Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (229)

Search Parameters:
Keywords = herb community

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3523 KiB  
Article
Vegetation Composition and Environmental Relationships of Two Amaranthus Species Communities in Variant Agroecosystems at Fayoum Depression, Egypt
by Mai Sayed Fouad, Manar A. Megahed, Nabil A. Abo El-Kassem, Hoda F. Zahran and Abdel-Nasser A. A. Abdel-Hafeez
Diversity 2025, 17(8), 551; https://doi.org/10.3390/d17080551 - 3 Aug 2025
Viewed by 195
Abstract
Amaranthus is appointed as a common weed associated with crops. The research was designed to survey the Amaranth existence pattern throughout the Fayoum Depression, Egypt, accompanied with a community vegetation analysis. The study was extended to collect and analyze associated soil samples. The [...] Read more.
Amaranthus is appointed as a common weed associated with crops. The research was designed to survey the Amaranth existence pattern throughout the Fayoum Depression, Egypt, accompanied with a community vegetation analysis. The study was extended to collect and analyze associated soil samples. The obtained results figured out the prevalence of dicot families, herb growth forms, therophyte followed by phanerophyte life forms, the Pantropical monoregional chorotype, and the Mediterranean and Sudano-Zambezian followed by the Irano-Turanian pluri-regional chorotype. Multilevel pattern analysis stated that Gossypium barbadense, Corchorus olitorius, Sorghum bicolor, Sesamum indicum, and Zea mays are indicator species most related to Amaranth occurrence and prediction. NMDS analysis denoting that the Ibshaway, Youssef Al Seddik, Itsa, and Fayoum districts are the most representative districts for Amaranth existence on the basis of edaphic resources. Itsa and Youssef Al Seddik, in addition to Itsa and Fayoum, resemble each other in species composition. High pH and CaCO3 percentages were discriminatory in Ibshaway, Itsa, and Youssef Al Seddik. Ni was the cornerstone for districts partitioning in pruned trees. Finally, Amaranth was flourishing in both comfortable and harsh habitats with cultivated crops and orchards, as well as on the outskirts. The findings are considered to be valorized by decision makers in arable land management. Full article
(This article belongs to the Section Plant Diversity)
Show Figures

Figure 1

31 pages, 5867 KiB  
Article
Moisture Seasonality Dominates the Plant Community Differentiation in Monsoon Evergreen Broad-Leaved Forests of Yunnan, China
by Tao Yang, Xiaofeng Wang, Jiesheng Rao, Shuaifeng Li, Rong Li, Fan Du, Can Zhang, Xi Tian, Wencong Liu, Jianghua Duan, Hangchen Yu, Jianrong Su and Zehao Shen
Forests 2025, 16(7), 1167; https://doi.org/10.3390/f16071167 - 15 Jul 2025
Viewed by 261
Abstract
Monsoon evergreen broad-leaved forests (MEBFs) represent one of the most species-rich and structurally complex vegetation types, and one of the most widely distributed forests in Yunnan Province, Southwest China. However, they have yet to undergo a comprehensive analysis on their community diversity, spatial [...] Read more.
Monsoon evergreen broad-leaved forests (MEBFs) represent one of the most species-rich and structurally complex vegetation types, and one of the most widely distributed forests in Yunnan Province, Southwest China. However, they have yet to undergo a comprehensive analysis on their community diversity, spatial differentiation patterns, and underlying drivers across Yunnan. Based on extensive field surveys during 2021–2024 with 548 MEBF plots, this study employed the Unweighted Pair Group Method for forest community classification and Non-metric Multidimensional Scaling for ordination and interpretation of community–environment association. A total of 3517 vascular plant species were recorded in the plots, including 1137 tree species, 1161 shrubs, and 1219 herbs. Numerical classification divided the plots into 3 alliance groups and 24 alliances: (1) CastanopsisSchima (Lithocarpus) Forest Alliance Group (16 alliances), predominantly distributed west of 102°E in central-south and southwest Yunnan; (2) CastanopsisMachilus (Beilschmiedia) Forest Alliance Group (6 alliances), concentrated east of 101°E in southeast Yunnan with limited latitudinal range; (3) CastanopsisCamellia Forest Alliance Group (2 alliances), restricted to higher-elevation mountainous areas within 103–104° E and 22.5–23° N. Climatic variation accounted for 81.1% of the species compositional variation among alliance groups, with contributions of 83.5%, 57.6%, and 62.1% to alliance-level differentiation within alliance groups 1, 2, and 3, respectively. Precipitation days in the driest quarter (PDDQ) and precipitation seasonality (PS) emerged as the strongest predictors of community differentiation at both alliance group and alliance levels. Topography and soil features significantly influenced alliance differentiation in Groups 2 and 3. Collectively, the interaction between the monsoon climate and topography dominate the spatial differentiation of MEBF communities in Yunnan. Full article
(This article belongs to the Section Forest Biodiversity)
Show Figures

Figure 1

20 pages, 8662 KiB  
Article
Analysis of Composition, Structure, and Driving Factors of Root-Associated Endophytic Bacterial Communities of the Chinese Medicinal Herb Glycyrrhiza
by Zhilin Zhang, Aifang Ma, Tao Zhang, Li Zhuang and Hanli Dang
Biology 2025, 14(7), 856; https://doi.org/10.3390/biology14070856 - 15 Jul 2025
Viewed by 335
Abstract
The role of endophytic bacteria in the interaction between medicinal plants and microorganisms, secondary metabolite accumulation, plant nutrient changes, as well as their interactions with microbial communities, needs to be investigated in medicinal plants. In this study, 16S rRNA genes of endophytic bacterial [...] Read more.
The role of endophytic bacteria in the interaction between medicinal plants and microorganisms, secondary metabolite accumulation, plant nutrient changes, as well as their interactions with microbial communities, needs to be investigated in medicinal plants. In this study, 16S rRNA genes of endophytic bacterial communities in the root systems of three medicinal licorice species at different root depths (0–20, 20–40, and 40–60 cm) were sequenced using high-throughput sequencing technology, and their relationships with plant and soil factors were investigated. Our study indicated that the influence of Glycyrrhiza species on the structure of endophytic bacterial communities is significantly greater than that of root depth, and there are significant differences in the structure of endophytic bacterial communities at different sampling sites. At the phylum level, Proteobacteria and Actinobacteria are the dominant phylum. Functional gene prediction shows that functional genes related to metabolism dominate the endogenous bacterial community. Plant factors and soil physicochemical properties are important environmental drivers affecting the distribution of endophytic bacterial communities. This study will give new information on plant–soil–endophyte interactions and open up new possibilities for medicinal licorice development and use. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

15 pages, 2957 KiB  
Article
Floral Preferences of Butterflies Based on Plant Traits: A Case Study in the National Botanical Garden, Godawari, Nepal
by Ujjawala KC, Shailendra Sharma, Asmit Subba, Naresh Pandey, Ankit Kumar Singh, Narayan Prasad Koju and Laxman Khanal
J. Zool. Bot. Gard. 2025, 6(2), 30; https://doi.org/10.3390/jzbg6020030 - 4 Jun 2025
Viewed by 1167
Abstract
Butterflies have nectar-feeding preferences based on various floral characteristics, including flower shape, size, color, fragrance, and nectar composition, which in turn affect their survival, reproduction, and roles in pollination. The National Botanical Garden (NBG) in Lalitpur, Nepal, holds a variety of flowering plants [...] Read more.
Butterflies have nectar-feeding preferences based on various floral characteristics, including flower shape, size, color, fragrance, and nectar composition, which in turn affect their survival, reproduction, and roles in pollination. The National Botanical Garden (NBG) in Lalitpur, Nepal, holds a variety of flowering plants and butterfly populations, providing a suitable study site to test the hypotheses on floral preferences of butterflies. This study assessed the floral preferences of the butterfly community in the NBG based on flower color, the origin of flowering plants (native and alien), and the type of plants (herbs and shrubs). It also tested the association between butterfly proboscis lengths and corolla tube lengths of flowers. Data were collected from 10 blocks (each 5 × 5 m2) through direct observation during the spring and autumn seasons, from March to October 2022. A total of 24 species of butterflies were recorded during the study period, with the chocolate pansy (Junonia iphita) being the most abundant. The relative abundance of pink flowers was higher in the NBG, but the butterflies’ visitation frequency was significantly higher on yellow flowers (p < 0.05) than on other colors. The visitation frequencies of butterflies significantly varied with the flowers’ origin and types. Butterflies visited flowers of alien origin more frequently than native ones (p < 0.05) and those of herbs over shrubs (p < 0.05). Flowers from alien plants, such as Calluna vulgaris and Viola tricolor, were among the most frequently visited. The proboscis length of butterflies showed a significantly strong positive correlation with the corolla tube length of flowers (τ = 0.74, p < 0.001). These results can inform conservation practices and garden management strategies aimed at supporting butterfly diversity through the intentional selection of floral resources. Full article
Show Figures

Figure 1

20 pages, 3141 KiB  
Article
Post-Fire Recovery of Soil Multiple Properties, Plant Diversity, and Community Structure of Boreal Forests in China
by Xiting Zhang, Danqi She, Kai Wang, Yang Yang, Xia Hu, Peng Feng, Xiufeng Yan, Vladimir Gavrikov, Huimei Wang, Shijie Han and Wenjie Wang
Forests 2025, 16(5), 806; https://doi.org/10.3390/f16050806 - 12 May 2025
Viewed by 504
Abstract
Fire is important in boreal forest ecosystems, but comprehensive recovery analysis is lacking for soil nutrients and plant traits in China boreal forests, where the strict “extinguish at sight” fire prevention policy has been implemented. Based on over 50 years of forest fire [...] Read more.
Fire is important in boreal forest ecosystems, but comprehensive recovery analysis is lacking for soil nutrients and plant traits in China boreal forests, where the strict “extinguish at sight” fire prevention policy has been implemented. Based on over 50 years of forest fire recordings in the Daxing’anling Mts, 48 pairs of burnt and unburnt controls (1066 plots) were selected for 0–20 cm soil sampling and plant surveys. We recorded 18 plant parameters of the abundance of each tree, shrub, grass, and plant size (height, diameter, and coverage), 7 geo-topographic data parameters, and 2 fire traits (recovery year and burnt area). We measured eight soil properties (soil organic carbon, SOC; total nitrogen, TN; total phosphorus, TP; alkali-hydrolyzed P, AP; organic P, Po; inorganic P, Pi; total glomalin-related soil protein, T-GRSP; easily-extracted GRSP, EE-GRSP). Paired T-tests revealed that the most significant impact of the fire was a 25%–48% reduction in tree sizes, followed by decline in the plant diversity of arbors and shrubs but increasing plant diversity in herbs. GRSP showed an >18% increase and Po decreased by 17% (p < 0.05). Redundancy ordination showed that the post-fire recovery years and burnt area were the most potent explainer for the variations (p < 0.05), strongly interacting with latitudes and longitudes. Plant richness and tree size were directly affected by fire traits, while the burnt area and recovery times indirectly increased the GRSP via plant richness. A fire/control ratio chronosequence found that forest community traits (tree size and diversity) and soil nutrients could be recovered to the control level after ca. 30 years. This was relatively shorter than in reports on other boreal forests. The possible reasons are the low forest quality from overharvesting in history and the low fire severity from China’s fire prevention policy. This policy reduced the human mistake-related fire incidence to <10% in the 2010s in the studied region. Chinese forest fire incidences were 3% that of the USA. The burnt area/fire averaged 5 hm2 (while the USA averaged 46 hm2, Russia averaged 380 hm2, and Canada averaged 527 hm2). Overharvesting resulted in the forest height declining at a rate of >10 cm/year. Our finding supports forest management and the evaluation of forest succession after wildfires from a holistic view of plant–soil interactions. Full article
(This article belongs to the Section Forest Biodiversity)
Show Figures

Figure 1

22 pages, 19585 KiB  
Article
Effects of Plant Communities in Urban Green Spaces on Microclimate and Thermal Comfort
by Wenjie Li, Pinwei Pan, Dongming Fang and Chao Guo
Forests 2025, 16(5), 799; https://doi.org/10.3390/f16050799 - 10 May 2025
Viewed by 672
Abstract
Urban green spaces are crucial for regulating microclimates and enhancing human comfort. The study, conducted at Jiyang College of Zhejiang A&F University, investigates the effects of plant communities with diverse canopy structures on campus microclimates and thermal comfort in summer and winter. Data [...] Read more.
Urban green spaces are crucial for regulating microclimates and enhancing human comfort. The study, conducted at Jiyang College of Zhejiang A&F University, investigates the effects of plant communities with diverse canopy structures on campus microclimates and thermal comfort in summer and winter. Data on air temperature (AT), relative humidity (RH), wind speed (WS), and light intensity (LI) were collected over three consecutive sunny days in both summer and winter. Concurrently, plant community structural characteristics, including three-dimensional green biomass (3DGB), canopy density (CD), and sky-view factor (SVF), were measured and analyzed. Quantitative relationships between these plant characteristics and microclimate/thermal comfort indices were evaluated using statistical analyses. The results indicate that, in summer, plant communities produced significant cooling (daily average AT reduced by 2.3 °C) and humidifying effects, and decreased the daily maximum thermal humidity index (THI) by 1 °C compared to control areas without vegetation. In winter, the moderation of temperature and humidity was present but less pronounced, and no statistically significant temperature difference was observed. Communities with larger 3DGB, higher CD, and lower SVF provided more effective shading and improved microclimatic regulation. A regression analysis identified AT as the primary factor influencing outdoor thermal comfort across both seasons. Planting configurations such as “Tree-Shrub-Herb” and “Tree-Small Tree”, as well as the use of broad-crowned shade trees, were shown to be effective in optimizing microclimate and outdoor comfort. Overall, enhancing the vegetation structure may address outdoor thermal comfort requirements in campus environments throughout the year. Full article
(This article belongs to the Section Urban Forestry)
Show Figures

Figure 1

15 pages, 3462 KiB  
Article
Exploring the Antibiotic Potential of a Serine Protease from Solanum trilobatum Against Staphylococcus aureus Biofilms
by Manohar Radhakrishnan, Kanal Elamparithi Balu, Lakshminarayanan Karthik, Raghavendra Sashi Krishna Nagampalli, Eswar Kumar Nadendla and Gunasekaran Krishnasamy
Infect. Dis. Rep. 2025, 17(3), 50; https://doi.org/10.3390/idr17030050 - 7 May 2025
Viewed by 491
Abstract
Background: Multi-antibiotic resistance has become an alarming issue in treating bacterial infections in both community and medical environments. Globally, the scientific community has been exploring multi-antibiotic techniques to find new ways to address this challenge. To address this critical challenge and explore alternative [...] Read more.
Background: Multi-antibiotic resistance has become an alarming issue in treating bacterial infections in both community and medical environments. Globally, the scientific community has been exploring multi-antibiotic techniques to find new ways to address this challenge. To address this critical challenge and explore alternative antibiotic treatments, we investigated the potential of Solanum trilobatum, an edible and medicinally important herb plant in Ayurvedic medicine. Methods: Our research focused on a 60 kDa serine protease isolated and purified from the leaves of S. trilobatum, which showed evidence of possessing hydrolase activity. In this study, we examined the capability of the purified enzyme to eradicate preformed biofilms of S. aureus in combination with ampicillin. Additionally, we assessed the stability of the enzyme in the presence of metal ions and detergents. Results: Enzyme kinetics revealed a Vmax of 48.63 µM/min and a Km of 14.08 µM, indicating efficient enzymatic activity. Furthermore, the enzyme exhibited maximum activity at physiological pH, suggesting its potential effectiveness under physiological conditions. Conclusions: Our preliminary findings highlight the promising role of this enzyme as a potential agent to combat S. aureus biofilms, especially when used in conjunction with ampicillin, as an alternative antibiotic approach. Full article
(This article belongs to the Special Issue New Advances in Drugs/Vaccines against Infectious Diseases)
Show Figures

Figure 1

29 pages, 3813 KiB  
Article
A Quaternary Sedimentary Ancient DNA (sedaDNA) Record of Fungal–Terrestrial Ecosystem Dynamics in a Tropical Biodiversity Hotspot (Lake Towuti, Sulawesi, Indonesia)
by Md Akhtar-E Ekram, Cornelia Wuchter, Satria Bijaksana, Kliti Grice, James Russell, Janelle Stevenson, Hendrik Vogel and Marco J. L. Coolen
Microorganisms 2025, 13(5), 1005; https://doi.org/10.3390/microorganisms13051005 - 27 Apr 2025
Cited by 1 | Viewed by 788
Abstract
Short-term observations suggest that environmental changes affect the diversity and composition of soil fungi, significantly influencing forest resilience, plant diversity, and soil processes. However, time-series experiments should be supplemented with geobiological archives to capture the long-term effects of environmental changes on fungi–soil–plant interactions, [...] Read more.
Short-term observations suggest that environmental changes affect the diversity and composition of soil fungi, significantly influencing forest resilience, plant diversity, and soil processes. However, time-series experiments should be supplemented with geobiological archives to capture the long-term effects of environmental changes on fungi–soil–plant interactions, particularly in undersampled, floristically diverse tropical forests. We recently conducted trnL-P6 amplicon sequencing to generate a sedimentary ancient DNA (sedaDNA) record of the regional catchment vegetation of the tropical waterbody Lake Towuti (Sulawesi, Indonesia), spanning over one million years (Myr) of the lake’s developmental history. In this study, we performed 18SV9 amplicon sequencing to create a parallel paleofungal record to (a) infer the composition, origins, and functional guilds of paleofungal community members and (b) determine the extent to which downcore changes in fungal community composition reflect the late Pleistocene evolution of the Lake Towuti catchment. We identified at least 52 members of Ascomycota (predominantly Dothiodeomycetes, Eurotiomycetes, and Leotiomycetes) and 12 members of Basidiomycota (primarily Agaricales and Polyporales). Spearman correlation analysis of the relative changes in fungal community composition, geochemical parameters, and paleovegetation assemblages revealed that the overwhelming majority consisted of soil organic matter and wood-decaying saprobes, except for a necrotrophic phytopathogenic association between Mycosphaerellaceae (Cadophora) and wetland herbs (Alocasia) in more-than-1-Myr-old silts and peats deposited in a pre-lake landscape, dominated by small rivers, wetlands, and peat swamps. During the lacustrine stage, vegetation that used to grow on ultramafic catchment soils during extended periods of inferred drying showed associations with dark septate endophytes (Ploettnerulaceae and Didymellaceae) that can produce large quantities of siderophores to solubilize mineral-bound ferrous iron, releasing bioavailable ferrous iron needed for several processes in plants, including photosynthesis. Our study showed that sedaDNA metabarcoding paired with the analysis of geochemical parameters yielded plausible insights into fungal-plant-soil interactions, and inferred changes in the paleohydrology and catchment evolution of tropical Lake Towuti, spanning more than one Myr of deposition. Full article
(This article belongs to the Special Issue Ancient Microbiomes in the Environment)
Show Figures

Figure 1

19 pages, 287 KiB  
Article
Estimation of Anti-SARS-CoV-2 IgM/IgG Seroprevalence Among Non-Vaccinated and Vaccinated University Students: A Cross-Sectional Egyptian Study
by Ahmed E. Taha, Ibrahim Amer, Shimaa El Sharawy and Amany A. Ghazy
Viruses 2025, 17(3), 378; https://doi.org/10.3390/v17030378 - 6 Mar 2025
Viewed by 888
Abstract
It is essential to comprehend the humoral immune response to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and its vaccines to maximize the effectiveness of anti-SARSCoV-2 community immunization efforts. The aim of this cross-sectional study was to determine the seroprevalence of anti-SARS-CoV-2 IgM/IgG among [...] Read more.
It is essential to comprehend the humoral immune response to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and its vaccines to maximize the effectiveness of anti-SARSCoV-2 community immunization efforts. The aim of this cross-sectional study was to determine the seroprevalence of anti-SARS-CoV-2 IgM/IgG among newcomer students at Kafr Elsheikh University in Egypt, whether they had been vaccinated or not. Blood samples from 400 healthy newcomer students (200 non-vaccinated and 200 vaccinated) were evaluated for the presence of anti-SARS-CoV-2 IgM/IgG using colloidal gold immunochromatography lateral flow immunoassay cards, and then the results were confirmed by using specific ELISA tests. The prevalence of anti-SARS-CoV-2 antibodies among the participants (n = 400) was 56.3% for IgG and 13.3% for IgM. Regarding the non-vaccinated participants, 55.0% were females, the mean age was 18.2 years, and the mean BMI was 25.35. Regarding the vaccinated participants, 58.5% were females, the mean age was 18.1 years, and the mean BMI was 25.3. There were statistically non-significant correlations (p ˃ 0.05) between gender, BMI, and each of IgM- or IgG-positivity in both vaccinated and non-vaccinated groups. In total, 41.5% and 48.5% of the anti-SARS-CoV-2 IgM-positive and anti-SARS-CoV-2 IgG-positive participants were non-vaccinated, respectively. Furthermore, 58.5% and 51.5% of the anti-SARS-CoV-2 IgM-positive and anti-SARS-CoV-2 IgG-positive participants were vaccinated, respectively. No statistically significant association (p ˃ 0.05) in immunoglobulins positivity between the anti-SARS-CoV-2 non-vaccinated, and vaccinated groups. The anti-SARS-CoV-2 immunological response of nonsmokers, people who exercise regularly, and those who take vitamin supplements, eat a balanced diet, and use certain herbs is noteworthy. Among the vaccinated subjects, 96.6%, 25.0%, 31.9%, 45.7%, and 7.8% of the IgG-positive group, versus 97.2%, 60.6%, 64.2%, 52.3%, and 6.4% of the IgG-positive non-vaccinated group, were nonsmokers, exercisers, and those taking vitamin supplements, eating a balanced diet, and using herbs, respectively. Furthermore, 93.5%, 32.3%, 35.5%, 48.4%, and 6.5% of the IgM-positive vaccinated group, versus 100.0%, 63.6%, 81.8%, 45.5%, and 4.5% of the IgM-positive non-vaccinated participants, were nonsmokers, physical exercisers, vitamin supplement users, balanced eaters, and herbalists, respectively. Persons who are free from comorbidities, young, non-obese, non-smokers, engage in physical exercise, take vitamins, eat a balanced diet, and use certain immunostimulant herbal supplements, all have a strong anti-SARS-CoV-2 humoral immune response, even if they were not vaccinated. During pandemics, vaccination of this group should not be a priority to preserve vaccine doses for high-risk vulnerable people. Even if there is a lockdown during an anticipated future epidemic or pandemic, we should prioritize healthy eating and lifestyle choices, along with increasing physical activity. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
20 pages, 5079 KiB  
Article
Paleovegetation Community and Paleoclimate Succession in Middle Jurassic Coal Seams in Eastern Coalfields in Dzungaria Basin, China
by Xingli Wang, Shuo Feng, Wenfeng Wang, Qin Zhang, Jijun Tian, Changcheng Han and Meng Wang
Plants 2025, 14(5), 695; https://doi.org/10.3390/plants14050695 - 24 Feb 2025
Viewed by 555
Abstract
The Dzungaria Basin is located north of Xinjiang and is one of the largest inland basins in China. The eastern coalfields in the Dzungaria Basin contain a large amount of coal resources, and the thickness of the coal seams is significant. Therefore, the [...] Read more.
The Dzungaria Basin is located north of Xinjiang and is one of the largest inland basins in China. The eastern coalfields in the Dzungaria Basin contain a large amount of coal resources, and the thickness of the coal seams is significant. Therefore, the aim of this study was to classify the paleovegetation types and develop paleoclimate succession models of the extra-thick coal seams. We conducted the sampling, separation, and extraction of spores and pollen and carried out microscopic observations in the Wucaiwan mining area of the eastern coalfields in the Dzungaria Basin. The vertical vegetation succession in the thick seam (Aalenian Stage) in the study area was divided into three zones using the CONISS clustering method. The results show that the types of spore and pollen fossils belong to twenty families and forty-five genera, including twenty-three fern, twenty gymnosperm, and two bryophyte genera. The types of paleovegetation in the study area were mainly Lycopodiaceae and Selaginellaceae herb plants, Cyatheaceae, Osmundaceae, and Polypodiaceae shrub plants, and Cycadaceae and Pinaceae coniferous broad-leaved trees. The paleoclimate changed from warm–humid to humid–semi-humid and, finally, to the semi-humid–semi-dry type, all within a tropical–subtropical climate zone. The study area was divided into four paleovegetation communities: the nearshore wetland paleovegetation community, lowland cycad and Filicinae plant community, slope broad-leaved and coniferous plant mixed community, and highland coniferous tree community. This indicates that there was a climate warming event during the Middle Jurassic, which led to a large-scale lake transgression and regression in the basin. This resulted in the transfer of the coal-accumulating center from the west and southwest to the central part of the eastern coalfields in the Dzungaria Basin. Full article
(This article belongs to the Special Issue Evolution of Land Plants)
Show Figures

Figure 1

16 pages, 4396 KiB  
Article
Microbial Communities in Continuous Panax notoginseng Cropping Soil
by Li Liu, Jingheng Wu, Minpeng Liu, Mulan Wang, Yuewen Huo, Fugang Wei and Min Wu
Agronomy 2025, 15(2), 486; https://doi.org/10.3390/agronomy15020486 - 18 Feb 2025
Cited by 1 | Viewed by 938
Abstract
Panax notoginseng is a prominent traditional Chinese medicinal herb, yet its yield and quality are significantly constrained by continuous cropping obstacles, primarily stemming from soil-related issues. This study analyzed soils subjected to various degrees of continuous P. notoginseng cultivation, soils without P. notoginseng [...] Read more.
Panax notoginseng is a prominent traditional Chinese medicinal herb, yet its yield and quality are significantly constrained by continuous cropping obstacles, primarily stemming from soil-related issues. This study analyzed soils subjected to various degrees of continuous P. notoginseng cultivation, soils without P. notoginseng planting, and natural forest floor soil without P. notoginseng planting. The objective was to investigate variations in soil microbial communities, physicochemical properties, and enzyme activities across different cropping conditions. Macro-genome sequencing was employed to reveal microbial shifts and key factors influencing rhizosphere microbial communities. Notably, the natural forest floor soil exhibited the highest levels of soil organic matter, soil organic carbon, total nitrogen, and available potassium. Furthermore, continuous cropping soils showed the highest levels of pH, available phosphorus, electrical conductivity, and total potassium. The activities of catalase, urease, acid phosphatase, sucrase, and soil FDA hydrolase decreased significantly after continuous cropping, but increased again after five years of fallowing. Microbial analysis revealed that Bacteroidetes, Firmicutes, and Chloroflexi dominated the soils without P. notoginseng planting, whereas Proteobacteria, Actinobacteria, and Acidobacteria were the predominant phyla in continuous cropping and natural forest floor soils. Continuous cropping led to an increase in Acidobacteria, Gemmatimonadetes, and Chloroflexi, while fallowing reduced Actinobacteria. Gemmatimonades was almost exclusively present in the continuous cropping soils. Overall, continuous P. notoginseng planting altered the soil nutrients and microbial composition. Key factors influencing microbial communities included pH, nitrate nitrogen, available phosphorus, available potassium, and electrical conductivity. The study suggests that attention should be paid to scientific and rational fertilization practices to mitigate the effects of continuous cropping. Additionally, a fallow period of more than five years is recommended. The proper application of probiotic fertilizers is also advised. Finally, cultivating P. notoginseng under forest conditions is recommended as a viable method. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

16 pages, 668 KiB  
Article
Latitude as a Factor Influencing Variability in Vegetational Development in Northeast England During the First (Preboreal) Holocene Millennium
by J. B. Innes and C. Orton
Quaternary 2025, 8(1), 7; https://doi.org/10.3390/quat8010007 - 5 Feb 2025
Cited by 2 | Viewed by 1255
Abstract
In the North Atlantic region, the transition from the very cold Lateglacial Stadial (GS-1) to the temperate Holocene was abrupt, with a rapid increase in temperature of several degrees, after which the low-stature, cold-tolerant Stadial vegetation was replaced through the immigration and rapid [...] Read more.
In the North Atlantic region, the transition from the very cold Lateglacial Stadial (GS-1) to the temperate Holocene was abrupt, with a rapid increase in temperature of several degrees, after which the low-stature, cold-tolerant Stadial vegetation was replaced through the immigration and rapid succession of tall herb, heath, and shrub communities towards Betula woodland of varying density. In northeast England, pollen diagrams on a south to north transect between mid-Yorkshire and the Scottish border show that there was considerable variation in the rate at which postglacial woodland was established in the first Holocene millennium. In mid-Yorkshire’s Vale of York, the development of closed Betula woodland was swift, whereas in north Northumberland, near the Scottish border, Betula presence was low for the first several centuries of the Holocene, with open vegetation persisting and with shrub vegetation dominated mostly by Juniperus. Intermediate locations on the transect show there was a gradient in post-Stadial vegetation development in northeast England, with latitude as a major factor, as well as altitude. Transitional locations on the transect have been identified, where vegetation community change occurred. Vegetation development in the first Holocene millennium in northeast England was spatially complex and diverse, with the climatic effects of latitude the main controlling environmental variable. Full article
Show Figures

Figure 1

20 pages, 4164 KiB  
Article
Investigating the Effects of Fish Effluents as Organic Fertilisers on Basil (Ocimum basilicum)
by Lorenzo Fruscella, Benz Kotzen, Marcos Paradelo Perez and Sarah Milliken
Appl. Sci. 2025, 15(3), 1563; https://doi.org/10.3390/app15031563 - 4 Feb 2025
Cited by 1 | Viewed by 1444
Abstract
Whilst the potential of fish effluents as nutrient sources for crop production has been demonstrated, their use in the European Union remains prohibited in organic farming. In this study, we investigate the efficacy in greenhouse basil cultivation of two types of fish effluents [...] Read more.
Whilst the potential of fish effluents as nutrient sources for crop production has been demonstrated, their use in the European Union remains prohibited in organic farming. In this study, we investigate the efficacy in greenhouse basil cultivation of two types of fish effluents (filtered ‘fish water’ and unfiltered ‘fish sludge’) from an aquaponic system, and assess their role in maintaining and enhancing soil fertility as well as their potential to create a ’living soil’, which are two of the prerequisites for organic certification in the EU. To evaluate the contribution of fish effluents to plant growth in comparison with soil nutrients, basil plants were grown in pots containing two types of substrate: compost-free (without organic matter) and with compost (with organic matter). The results indicate that fish water and fish sludge demonstrate significant potential as fertilisers and outperform compost in certain parameters, such as plant biomass. The results also align with existing literature by demonstrating the positive impact of compost on soil microbial diversity, underscoring its role in fostering plant health. Although the treatments did not show differences in microbial composition at the genus level, the higher microbial diversity observed following fish effluent application highlights its potential for promoting ’living soil’. This research underscores the need for continued exploration of the implications of compost application in conjunction with fish effluent fertilisation on soil microbial communities and the production of specialty crops such as herbs. Full article
(This article belongs to the Special Issue Plant Management and Soil Improvement in Specialty Crop Production)
Show Figures

Figure 1

31 pages, 57608 KiB  
Article
Estimation of Carbon Density in Different Urban Green Spaces: Taking the Beijing Main District as an Example
by Yilun Cao, Xinwei He, Chang Wang and Yuhao Fang
Land 2025, 14(2), 270; https://doi.org/10.3390/land14020270 - 28 Jan 2025
Viewed by 1187
Abstract
Urban green spaces (UGS) are crucial urban elements that serve as direct carbon sequestration and contribute to indirect carbon emission reduction. Accurately calculating the carbon density of urban green spaces allows for scientific planning and design, thereby advancing efforts toward achieving carbon neutrality. [...] Read more.
Urban green spaces (UGS) are crucial urban elements that serve as direct carbon sequestration and contribute to indirect carbon emission reduction. Accurately calculating the carbon density of urban green spaces allows for scientific planning and design, thereby advancing efforts toward achieving carbon neutrality. This study has developed a workflow for estimating carbon density in urban green spaces through point cloud measurements and model simulations, using the UGS in the Beijing Main District as a case study. From the sample level, a calculation methodology was constructed based on the point cloud technology-model simulation method, which can obtain the carbon density at the plant level and the sample level. At the UGS level, remote sensing inversion was utilized to map the carbon density of urban green spaces. Ultimately, the research calculated and compared carbon density at different scales, including the carbon density of individual plants, the carbon density of sample plots, and the carbon density of various types of urban green spaces. It was found that the carbon density of trees in UGS was 9.87 kg/m2, while those of shrubs and herbaceous plants were 13.20 kg/m2 and 0.11 kg/m2. In urban green spaces, the carbon densities of the tree and herb layers were slightly lower than those in natural ecosystems, whereas the carbon density of the shrub layer was significantly higher. This highlights the substantial potential and value of shrubs in carbon sequestration and carbon storage. The average carbon density of all UGS types was 9.76 kg/m2, with the following descending order: Neighborhood Parks (10.31 kg/m2) > Attached Green Spaces (7.22 kg/m2) > Regional Parks (5.75 kg/m2). Based on these findings, the study proposed optimization strategies for different UGS types, focusing on high carbon-density plant community optimization. The goal is to provide a theoretical foundation for carbon storage calculations and plant arrangements in future UGS construction. Full article
Show Figures

Figure 1

26 pages, 4485 KiB  
Article
Roles of Spatial Distance, Habitat Difference, and Community Age on Plant Diversity Patterns of Fragmented Castanopsis orthacantha Franch. Forests in Central Yunnan, Southwest China
by Xinpei Wang, Qiuyu Zhang, Tao Yang, Xi Tian, Ying Zhang and Zehao Shen
Forests 2025, 16(2), 245; https://doi.org/10.3390/f16020245 - 27 Jan 2025
Viewed by 913
Abstract
The semi-humid evergreen broadleaved forest (SEBF) is the zonal vegetation type of western subtropical regions in China. Under human and natural disturbance, the area of SEBFs is severely shrinking, with remaining fragments scattered across mountains of the Central Yunnan Plateau. To explore the [...] Read more.
The semi-humid evergreen broadleaved forest (SEBF) is the zonal vegetation type of western subtropical regions in China. Under human and natural disturbance, the area of SEBFs is severely shrinking, with remaining fragments scattered across mountains of the Central Yunnan Plateau. To explore the mechanisms of community assembly and species maintenance in the severely fragmented SEBFs, we selected three sites—Jinguangsi Provincial Nature Reserve, Huafoshan Scenic Area, and Qiongzhusi Forest Park—across the range of this vegetation type, and sampled a total of 42 plots of forest dominated by Castanopsis orthacantha Franch., the most widely distributed community type of SEBFs. We compared the species richness and composition of the communities of different age classes, employed the net relatedness index to characterize the phylogenetic structure of communities, and used Mantel tests and partial Mantel tests to quantify the impacts of spatial distance, age class, and habitat factors (including climate, topography, and soil) on species turnover across different spatial scales (i.e., intra- and inter-site) for trees, shrubs, and herbs, respectively. The results indicated the following: (1) In the young stage, the C. orthacantha communities exhibited a species richness statistically lower than those in middle-aged and mature communities. Notably, the difference in species richness among age classes was merely significant for shrub and herb species. Moreover, the phylogenetic structure changed towards over-dispersion with increasing community age. (2) The age class of the community played a pivotal role in determining taxonomic β diversity in the tree layer, while climate and soil factors significantly influenced β diversity in the shrub and herb layers of the communities. (3) Environmental filtering emerged as the predominant force shaping community assembly at the intra-site scale, whereas spatial distance was the primary determinant at the inter-site scale. Meanwhile, dispersal limitation versus biological interaction seemed to dominate the community dynamics of the C. orthacantha communities in the early versus middle and old ages, respectively. Our results highlight the variability in community assembly processes across different spatial and temporal scales, providing insights into the priority of the conservation and restoration of severely degraded zonal SEBFs. Expanding research to broader scales and other SEBF types, as well as considering the impacts of climate change and human activities, would provide further insights into understanding the mechanisms of community assembly and effective conservation strategies. Full article
Show Figures

Figure 1

Back to TopTop