationnet primary productivity in the Yellow River Delta in recent 30 years. Acta Ecol. Sin. 2018, 38, 2685–2697. (In Chinese) [Google Scholar] [CrossRef]
- Niu, B.; Zhang, Z.; Yu, X.; Li, X.; Wang, Z.; Loáiciga, H.A.; Peng, S. Regime shift of the hydroclimate–vegetation system in the Yellow River Delta of China from 1982 through 2015. Environ. Res. Lett. 2020, 15, 024017. [Google Scholar] [CrossRef]
- Xu, Y.; Qin, Y.; Li, B.; Li, J. Estimating vegetation aboveground biomass in Yellow River Delta coastal wetlands using Sentinel-1, Sentinel-2 and Landsat-8 imagery. Ecol. Inform. 2025, 87, 103096. [Google Scholar] [CrossRef]
- Zhu, X.; Helmer, E.H.; Gao, F.; Liu, D.; Chen, J.; Lefsky, M.A. A flexible spatiotemporal method for fusing satellite images with different resolutions. Remote Sens. Environ. 2016, 172, 165–177. [Google Scholar] [CrossRef]
- Yan, H.; Du, W.; Zhou, Y.; Luo, L.; Niu, Z. Satellite-based evidences to improve cropland productivity on the high-standard farmland project regions in Henan Province, China. Remote Sens. 2022, 14, 1724. [Google Scholar] [CrossRef]
- Cui, L.; Li, G.; Zhao, M.; Xu, X. Natural and anthropogenic contributions to the landscape evolution in the Yellow River Delta wetland, China. Glob. Ecol. Conserv. 2024, 56, e03347. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, G.; Xue, B.; Zhang, M.; Tan, Z. Dynamic landscapes and the driving forces in the Yellow River Delta wetland region in the past four decades. Sci. Total Environ. 2021, 787, 147644. [Google Scholar] [CrossRef]
- Zhan, C.; Wang, Q.; Cheng, S.; Zeng, L.; Yu, J.; Dong, C.; Yu, X. Investigating the evolution of landscape patterns in historical subdeltas and coastal wetlands in the Yellow River Delta over the last 30 years: A geo-informatics approach. Front. Mar. Sci. 2023, 10, 1115720. [Google Scholar] [CrossRef]
- Cong, P.; Chen, K.; Qu, L.; Han, J. Dynamic Changes in the Wetland Landscape Pattern of the Yellow River Delta from 1976 to 2016 Based on Satellite Data. Chin. Geogr. Sci. 2019, 29, 372–381. [Google Scholar] [CrossRef]
- Shi, L.; Liu, Q.; Huang, C.; Gao, X.; Li, H.; Liu, G. Mapping quasi-circular vegetation patch dynamics in the Yellow River Delta, China, between 1994 and 2016. Ecol. Indic. 2021, 126, 107656. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, Y.; Wu, J.; Wang, C.; Zhang, R.; Xiong, X.; Xu, C. Human activities dominate a staged degradation pattern of coastal tidal wetlands in Jiangsu province, China. Ecol. Indic. 2023, 154, 110579. [Google Scholar] [CrossRef]
- Liu, J.; Engel, B.A.; Zhang, G.; Wang, Y.; Wu, Y.; Zhang, M.; Zhang, Z. Hydrological connectivity: One of the driving factors of plant communities in the Yellow River Delta. Ecol. Indic. 2020, 112, 106150. [Google Scholar] [CrossRef]
- Yanbo, Q.; Shilei, W.; Yaya, T.; Guanghui, J.; Tao, Z.; Liang, M. Territorial spatial planning for regional high-quality development—An analytical framework for the identification, mediation and transmission of potential land utilization conflicts in the Yellow River Delta. Land Use Policy 2023, 125, 106462. [Google Scholar] [CrossRef]
- Hou, X.; Di, X.; Hou, W.; Wu, L.; Liu, J.; Wang, J.; Su, H.; Lu, X.; Ying, L.; Yu, X. Accuracy evaluation of land use mapping using remote sensing techniques in coastal zone of China. J. Geo-Inf. Sci. 2018, 20, 1478–1488. [Google Scholar] [CrossRef]
- Niu, Z.; Si, B.; Li, D.; Zhao, Y.; Hou, X.; Li, L.; Wang, B.; Song, B.; Zhang, M.; Li, X.; et al. Spatiotemporal Variation in Driving Factors of Vegetation Dynamics in the Yellow River Delta Estuarine Wetlands from 2000 to 2020. Remote Sens. 2023, 15, 4332. [Google Scholar] [CrossRef]
- Xiao, X.; Hollinger, D.; Aber, J.; Goltz, M.; Davidson, E.A.; Zhang, Q.; Moore, B., III. Satellite-based modeling of gross primary production in an evergreen needleleaf forest. Remote Sens. Environ. 2004, 89, 519–534. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, Q.; Saleska, S.; Hutyra, L.; De Camargo, P.; Wofsy, S.; Frolking, S.; Boles, S.; Keller, M.; Moore, B., III. Satellite-based modeling of gross primary production in a seasonally moist tropical evergreen forest. Remote Sens. Environ. 2005, 94, 105–122. [Google Scholar] [CrossRef]
- Forkel, M.; Carvalhais, N.; Verbesselt, J.; Mahecha, M.D.; Neigh, C.S.; Reichstein, M. Trend change detection in NDVI time series: Effects of inter-annual variability and methodology. Remote Sens. 2013, 5, 2113–2144. [Google Scholar] [CrossRef]
- Yeh, C.-F.; Wang, J.; Yeh, H.-F.; Lee, C.-H. Spatial and temporal streamflow trends in northern Taiwan. Water 2015, 7, 634–651. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Gutiérrez-Hernández, O.; García, L.V. Implementing the Linear Adaptive False Discovery Rate Procedure for Spatiotemporal Trend Testing. Mathematics 2025, 13, 3630. [Google Scholar] [CrossRef]
- Emelyanova, I.V.; McVicar, T.R.; Van Niel, T.G.; Li, L.T.; Van Dijk, A.I. Assessing the accuracy of blending Landsat–MODIS surface reflectances in two landscapes with contrasting spatial and temporal dynamics: A framework for algorithm selection. Remote Sens. Environ. 2013, 133, 193–209. [Google Scholar] [CrossRef]
- Feng, G.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207–2218. [Google Scholar] [CrossRef]
- Ma, D.; Huang, Q.; Liu, B.; Zhang, Q. Analysis and Dynamic Evaluation of Eco-Environmental Quality in the Yellow River Delta from 2000 to 2020. Sustainability 2023, 15, 7835. [Google Scholar] [CrossRef]
- Zhang, H.; Tang, G.; Cui, L.; Wang, F.; Zhao, H. Evolution of NPP and Carbon Sequestration and Oxygen Release in the Yellow River Delta Wetland and Analysis of Its Driving Factors. China Rural Water Hydropower 2025, 3, 1–7+13. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, X.; Cao, Q.; Ji, S.; Chen, H.; Zhang, T.; Liu, J. Quantifying the contributions of climate change and human activities to vegetation dynamic changes in the Yellow River Delta. Acta Sci. Circumst. 2022, 42, 56–69. (In Chinese) [Google Scholar] [CrossRef]
- Tang, Z.; Wang, D.; Tian, X.; Bi, X.; Zhou, Z.; Luo, F.; Ning, R.; Li, J. Exploring the factors influencing the carbon sink function of coastal wetlands in the Yellow River Delta. Sci. Rep. 2024, 14, 28938. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, X.; Zhang, S.; Meng, X.; Zhang, H.; Guo, X. Multi-Scenario Land Use and Carbon Storage Assessment in the Yellow River Delta Under Climate Change and Resource Development. Remote Sens. 2025, 17, 1603. [Google Scholar] [CrossRef]
- Li, D.; Ning, Z.; Chen, G.; Li, Y.N.; Cui, B.; Wang, Q.; Xie, T. The effect of land use and land cover on soil carbon storage in the Yellow River Delta, China: Implications for wetland restoration and adaptive management. J. Environ. Manag. 2024, 367, 122097. [Google Scholar] [CrossRef]
- Cai, X.; Wang, Y.; Chen, Y. Progress of applied research on the ecological degradation and restoration of wetlands in the Yellow River Delta: A review. Shandong Sci. 2023, 36, 112–120. (In Chinese) [Google Scholar] [CrossRef]
- Wang, J.; Wu, J. Analysis of the dynamic coupling processes and trend of regional eco-economic system development in the Yellow River Delta. Acta Ecol. Sin. 2012, 32, 4861–4868. [Google Scholar] [CrossRef][Green Version]
- Ren, L.; Li, Y.; Yu, M.; Yang, J.; Zhan, C.; Zhou, D. Evolution of artificial wetlands in the Yellow River Delta and related driving factors during 1984–2015. J. Agric. Resour. Environ. 2020, 37, 493–502. [Google Scholar] [CrossRef]
- Arthington, A.H.; Bunn, S.E.; Poff, N.L.; Naiman, R.J. The challenge of providing environmental flow rules to sustain river ecosystems. Ecol. Appl. 2006, 16, 1311–1318. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Mei, Z.; Gai, H.; Zhang, Y.; Mei, R. Ecological water replenishment calculation and water replenishment scheme analysis in Yellow River Delta. Water Resour. Hydropower Eng. 2024, 55, 222–227. (In Chinese) [Google Scholar] [CrossRef]
- Kong, X.; Li, Y.; Han, M.; Tian, L.; Niu, X.; Zhu, J.; Wang, M.; Huang, S. Distribution of Natural Wetlands in the Yellow River Delta for Three Periods since 1990 and Driving Factors of Their Changes. Wetl. Sci. 2020, 18, 603–612. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, J.; Xiao, J.; Tong, X.; Zhang, J.; Meng, P.; Li, J.; Liu, P.; Yu, P. NIRv and SIF better estimate phenology than NDVI and EVI: Effects of spring and autumn phenology on ecosystem production of planted forests. Agric. For. Meteorol. 2022, 315, 108819. [Google Scholar] [CrossRef]
- Gao, S.; Yan, K.; Liu, J.; Pu, J.; Zou, D.; Qi, J.; Mu, X.; Yan, G. Assessment of remote-sensed vegetation indices for estimating forest chlorophyll concentration. Ecol. Indic. 2024, 162, 112001. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, H.; Li, H.; Yao, J.; Chen, X.; Feng, J. Using enhanced vegetation index and land surface temperature to reconstruct the solar-induced chlorophyll fluorescence of forests and grasslands across latitude and phenology. Front. For. Glob. Change Biol. 2023, 6, 1257287. [Google Scholar] [CrossRef]
- Cui, N.; Zheng, S.; Jiang, S.; Wang, M.; Zhao, L.; He, Z.; Feng, Y.; Wang, Y.; Gong, D.; Liu, C. Evapotranspiration partitioning based on underlying conductance in a complex tree-grass orchard ecosystem in the humid area of southern China. Agric. For. Meteorol. 2024, 344, 109796. [Google Scholar] [CrossRef]
- Huang, M.; Piao, S.; Sun, Y.; Ciais, P.; Cheng, L.; Mao, J.; Poulter, B.; Shi, X.; Zeng, Z.; Wang, Y. Change in terrestrial ecosystem water-use efficiency over the last three decades. Glob. Change Biol. 2015, 21, 2366–2378. [Google Scholar] [CrossRef]
- Muñoz, E.; Chanca, I.; Sierra, C.A. Increased atmospheric CO2 and the transit time of carbon in terrestrial ecosystems. Glob. Change Biol. 2023, 29, 6441–6452. [Google Scholar] [CrossRef]
- Farquhar, G.D.; Sharkey, T.D. Stomatal conductance and photosynthesis. Annu. Rev. Plant Physiol. 1982, 33, 317–345. [Google Scholar] [CrossRef]
- Piao, S.; Wang, X.; Park, T.; Chen, C.; Lian, X.; He, Y.; Bjerke, J.W.; Chen, A.; Ciais, P.; Tømmervik, H. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. Manag. 2020, 1, 14–27. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Long, S.P. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol. 2005, 165, 351–372. [Google Scholar] [CrossRef] [PubMed]
- Keenan, T.F.; Luo, X.; Stocker, B.D.; De Kauwe, M.G.; Medlyn, B.E.; Prentice, I.C.; Smith, N.G.; Terrer, C.; Wang, H.; Zhang, Y.; et al. A constraint on historic growth in global photosynthesis due to rising CO2. Nat. Clim. Change 2023, 13, 1376–1381. [Google Scholar] [CrossRef]
- Gedney, N.; Cox, P.M.; Betts, R.A.; Boucher, O.; Huntingford, C.; Stott, P. Detection of a direct carbon dioxide effect in continental river runoff records. Nature 2006, 439, 835–838. [Google Scholar] [CrossRef] [PubMed]
- Lammertsma, E.I.; Boer, H.J.d.; Dekker, S.C.; Dilcher, D.L.; Lotter, A.F.; Wagner-Cremer, F. Global CO2 rise leads to reduced maximum stomatal conductance in Florida vegetation. Proc. Natl. Acad. Sci. USA 2011, 108, 4035–4040. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Yang, H.; Huntingford, C.; Kooperman, G.J.; Lian, X.; He, M.; Piao, S. Vegetation Response to Rising CO2 Amplifies Contrasts in Water Resources Between Global Wet and Dry Land Areas. Geophys. Res. Lett. 2021, 48, e2021GL094293. [Google Scholar] [CrossRef]
- Ji, H.; Chen, S.; Pan, S.; Xu, C.; Tian, Y.; Li, P.; Liu, Q.; Chen, L. Fluvial sediment source to sink transfer at the Yellow River Delta: Quantifications, causes, and environmental impacts. J. Hydrol. 2022, 608, 127622. [Google Scholar] [CrossRef]
- Wang, C.; Yu, Z.; Liu, D.; Yang, C. Impact of Vegetation Change at Yellow River Basin on Local Water-carbon Interaction. Water Resour. Power 2022, 40, 150–154. (In Chinese) [Google Scholar]
- Qiu, H.; Yang, S.; Wang, G.; Liu, X.; Zhang, J.; Xu, Y.; Dong, S.; Liu, H.; Jiang, Z. Analysis of Carbon Flux Characteristics in Saline–Alkali Soil Under Global Warming. J. Agron. Crop Sci. 2024, 210, e12720. [Google Scholar] [CrossRef]
- Liu, T.; Zhu, X.; Guo, R.; Xu, K.; Zhang, S. Applicability of ERA5 reanalysis of precipitation data in China. Arid Land Geogr. 2022, 45, 66–79. [Google Scholar] [CrossRef]
- Turner, D.P.; Ritts, W.D.; Cohen, W.B.; Gower, S.T.; Running, S.W.; Zhao, M.; Costa, M.H.; Kirschbaum, A.A.; Ham, J.M.; Saleska, S.R.; et al. Evaluation of MODIS NPP and GPP products across multiple biomes. Remote Sens. Environ. 2006, 102, 282–292. [Google Scholar] [CrossRef]
- Yuan, W.; Liu, D.; Dong, W.; Liu, S.; Zhou, G.; Yu, G.; Zhao, T.; Feng, J.; Ma, Z.; Chen, J.; et al. Multiyear precipitation reduction strongly decreases carbon uptake over northern China. J. Geophys. Res. Biogeosci. 2014, 119, 881–896. [Google Scholar] [CrossRef]
- Yang, D.; Xu, X.; Xiao, F.; Xu, C.; Luo, W.; Tao, L. Improving modeling of ecosystem gross primary productivity through re-optimizing temperature restrictions on photosynthesis. Sci. Total Environ. 2021, 788, 147805. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; He, L.; Chen, J.; Plaza, A. Spatio-temporal fusion for remote sensing data: An overview and new benchmark. Sci. China Inf. Sci. 2020, 63, 140301. [Google Scholar] [CrossRef]
- Xiao, J.; Aggarwal, A.K.; Duc, N.H.; Arya, A.; Rage, U.K.; Avtar, R. A review of remote sensing image spatiotemporal fusion: Challenges, applications and recent trends. Remote Sens. Appl. Soc. Environ. 2023, 32, 101005. [Google Scholar] [CrossRef]
- You, M.; Meng, X.; Liu, Q.; Shao, F.; Fu, R. CIG-STF: Change Information Guided Spatiotemporal Fusion for Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5405815. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, X.; Wu, X.; Zhou, S.; Zhang, G.; Qin, Y.; Dong, J. A global moderate resolution dataset of gross primary production of vegetation for 2000–2016. Sci. Data 2017, 4, 170165. [Google Scholar] [CrossRef]
- Yuan, W.; Cai, W.; Xia, J.; Chen, J.; Liu, S.; Dong, W.; Merbold, L.; Law, B.; Arain, A.; Beringer, J.; et al. Global comparison of light use efficiency models for simulating terrestrial vegetation gross primary production based on the LaThuile database. Agric. For. Meteorol. 2014, 192–193, 108–120. [Google Scholar] [CrossRef]













| Sensor | Product | No. of Image | Resolution (Spat./Temp.) | Period | Source |
|---|---|---|---|---|---|
| MODIS | MOD09A1 | 1012 | 500 m/8 days | 2000–2021 | NASA LAADS DAAC |
| Landsat-5 | TM (L2) | 30 | 30 m/16 days | 2000–2011 | USGS EarthExplorer |
| Landsat-8 | OLI (L2) | 16 | 30 m/16 days | 2013–2021 | USGS EarthExplorer |
| Region | EVI | Precipitation | Temperature | Net Radiation | Runoff |
|---|---|---|---|---|---|
| ConVeg | 79.97% | 1.03% | 6.96% | 7.08% | 4.96% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Mai, Z.; Li, P.; Sun, X.; Chen, Q.; Xu, C.; Cui, B.; Wu, Y.; Wang, B.; Niu, Z. High-Spatiotemporal-Resolution GPP Mapping via a Fusion–VPM Framework: Quantifying Trends and Drivers in the Yellow River Delta from 2000 to 2021. Land 2026, 15, 184. https://doi.org/10.3390/land15010184
Mai Z, Li P, Sun X, Chen Q, Xu C, Cui B, Wu Y, Wang B, Niu Z. High-Spatiotemporal-Resolution GPP Mapping via a Fusion–VPM Framework: Quantifying Trends and Drivers in the Yellow River Delta from 2000 to 2021. Land. 2026; 15(1):184. https://doi.org/10.3390/land15010184
Chicago/Turabian StyleMai, Ziqi, Pan Li, Xiaomin Sun, Qian Chen, Chongbin Xu, Buli Cui, Yu Wu, Bin Wang, and Zhongen Niu. 2026. "High-Spatiotemporal-Resolution GPP Mapping via a Fusion–VPM Framework: Quantifying Trends and Drivers in the Yellow River Delta from 2000 to 2021" Land 15, no. 1: 184. https://doi.org/10.3390/land15010184
APA StyleMai, Z., Li, P., Sun, X., Chen, Q., Xu, C., Cui, B., Wu, Y., Wang, B., & Niu, Z. (2026). High-Spatiotemporal-Resolution GPP Mapping via a Fusion–VPM Framework: Quantifying Trends and Drivers in the Yellow River Delta from 2000 to 2021. Land, 15(1), 184. https://doi.org/10.3390/land15010184
