Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (127)

Search Parameters:
Keywords = heterogeneous dielectric

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 2219 KiB  
Article
High-Frequency Impedance of Rotationally Symmetric Two-Terminal Linear Passive Devices: Application to Parallel Plate Capacitors with a Lossy Dielectric Core and Lossy Thick Plates
by José Brandão Faria
Energies 2025, 18(14), 3739; https://doi.org/10.3390/en18143739 - 15 Jul 2025
Viewed by 196
Abstract
Linear passive electrical devices/components are usually characterized in the frequency domain by their impedance, i.e., the ratio of the voltage and current phasors. The use of the impedance concept does not raise particular concerns in low-frequency regimes; however, things become more complicated when [...] Read more.
Linear passive electrical devices/components are usually characterized in the frequency domain by their impedance, i.e., the ratio of the voltage and current phasors. The use of the impedance concept does not raise particular concerns in low-frequency regimes; however, things become more complicated when it comes to rapid time-varying phenomena, mainly because the voltage depends not only on the position of the points between which it is defined but also on the choice of the integration path that connects them. In this article, based on first principles (Maxwell equations and Poynting vector flow considerations), we discuss the concept of impedance and define it unequivocally for a class of electrical devices/components with rotational symmetry. Two application examples are presented and discussed. One simple example concerns the per-unit-length impedance of a homogeneous cylindrical wire subject to the skin effect. The other, which is more elaborate, concerns a heterogeneous structure that consists of a dielectric disk sandwiched between two metal plates. For the lossless situation, the high-frequency impedance of this device (circular parallel plate capacitor) reaches zero when the frequency reaches a certain critical frequency fc; then, it becomes inductive and increases enormously when the frequency reaches another critical frequency at 1.6 fc. The influence of losses on the impedance of the device is thoroughly investigated and evaluated. Impedance corrections due to dielectric losses are analyzed using a frequency-dependent Debye permittivity model. The impedance corrections due to plate losses are analyzed by considering radial current distributions on the outer and inner surfaces of the plates, the latter exhibiting significant variations near the critical frequencies of the device. Full article
Show Figures

Figure 1

19 pages, 4046 KiB  
Article
Dielectric-Based Estimation of HMA Dynamic Modulus
by Konstantina Georgouli and Andreas Loizos
Constr. Mater. 2025, 5(3), 43; https://doi.org/10.3390/constrmater5030043 - 26 Jun 2025
Viewed by 236
Abstract
This research aims to investigate the possibility of measuring dielectric constant as an alternative proxy for estimating E* through a non-destructive procedure. An experimental program was conducted on dense-graded (DG) and open-graded (OG) asphalt mixtures, where variable asphalt contents and compaction levels were [...] Read more.
This research aims to investigate the possibility of measuring dielectric constant as an alternative proxy for estimating E* through a non-destructive procedure. An experimental program was conducted on dense-graded (DG) and open-graded (OG) asphalt mixtures, where variable asphalt contents and compaction levels were controlled to achieve different air voids. The measurements of dielectric constant were performed with a Percometer, and E* values were obtained using standard laboratory tests. For DG mixtures, a clear correlation was observed between dielectric constant, air void content and effective binder ratio. The less consistent relationships for OG mixtures were likely due to the more heterogeneous structure of the OG mixtures, the conductive slag aggregates and a limited dataset. Using dielectric values, two predictive models were developed (DIME_DG and DIME_OG), with the former showing higher reliability. Verification with independent specimens confirmed model robustness. This dielectric-based approach offers a practical, cost-effective alternative to traditional modulus testing. The key innovation of this study is the integration of the asphalt mix dielectric constant into established dynamic modulus predictive models, offering a novel approach that enhances the sensitivity of these models to mixture-specific characteristics beyond traditional volumetric and binder properties. Full article
Show Figures

Figure 1

20 pages, 3891 KiB  
Article
Breast Cancer Detection Using a High-Performance Ultra-Wideband Vivaldi Antenna in a Radar-Based Microwave Breast Cancer Imaging Technique
by Şahin Yıldız and Muhammed Bahaddin Kurt
Appl. Sci. 2025, 15(11), 6015; https://doi.org/10.3390/app15116015 - 27 May 2025
Viewed by 771
Abstract
In this study, a novel improved ultra-wideband (UWB) antipodal Vivaldi antenna suitable for breast cancer detection via microwave imaging was designed. The antenna was made more directional by adding three pairs of nestings to the antenna fins by adding elliptical patches. The frequency [...] Read more.
In this study, a novel improved ultra-wideband (UWB) antipodal Vivaldi antenna suitable for breast cancer detection via microwave imaging was designed. The antenna was made more directional by adding three pairs of nestings to the antenna fins by adding elliptical patches. The frequency operating range of the proposed antenna is UWB 3.6–13 GHz, its directivity is 11 dB, and its gain is 9.27 dB. The antenna is designed with FR4 dielectric material and dimensions of 34.6 mm × 33 mm × 1.6 mm. It was demonstrated that the bandwidth, gain, and directivity of the proposed antenna meet the requirements for UWB radar applications. The Vivaldi antenna was tested on an imaging system developed using the CST Microwave Studio (CST MWS) program. In CST MWS, a hemispherical heterogeneous breast model with a radius of 50 mm was created and a spherical tumor with a diameter of 0.9 mm was placed inside. A Gaussian pulse was sent through Vivaldi antennas and the scattered signals were collected. Then, adaptive Wiener filter and image formation algorithm delay-multiply-sum (DMAS) steps were applied to the reflected signals. Using these steps, the tumor in the breast model was scanned at high resolution. In the simulation application, the tumor in the heterogeneous phantom was detected and imaged in the correct position. A monostatic radar-based system was implemented for scanning a breast phantom in the prone position in an experimental setting. For experimental measurements, homogeneous (fat and tumor) and heterogeneous (skin, fat, glandular, and tumor) breast phantoms were produced according to the electrical properties of the tissues. The phantoms were designed as hemispherical with a diameter of 100 mm. A spherical tumor tissue with a diameter of 16 mm was placed in the phantoms produced in the experimental environment. The dynamic range of the VNA device used allowed us to image a 16 mm diameter tumor in the experimental setting. The developed microwave imaging system shows that it is suitable for the early-stage detection of breast cancer by scanning the tumor in the correct location in breast phantoms. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

18 pages, 5509 KiB  
Article
Tunable Microwave Absorption Performance of Ni-TiN@CN Nanocomposites with Synergistic Effects from the Addition of Ni Metal Elements
by Qian Li and Guimei Shi
Metals 2025, 15(6), 597; https://doi.org/10.3390/met15060597 - 27 May 2025
Viewed by 485
Abstract
This paper presents the synthesis and characterization of Ni-TiN@CN nanocomposites fabricated via arc discharge, followed by dopamine polymerization and pyrolysis. The cubic morphology of the Ni-TiN cores and uniform CN encapsulation were confirmed by structural analyses. Electromagnetic evaluations revealed that the CN shell [...] Read more.
This paper presents the synthesis and characterization of Ni-TiN@CN nanocomposites fabricated via arc discharge, followed by dopamine polymerization and pyrolysis. The cubic morphology of the Ni-TiN cores and uniform CN encapsulation were confirmed by structural analyses. Electromagnetic evaluations revealed that the CN shell thickness critically influenced the dielectric dispersion, polarization relaxation and conductive loss. The optimal sample (Ni-TiN@CN-3) achieved a minimum reflection loss of −42.05 dB at 4.06 GHz. The incorporation of magnetic Ni particles introduced a magnetic loss mechanism, while the multiple intrinsic defects within the heterogeneous structure synergistically generated defect dipole polarization and conductive loss. The strategic addition of Ni facilitated the construction of heterogeneous interfaces, which achieved enhanced interface polarization effects. The effective absorption bandwidth (≤−10 dB) reached 14.9 GHz, while the effective absorption bandwidth (≤−20 dB) achieved 6.5 GHz. The optimized CN layer facilitated a synergistic interplay between the dielectric loss and magnetic loss, which ensured balanced impedance matching and attenuation, as well as enhanced electromagnetic wave dissipation. This integrated optimization ultimately endowed the material with exceptional microwave absorption performance through an effective electromagnetic energy conversion. This work highlights Ni-TiN@CN nanocomposites as promising candidates for high-performance microwave absorbers in extreme environments. Full article
Show Figures

Figure 1

24 pages, 11408 KiB  
Review
Emerging Copper-to-Copper Bonding Techniques: Enabling High-Density Interconnects for Heterogeneous Integration
by Wenhan Bao, Jieqiong Zhang, Hei Wong, Jun Liu and Weidong Li
Nanomaterials 2025, 15(10), 729; https://doi.org/10.3390/nano15100729 - 12 May 2025
Viewed by 1476
Abstract
As CMOS technology continues to downsize to the nanometer range, the exponential growth predicted by Moore’s Law has been significantly decelerated. Doubling chip density in the two-dimensional domain will no longer be feasible without further device downsizing. Meanwhile, emerging new device technologies, which [...] Read more.
As CMOS technology continues to downsize to the nanometer range, the exponential growth predicted by Moore’s Law has been significantly decelerated. Doubling chip density in the two-dimensional domain will no longer be feasible without further device downsizing. Meanwhile, emerging new device technologies, which may be incompatible with the mainstream CMOS technology, offer potential performance enhancements for system integration and could be options for a More-than-Moore system. Additionally, the explosive growth of artificial intelligence (AI) demands ever-high computing power and energy-efficient computing platforms. Heterogeneous multi-chip integration, which combines diverse components or a larger number of functional blocks with different process technologies and materials into compact 3D systems, has emerged as a critical pathway to overcome the performance limitations of monolithic integrated circuits (ICs), such as limited process/material options, low yield, and multifunctional design complexity. Furthermore, it sustains Moore’s Law progression for a further smaller footprint and higher integration density, and it has become pivotal for “More-than-Moore” strategies in the next CMOS technology revolution. This approach is also crucial for sustaining computational advancements with low-power dissipation and low-latency interconnects in the coming decades. The key techniques for heterogeneous wafer-to-wafer bonding involve both copper-to-copper (Cu-Cu) and dielectric-to-dielectric bonding. This review provides a comprehensive comparison of recent advancements in Cu-Cu bonding techniques. Major issues, such as plasma treatment to activate bonding surfaces, passivation to suppress oxidation, Cu geometry, and microstructure optimization to enhance interface diffusion and regrowth, and the use of polymers as dielectrics to mitigate contamination and wafer warpage, as well as pitch size scaling, are discussed in detail. Full article
(This article belongs to the Special Issue Heterogeneous Integration Technology for More Moore)
Show Figures

Figure 1

19 pages, 2384 KiB  
Article
Exploring the Relationship Between Stability and Dynamics in Polymer-Based Amorphous Solid Dispersions for Pharmaceutical Applications
by Emeline Dudognon, Jeanne-Annick Bama and Frédéric Affouard
Polymers 2025, 17(9), 1210; https://doi.org/10.3390/polym17091210 - 28 Apr 2025
Viewed by 571
Abstract
Mixing polymeric excipients with drugs in amorphous solid dispersions (ASD) is known to enhance the bioavailability of drugs by inhibiting their recrystallisation. However, the mechanisms underlying stabilisation remain not fully understood. This study aims to improve our understanding of the role of dynamics, [...] Read more.
Mixing polymeric excipients with drugs in amorphous solid dispersions (ASD) is known to enhance the bioavailability of drugs by inhibiting their recrystallisation. However, the mechanisms underlying stabilisation remain not fully understood. This study aims to improve our understanding of the role of dynamics, particularly the molecular movements that drive instabilities, through investigations of ASD made of Polyvinylpyrrolidone (PVP K12) and a model drug, Terfenadine. The analyses combine temperature modulated differential scanning calorimetry (MDSC) and dielectric relaxation spectroscopy. The results reveal that the produced ASDs are supersaturated with Terfenadine, regardless of the content, and that PVP slows down the dynamics of the blends, limiting the recrystallisation of the drug during heating. Although the ASDs appear homogeneous based on thermal analysis with a single glass transition consistently detected by MDSC, the investigation of the dynamics reveals a dissociation of the main relaxation into two components for PVP contents below 30 wt.%. This dynamic heterogeneity suggests a structural heterogeneity with the coexistence of two amorphous phases of different compositions, each characterised by its own dynamics. The complex evolution of these dynamics under recrystallisation is rationalised by the confrontation with the phase and state diagram of Terfenadine/PVP blends established by MDSC. Full article
Show Figures

Graphical abstract

19 pages, 10147 KiB  
Article
The Effects of In Situ Growth of SiC Nanowires on the Electromagnetic Wave Absorption Properties of SiC Porous Ceramics
by Jingxiong Liu, Genlian Li, Tianmiao Zhao, Zhiqiang Gong, Feng Li, Wen Xie, Songze Zhao and Shaohua Jiang
Materials 2025, 18(9), 1910; https://doi.org/10.3390/ma18091910 - 23 Apr 2025
Cited by 1 | Viewed by 478
Abstract
In situ-grown SiC nanowires (SiCnws) on SiC porous material (SiCnws@SiC) were prepared using sol–gel and carbothermal reduction methods, which substantially improves the electromagnetic wave absorption property of composite material. The crystallinity and purity of SiCnws are the best when the sintering temperature is [...] Read more.
In situ-grown SiC nanowires (SiCnws) on SiC porous material (SiCnws@SiC) were prepared using sol–gel and carbothermal reduction methods, which substantially improves the electromagnetic wave absorption property of composite material. The crystallinity and purity of SiCnws are the best when the sintering temperature is 1600 °C. When the ratio of the carbon source (C) to the silicon source (Si) is 1:1, SiCnws@SiC composite exhibits excellent electromagnetic wave absorption performance, the minimum reflection loss is −56.95 dB at a thickness of 2.30 mm, and the effective absorption bandwidth covers 1.85 GHz. The optimal effective absorption bandwidth is 4.01 GHz when the thickness is 2.59 mm. The enhancement of the electromagnetic wave absorption performance of SiCnws is mainly attributed to the increase in the heterogeneous interface and multiple reflection and scattering caused by the network structure, increasing dielectric loss and conduction loss. In addition, defects could occur during the growth of SiCnws, which could become the center of dipole polarization and increase the polarization loss of composite materials. Therefore, in situ growth of SiCnws on SiC porous ceramics is a promising method to improve electromagnetic wave absorption. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Figure 1

17 pages, 3741 KiB  
Article
Assessing the Carasau Bread Doughs Microwave Spectra
by Elisabetta Orrù, Matteo B. Lodi and Luca Lodi
Foods 2025, 14(7), 1177; https://doi.org/10.3390/foods14071177 - 27 Mar 2025
Viewed by 424
Abstract
Carasau bread (CB) is a traditional Sardinian flatbread with significant market potential, driving the need for advanced quality monitoring solutions in its production. Recent advancements in automation and engineering have enhanced process control, but a comprehensive understanding of CB dough properties remains essential. [...] Read more.
Carasau bread (CB) is a traditional Sardinian flatbread with significant market potential, driving the need for advanced quality monitoring solutions in its production. Recent advancements in automation and engineering have enhanced process control, but a comprehensive understanding of CB dough properties remains essential. Dielectric spectroscopy (DS), particularly in the microwave (MW) range, has emerged as a non-destructive, cost-effective tool for food characterization, providing insights into microstructure and composition. MW DS has been applied to assess fermentation dynamics and ingredient influence in CB doughs, with previous studies modeling dielectric properties using a third-order Cole–Cole model up to 8.5 GHz and later extending to 20 GHz. Despite these advancements, the repeatability, reliability, and consistency of MW DS measurements on CB doughs have not been systematically assessed. This study aims to fill this gap by analyzing MW DS measurements on ten CB dough samples with standard composition (water 50%, yeast 1.5%, salt 1.5%) in the 0.5–6 GHz range, both before and after leavening, for 10 different samples and a total of 100 measurements. Even though the correlation between spectra is high, and even if the coefficient of variation is below 5% before leavening, the z-score analysis and the kernel density estimation highlighted that the distribution of dielectric data is heterogeneous, showing that variability across samples exists, especially after leavening. Finally, the influence of pressure, temperature, and relative humidity was excluded. This statistical evaluation of MW DS measurement provided critical insights into the robustness of MW DS for industrial applications. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

19 pages, 888 KiB  
Review
Cold Atmospheric Plasma in Oncology: A Review and Perspectives on Its Application in Veterinary Oncology
by André Gustavo Alves Holanda, Luiz Emanuel Campos Francelino, Carlos Eduardo Bezerra de Moura, Clodomiro Alves Junior, Julia Maria Matera and Genilson Fernandes de Queiroz
Animals 2025, 15(7), 968; https://doi.org/10.3390/ani15070968 - 27 Mar 2025
Viewed by 977
Abstract
Cold atmospheric plasma (CAP) is emerging as an innovative approach for cancer treatment because of its selectivity for malignant cells and absence of significant adverse effects. While modern oncological therapies face challenges such as tumor heterogeneity and treatment resistance, CAP presents itself as [...] Read more.
Cold atmospheric plasma (CAP) is emerging as an innovative approach for cancer treatment because of its selectivity for malignant cells and absence of significant adverse effects. While modern oncological therapies face challenges such as tumor heterogeneity and treatment resistance, CAP presents itself as a low-cost and environmentally sustainable alternative. Its mechanisms of action involve reactive oxygen and nitrogen species (RONS), UV radiation, and electromagnetic fields, which induce cell death. Preclinical and clinical studies have demonstrated the efficacy of CAP, with devices such as dielectric barrier discharge (DBD) and the plasma jet developed to minimize damage to healthy cells. Some CAP devices are already approved for clinical use, showing safety and efficacy. However, the standardization of treatments remains a challenge due to the variety of devices and parameters used. Although CAP has shown promising cytotoxic effects in vitro and in animal models, especially in different cancer cell lines, further research, particularly in vivo and in veterinary medicine, is needed to optimize its clinical use and maximize its efficacy in combating cancer. Full article
Show Figures

Figure 1

20 pages, 3339 KiB  
Article
Experimental Dielectric Properties and Temperature Measurement Analysis to Assess the Thermal Distribution of a Multimode Microwave-Assisted Susceptor Fixed-Bed Reactor
by Alejandro Fresneda-Cruz, Gonzalo Murillo-Ciordia and Ignacio Julian
Processes 2025, 13(3), 774; https://doi.org/10.3390/pr13030774 - 7 Mar 2025
Viewed by 766
Abstract
In this study, the integration of microwave-assisted technology into fixed-bed configuration processes is explored aiming to characterize and address its challenges with a customized multimodal microwave cavity. This research focuses on evaluating the uncertainty in contactless temperature measurement methods as spectral thermographic cameras [...] Read more.
In this study, the integration of microwave-assisted technology into fixed-bed configuration processes is explored aiming to characterize and address its challenges with a customized multimodal microwave cavity. This research focuses on evaluating the uncertainty in contactless temperature measurement methods as spectral thermographic cameras and infrared pyrometers, microwave heating performance, and the thermal homogeneity within fixed beds containing microwave–susceptor materials, including the temperature-dependent dielectric characterization of such materials, having different geometry and size (from 120 to 5000 microns). The thermal inhomogeneities along different bed configurations were quantified, assessing the most appropriate fixed-bed arrangement and size limitation at the employed irradiation frequency (2.45 GHz) to tackle microwave-assisted gas–solid chemical conversions. An increased temperature heterogeneity along the axial profile was found for finer susceptor particles, while the higher microwave susceptibility of coarser grades led to increased temperature gradients, ΔT > 300 °C. Moreover, results evidenced that the temperature measurement on the fixed-bed quartz reactor surface by a punctual infrared pyrometer entails a major error regarding the real temperature on the microwave susceptor surface within the tubular quartz reactor (up to 230% deviation). The experimental findings pave the way to assess the characteristics that microwave susceptors and fixed beds must perform to minimize thermal inhomogeneities and optimize the microwave-assisted coupling with solid–gas-phase reactor design and process upscaling using such multimode cavities. Full article
(This article belongs to the Special Issue Heat and Mass Transfer Phenomena in Energy Systems)
Show Figures

Figure 1

24 pages, 10833 KiB  
Article
Dynamic Behavior of the Glassy and Supercooled Liquid States of Aceclofenac Assessed by Dielectric and Calorimetric Techniques
by M. Teresa Viciosa, Joaquim J. Moura Ramos, Ana Rosa Garcia and Hermínio P. Diogo
Molecules 2025, 30(3), 681; https://doi.org/10.3390/molecules30030681 - 4 Feb 2025
Viewed by 715
Abstract
Aceclofenac (ACF), a non-steroidal anti-inflammatory drug, was obtained in its amorphous state by cooling from melt. The glass transition was investigated using dielectric and calorimetric techniques, namely, dielectric relaxation spectroscopy (DRS), thermally stimulated depolarization currents (TSDC), and conventional and temperature-modulated differential scanning calorimetry [...] Read more.
Aceclofenac (ACF), a non-steroidal anti-inflammatory drug, was obtained in its amorphous state by cooling from melt. The glass transition was investigated using dielectric and calorimetric techniques, namely, dielectric relaxation spectroscopy (DRS), thermally stimulated depolarization currents (TSDC), and conventional and temperature-modulated differential scanning calorimetry (DSC and TM-DSC). The dynamic behavior in both the glassy and supercooled liquid states revealed multiple relaxation processes. Well below the glass transition, DRS was able to resolve two secondary relaxations, γ and β, the latter of which was also detectable by TSDC. The kinetic parameters indicated that both processes are associated with localized motions within the molecule. The main (α) relaxation was clearly observed by DRS and TSDC, and results from both techniques confirmed a non-Arrhenian temperature dependence of the relaxation times. However, the glass transition temperature (Tg) extrapolated from DRS data significantly differed from that obtained via TSDC, which in turn showed reasonable agreement with the calorimetric Tg (Tg-DSC = 9.2 °C). The values of the fragility index calculated by the three experimental techniques converged in attributing the character of a moderately fragile glass former to ACF. Above the α relaxation, TSDC showed a well-defined peak. In DRS, after “removing” the high-conductivity contribution using ε’ derivative analysis, a peak with shape parameters αHN = βHN = 1 was also detected. The origin of these peaks, found in the full supercooled liquid state, has been discussed in the context of structural and dynamic heterogeneity. This is supported by significant differences observed between the FTIR spectra of the amorphous and crystalline samples, which are likely related to aggregation differences resulting from variations in the hydrogen bonds between the two phases. Additionally, the pronounced decoupling between translational and relaxational motions, as deduced from the low value of the fractional exponent x = 0.72, derived from the fractional Debye–Stokes–Einstein (FDSE) relationship, further supports this interpretation. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

21 pages, 5415 KiB  
Article
Hierarchical 3D FeCoNi Alloy/CNT @ Carbon Nanofiber Sponges as High-Performance Microwave Absorbers with Infrared Camouflage
by Yifan Fei, Junya Yao, Wei Cheng and Wenling Jiao
Materials 2025, 18(1), 113; https://doi.org/10.3390/ma18010113 - 30 Dec 2024
Cited by 1 | Viewed by 1021
Abstract
Microwave absorbers with infrared camouflage are highly desirable in military fields. Self-supporting 3D architectures with tailorable shapes, composed of FeCoNi alloy/carbon nanotubes (CNTs) @ carbon nanofibers (CNFs), were fabricated in this study. On the one hand, multiple loss mechanisms were introduced into the [...] Read more.
Microwave absorbers with infrared camouflage are highly desirable in military fields. Self-supporting 3D architectures with tailorable shapes, composed of FeCoNi alloy/carbon nanotubes (CNTs) @ carbon nanofibers (CNFs), were fabricated in this study. On the one hand, multiple loss mechanisms were introduced into the high-elastic sponges. Controllable space conductive networks caused by the in situ growth of CNTs on the CNFs contributed to the effective dielectric and resistance loss. Moreover, the uniformly distributed magnetic alloy nanoparticles (NPs) with dense magnetic coupling resulted in magnetic loss. On the other hand, heterogeneous interfaces were constructed by multicomponent engineering, causing interfacial polarization and polarization loss. Furthermore, the internal structures of sponges were optimized by regulating the alloy NPs sizes and the growth state of CNTs, then tuning the impedance matching and microwave absorption. Therefore, the high-elastic sponges with ultra-low density (7.6 mg·cm−3) were found to have excellent radar and infrared-compatible stealth properties, displaying a minimum refection loss (RLmin) of −50.5 dB and a maximum effective absorption bandwidth (EABmax) of 5.36 GHz. Moreover, the radar stealth effect of the sponges was evaluated by radar cross-section (RCS) simulation, revealing that the multifunctional sponges have a promising prospect in military applications. Full article
(This article belongs to the Special Issue Advances in Electrostatic Spinning Micro and Nano Fibers)
Show Figures

Figure 1

24 pages, 3671 KiB  
Article
Measuring Electromagnetic Properties of Vegetal Soil for Wireless Underground Sensor Networks in Precision Agriculture
by Maroua Said, Jaouhar Fattahi, Said Ghnimi, Ridha Ghayoula and Noureddine Boulejfen
Appl. Sci. 2024, 14(24), 11884; https://doi.org/10.3390/app142411884 - 19 Dec 2024
Viewed by 879
Abstract
This research examines and analyzes the measured electromagnetic characteristics of vegetal soil for Wireless Underground Sensor Networks applied to precision agriculture. For this, we used Wireless Underground Sensor Network (WUSN) technology, which consists of sensors that communicate through the soil to collect data [...] Read more.
This research examines and analyzes the measured electromagnetic characteristics of vegetal soil for Wireless Underground Sensor Networks applied to precision agriculture. For this, we used Wireless Underground Sensor Network (WUSN) technology, which consists of sensors that communicate through the soil to collect data on irrigation, such as temperature and humidity, for good plant growth. However, underground communication channels and signal transmission are required to travel through a dense and heterogeneous soil mixture. For the measurement results of the vegetal soil dielectric parameters, a precision domain sensing probe operating at 433 Mhz was used. Moreover, the different choices of capacitance, inductance, and varactor were included, with a reasonable estimation of the dielectric permittivity, ranging from 2 to 15, and an unlimited range of conductivities. Despite promising results in predicting the dielectric permittivities, several improvements were made to the mode for low permittivity values, and it was designed to accommodate a wide range of dielectric permittivities. Full article
Show Figures

Figure 1

18 pages, 5133 KiB  
Article
Field Scale Soil Moisture Estimation with Ground Penetrating Radar and Sentinel 1 Data
by Rutkay Atun, Önder Gürsoy and Sinan Koşaroğlu
Sustainability 2024, 16(24), 10995; https://doi.org/10.3390/su162410995 - 15 Dec 2024
Cited by 1 | Viewed by 2007
Abstract
This study examines the combined use of ground penetrating radar (GPR) and Sentinel-1 synthetic aperture radar (SAR) data for estimating soil moisture in a 25-decare field in Sivas, Türkiye. Soil moisture, vital for sustainable agriculture and ecosystem management, was assessed using in situ [...] Read more.
This study examines the combined use of ground penetrating radar (GPR) and Sentinel-1 synthetic aperture radar (SAR) data for estimating soil moisture in a 25-decare field in Sivas, Türkiye. Soil moisture, vital for sustainable agriculture and ecosystem management, was assessed using in situ measurements, SAR backscatter analysis, and GPR-derived dielectric constants. A novel empirical model adapted from the classical soil moisture index (SSM) was developed for Sentinel-1, while GPR data were processed using the reflected wave method for estimating moisture at 0–10 cm depth. GPR demonstrated a stronger correlation within situ measurements (R2 = 74%) than Sentinel-1 (R2 = 32%), reflecting its ability to detect localized moisture variations. Sentinel-1 provided broader trends, revealing its utility for large-scale analysis. Combining these techniques overcame individual limitations, offering detailed spatial insights and actionable data for precision agriculture and water management. This integrated approach highlights the complementary strengths of GPR and SAR, enabling accurate soil moisture mapping in heterogeneous conditions. The findings emphasize the value of multi-technique methods for addressing challenges in sustainable resource management, improving irrigation strategies, and mitigating climate impacts. Full article
Show Figures

Figure 1

16 pages, 9681 KiB  
Article
Transient Slope: A Metric for Assessing Heterogeneity from the Dielectrophoresis Spectrum
by Emmanuel Egun, Tia Wilson, Zuri A. Rashad, Rominna Valentine and Tayloria N. G. Adams
Biophysica 2024, 4(4), 695-710; https://doi.org/10.3390/biophysica4040045 - 14 Dec 2024
Viewed by 1136
Abstract
Cellular heterogeneity, an inherent feature of biological systems, plays a critical role in processes such as development, immune response, and disease progression. Human mesenchymal stem cells (hMSCs) exemplify this heterogeneity due to their multi-lineage differentiation potential. However, their inherent variability complicates clinical use, [...] Read more.
Cellular heterogeneity, an inherent feature of biological systems, plays a critical role in processes such as development, immune response, and disease progression. Human mesenchymal stem cells (hMSCs) exemplify this heterogeneity due to their multi-lineage differentiation potential. However, their inherent variability complicates clinical use, and there is no universally accepted method for detecting and quantifying cell population heterogeneity. Dielectrophoresis (DEP) has emerged as a powerful electrokinetic technique for characterizing and manipulating cells based on their dielectric properties, offering label-free analysis capabilities. Quantitative information from the DEP spectrum, such as transient slope, measure cells’ transition between negative and positive DEP behaviors. In this study, we employed DEP to estimate transient slope of various cell populations, including relatively homogeneous HEK-293 cells, heterogeneous hMSCs, and cancer cells (PC3 and DU145). Our analysis encompassed hMSCs derived from bone marrow, adipose, and umbilical cord tissue, to capture tissue-specific heterogeneity. Transient slope was assessed using two methods, involving linear trendline fitting to different low-frequency regions of the DEP spectrum. We found that transient slope serves as a reliable indicator of cell population heterogeneity, with more heterogeneous populations exhibiting lower transient slopes and higher standard deviations. Validation using cell morphology, size, and stemness further supported the utility of transient slope as a heterogeneity metric. This label-free approach holds promise for advancing cell sorting, biomanufacturing, and personalized medicine. Full article
(This article belongs to the Collection Feature Papers in Biophysics)
Show Figures

Figure 1

Back to TopTop