Estimation of Anti-SARS-CoV-2 IgM/IgG Seroprevalence Among Non-Vaccinated and Vaccinated University Students: A Cross-Sectional Egyptian Study
Abstract
:1. Introduction
2. Methodology
2.1. Design of the Study
2.2. Collection of Data
2.3. Collection of Blood Samples
2.4. Immunological Detection of Antibodies by LFIA Cards
2.5. Immunological Detection of Antibodies by Specific ELISA Test
2.6. Analysis of the Data
3. Results
4. Discussion
5. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El-Masry, E.A.; Taha, A.E. Role of hospital environmental surfaces in the transmission of the severe acute respiratory syndrome-Coronavirus-2. J. Infect. Dev. Ctries. 2022, 16, 1432–1438. [Google Scholar] [CrossRef] [PubMed]
- Taha, A.E. The Severe Acute Respiratory Syndrome Coronavirus-2 Pandemic: An Overview to Control Human-wildlife and Human-human Interactions. J. Pure Appl. Microbiol. 2020, 14, 1095–1098. [Google Scholar] [CrossRef]
- Fernandes, M.D.C.R.; Vasconcelos, G.S.; de Melo, A.C.L.; Matsui, T.C.; Caetano, L.F.; de Carvalho Araújo, F.M.; Fonseca, M.H.G. Influence of age, gender, previous SARS-CoV-2 infection, and pre-existing diseases in antibody response after COVID-19 vaccination: A review. Mol. Immunol. 2023, 156, 148–155. [Google Scholar] [CrossRef]
- Taha, A.E. Can COVID-19 Be Transmitted Sexually by Semen? J. Pure Appl. Microbiol. 2020, 14, 2287–2293. [Google Scholar] [CrossRef]
- El-Masry, E.A.; Mohamed, R.A.; Ali, R.I.; Al Mulhim, M.F.; Taha, A.E. Novel coronavirus disease-related knowledge, attitudes, and practices among the residents of Al-Jouf region in Saudi Arabia. J. Infect. Dev. Ctries. 2021, 15, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Zohar, T.; Alter, G. Dissecting antibody-mediated protection against SARS-CoV-2. Nat. Rev. Immunol. 2020, 20, 392–394. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, L.; Sang, L.; Ye, F.; Ruan, S.; Zhong, B.; Song, T.; Alshukairi, A.N.; Chen, R.; Zhang, Z.; et al. Kinetics of viral load and antibody response in relation to COVID-19 severity. J. Clin. Investig. 2020, 130, 5235–5244. [Google Scholar] [CrossRef]
- Zhao, J.; Yuan, Q.; Wang, H.; Liu, W.; Liao, X.; Su, Y.; Wang, X.; Yuan, J.; Li, T.; Li, J.; et al. Antibody Responses to SARS-CoV-2 in Patients With Novel Coronavirus Disease 2019. Clin. Infect. Dis. 2020, 71, 2027–2034. [Google Scholar] [CrossRef]
- Malik, J.A.; Mulla, A.H.; Farooqi, T.; Pottoo, F.H.; Anwar, S.; Rengasamy, K.R.R. Targets and strategies for vaccine development against SARS-CoV-2. Biomed Pharmacother. 2021, 137, 111254. [Google Scholar] [CrossRef]
- Meyer, C.U.; Zepp, F. Principles in Immunology for the Design and Development of Vaccines. Methods Mol. Biol. 2022, 2410, 27–56. [Google Scholar] [CrossRef]
- Huang, A.; Cicin-Sain, C.; Pasin, C.; Epp, S.; Audigé, A.; Müller, N.J.; Nilsson, J.; Bankova, A.; Wolfensberger, N.; Vilinovszki, O.; et al. Antibody Response to SARS-CoV-2 Vaccination in Patients following Allogeneic Hematopoietic Cell Transplantation. Transplant. Cell. Ther. 2022, 28, 214.e1–214.e11. [Google Scholar] [CrossRef] [PubMed]
- Piñana, J.L.; López-Corral, L.; Martino, R.; Montoro, J.; Vazquez, L.; Pérez, A.; Martin-Martin, G.; Facal-Malvar, A.; Ferrer, E.; Pascual, M.J.; et al. SARS-CoV-2-reactive antibody detection after SARS-CoV-2 vaccination in hematopoietic stem cell transplant recipients: Prospective survey from the Spanish Hematopoietic Stem Cell Transplantation and Cell Therapy Group. Am. J. Hematol. 2022, 97, 30–42. [Google Scholar] [CrossRef]
- Anand, S.; Montez-Rath, M.E.; Han, J.; Garcia, P.; Cadden, L.; Hunsader, P.; Morgan, C.; Kerschmann, R.; Beyer, P.; Dittrich, M.; et al. SARS-CoV-2 Vaccine Antibody Response and Breakthrough Infection in Patients Receiving Dialysis. Ann. Intern. Med. 2022, 175, 371–378. [Google Scholar] [CrossRef]
- Hernández-Bello, J.; Morales-Núñez, J.J.; Machado-Sulbarán, A.C.; Díaz-Pérez, S.A.; Torres-Hernández, P.C.; Balcázar-Félix, P.; Gutiérrez-Brito, J.A.; Lomelí-Nieto, J.A.; Muñoz-Valle, J.F. Neutralizing Antibodies against SARS-CoV-2, Anti-Ad5 Antibodies, and Reactogenicity in Response to Ad5-nCoV (CanSino Biologics) Vaccine in Individuals with and without Prior SARS-CoV-2. Vaccines 2021, 9, 1047. [Google Scholar] [CrossRef] [PubMed]
- Dinc, H.O.; Saltoglu, N.; Can, G.; Balkan, I.I.; Budak, B.; Ozbey, D.; Caglar, B.; Karaali, R.; Mete, B.; Tuyji Tok, Y.; et al. Inactive SARS-CoV-2 vaccine generates high antibody responses in healthcare workers with and without prior infection. Vaccine 2022, 40, 52–58. [Google Scholar] [CrossRef]
- Li, Z.; Xiang, T.; Liang, B.; Deng, H.; Wang, H.; Feng, X.; Quan, X.; Wang, X.; Li, S.; Lu, S.; et al. Characterization of SARS-CoV-2-Specific Humoral and Cellular Immune Responses Induced by Inactivated COVID-19 Vaccines in a Real-World Setting. Front. Immunol. 2021, 12, 802858. [Google Scholar] [CrossRef]
- Choudhary, H.R.; Parai, D.; Chandra Dash, G.; Kshatri, J.S.; Mishra, N.; Choudhary, P.K.; Pattnaik, D.; Panigrahi, K.; Behera, S.; Ranjan Sahoo, N.; et al. Persistence of Antibodies Against Spike Glycoprotein of SARS-CoV-2 in Healthcare Workers Post Double Dose of BBV-152 and AZD1222 Vaccines. Front. Med. 2021, 8, 778129. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Coronavirus COVID-19 Dashboard. Available online: https://data.who.int/dashboards/covid19/cases?n=c (accessed on 5 January 2025).
- World Health Organization (WHO). Egypt: WHO Coronavirus Disease (COVID-19) Dashboard with Vaccination Data. Available online: https://data.who.int/dashboards/covid19/cases?n=c&m49=818 (accessed on 5 January 2025).
- Filchakova, O.; Dossym, D.; Ilyas, A.; Kuanysheva, T.; Abdizhamil, A.; Bukasov, R. Review of COVID-19 testing and diagnostic methods. Talanta 2022, 244, 123409. [Google Scholar] [CrossRef]
- Renia, L.; Ng, L.F. Acquired immunity against SARS-CoV-2 infection and vaccination. EMBO Mol. Med. 2023, 15, e16345. [Google Scholar] [CrossRef]
- Yaugel-Novoa, M.; Bourlet, T.; Paul, S. Role of the humoral immune response during COVID-19: Guilty or not guilty? Mucosal Immunol. 2022, 15, 1170–1180. [Google Scholar] [CrossRef]
- Gómez-Ochoa, S.A.; Franco, O.H.; Rojas, L.Z.; Raguindin, P.F.; Roa-Díaz, Z.M.; Wyssmann, B.M.; Guevara, S.L.R.; Echeverría, L.E.; Glisic, M.; Muka, T. COVID-19 in Health-Care Workers: A Living Systematic Review and Meta-Analysis of Prevalence, Risk Factors, Clinical Characteristics, and Outcomes. Am. J. Epidemiol. 2021, 190, 161–175. [Google Scholar] [CrossRef]
- Taha, A.E.; Alduraywish, A.A.; Almaeen, A.H.; El-Metwally, T.H.; Alayyaf, M.; Mallick, A.; Abouelkheir, M. High Seroprevalence of Anti-SARS-CoV-2 IgM/IgG among Inhabitants of Sakaka City, Aljouf, Saudi Arabia. Vaccines 2022, 11, 26. [Google Scholar] [CrossRef]
- Almaeen, A.H.; Alduraywish, A.A.; Ghazy, A.A.; El-Metwally, T.H.; Alayyaf, M.; Alrayes, F.H.; Alinad, A.K.M.; Albulayhid, S.B.H.; Aldakhil, A.R.; Taha, A.E. The Pre-Vaccination Donated Blood Is Free from Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) but Is Rich with Anti-SARS-CoV-2 Antibodies: A Cross-Section Saudi Study. Int. J. Environ. Res. Public Health 2022, 19, 7119. [Google Scholar] [CrossRef]
- Saeed, A.Y.; Assafi, M.S.; Othman, H.E.; Shukri, H.M. Prevalence of SARS -CoV-2 IgG/IgM antibodies among patients in Zakho City, Kurdistan, Iraq. J. Infect. Dev. Ctries. 2022, 16, 1126–1130. [Google Scholar] [CrossRef]
- Shakiba, M.; Nazemipour, M.; Salari, A.; Mehrabian, F.; Nazari, S.S.H.; Rezvani, S.M.; Ghasempour, Z.; Heidarzadeh, A.; Mansournia, M.A. Seroprevalence of SARS-CoV-2 in Guilan Province, Iran, April 2020. Emerg. Infect. Dis. 2021, 27, 636–638. [Google Scholar] [CrossRef]
- Castro Dopico, X.; Muschiol, S.; Grinberg, N.F.; Aleman, S.; Sheward, D.J.; Hanke, L.; Ahl, M.; Vikström, L.; Forsell, M.; Coquet, J.M.; et al. Probabilistic classification of anti-SARS-CoV-2 antibody responses improves seroprevalence estimates. Clin. Transl. Immunol. 2022, 11, e1379. [Google Scholar] [CrossRef]
- Bendavid, E.; Mulaney, B.; Sood, N.; Shah, S.; Bromley-Dulfano, R.; Lai, C.; Weissberg, Z.; Saavedra-Walker, R.; Tedrow, J.; Bogan, A.; et al. COVID-19 antibody seroprevalence in Santa Clara County, California. Int. J. Epidemiol. 2021, 50, 410–419. [Google Scholar] [CrossRef]
- Smits, P.D.; Gratzl, S.; Simonov, M.; Nachimuthu, S.K.; Goodwin Cartwright, B.M.; Wang, M.D.; Baker, C.; Rodriguez, P.; Bogiages, M.; Althouse, B.M.; et al. Risk of COVID-19 breakthrough infection and hospitalization in individuals with comorbidities. Vaccine 2023, 41, 2447–2455. [Google Scholar] [CrossRef]
- Tsampasian, V.; Elghazaly, H.; Chattopadhyay, R.; Debski, M.; Naing, T.K.P.; Garg, P.; Clark, A.; Ntatsaki, E.; Vassiliou, V.S. Risk Factors Associated With Post-COVID-19 Condition: A Systematic Review and Meta-analysis. JAMA Intern. Med. 2023, 183, 566–580. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- He, Y.F.; Ouyang, J.; Hu, X.D.; Wu, N.; Jiang, Z.G.; Bian, N.; Wang, J. Correlation between COVID-19 vaccination and diabetes mellitus: A systematic review. World J. Diabetes 2023, 14, 892–918. [Google Scholar] [CrossRef]
- Rahmadani, I.D.; Irawati, S.; Wibowo, Y.I.; Setiadi, A.P. Potential drug-drug interactions and their associated factors in hospitalized COVID-19 patients with comorbidities. PeerJ 2023, 11, e15072. [Google Scholar] [CrossRef] [PubMed]
- Beninger, P. Drug-drug Interactions: An Overlooked Dimension of the COVID-19 Pandemic. Clin. Ther. 2023, 45, 387–388. [Google Scholar] [CrossRef]
- Bayram, A.; Demirbakan, H.; Günel Karadeniz, P.; Erdoğan, M.; Koçer, I. Quantitation of antibodies against SARS-CoV-2 spike protein after two doses of CoronaVac in healthcare workers. J. Med. Virol. 2021, 93, 5560–5567. [Google Scholar] [CrossRef]
- Fonseca, M.H.G.; de Souza, T.F.G.; de Carvalho Araújo, F.M.; de Andrade, L.O.M. Dynamics of antibody response to CoronaVac vaccine. J. Med. Virol. 2022, 94, 2139–2148. [Google Scholar] [CrossRef]
- Fujigaki, H.; Yamamoto, Y.; Koseki, T.; Banno, S.; Ando, T.; Ito, H.; Fujita, T.; Naruse, H.; Hata, T.; Moriyama, S.; et al. Antibody Responses to BNT162b2 Vaccination in Japan: Monitoring Vaccine Efficacy by Measuring IgG Antibodies against the Receptor-Binding Domain of SARS-CoV-2. Microbiol. Spectr. 2022, 10, e0118121. [Google Scholar] [CrossRef]
- Mishra, S.K.; Pradhan, S.K.; Pati, S.; Sahu, S.; Nanda, R.K. Waning of Anti-spike Antibodies in AZD1222 (ChAdOx1) Vaccinated Healthcare Providers: A Prospective Longitudinal Study. Cureus 2021, 13, e19879. [Google Scholar] [CrossRef] [PubMed]
- Klein, S.L.; Marriott, I.; Fish, E.N. Sex-based differences in immune function and responses to vaccination. Trans. R. Soc. Trop. Med. Hyg. 2015, 109, 9–15. [Google Scholar] [CrossRef]
- Mukherjee, S.; Pahan, K. Is COVID-19 Gender-sensitive? J. Neuroimmune Pharmacol. 2021, 16, 38–47. [Google Scholar] [CrossRef]
- Ruggieri, A.; Anticoli, S.; D’Ambrosio, A.; Giordani, L.; Viora, M. The influence of sex and gender on immunity, infection and vaccination. Ann. Ist. Super. Sanita. 2016, 52, 198–204. [Google Scholar] [CrossRef]
- Khoury, J.; Najjar-Debbiny, R.; Hanna, A.; Jabbour, A.; Abu Ahmad, Y.; Saffuri, A.; Abu-Sinni, M.; Shkeiri, R.; Elemy, A.; Hakim, F. COVID-19 vaccine—Long term immune decline and breakthrough infections. Vaccine 2021, 39, 6984–6989. [Google Scholar] [CrossRef]
- WHO. (BMI). Available online: https://www.who.int/tools/growth-reference-data-for-5to19-years/indicators/bmi-for-age (accessed on 5 January 2025).
- Milner, J.J.; Beck, M.A. The impact of obesity on the immune response to infection. Proc. Nutr. Soc. 2012, 71, 298–306. [Google Scholar] [CrossRef]
- Manna, P.; Jain, S.K. Obesity, Oxidative Stress, Adipose Tissue Dysfunction, and the Associated Health Risks: Causes and Therapeutic Strategies. Metab. Syndr. Relat. Disord. 2015, 13, 423–444. [Google Scholar] [CrossRef] [PubMed]
- Green, W.D.; Beck, M.A. Obesity Impairs the Adaptive Immune Response to Influenza Virus. Ann. Am. Thorac. Soc. 2017, 14 (Suppl. S5), S406–S409. [Google Scholar] [CrossRef]
- Accorsi, E.K.; Britton, A.; Fleming-Dutra, K.E.; Smith, Z.R.; Shang, N.; Derado, G.; Miller, J.; Schrag, S.J.; Verani, J.R. Association Between 3 Doses of mRNA COVID-19 Vaccine and Symptomatic Infection Caused by the SARS-CoV-2 Omicron and Delta Variants. JAMA 2022, 327, 639–651. [Google Scholar] [CrossRef]
- Nasr, M.C.; Geerling, E.; Pinto, A.K. Impact of Obesity on Vaccination to SARS-CoV-2. Front. Endocrinol. 2022, 13, 898810. [Google Scholar] [CrossRef]
- Luo, W.; Song, S. Perceived Benefits and Barriers to Chinese COVID-19 Vaccine Uptake Among Young Adults in China. Front. Public Health 2022, 10, 825874. [Google Scholar] [CrossRef]
- Abdelhafiz, A.S.; Ali, A.; Kamel, M.M.; Ahmed, E.H.; Sayed, D.M.; Bakry, R.M. Sinopharm’s BBIBP-CorV Vaccine and ChAdOx1 nCoV-19 Vaccine Are Associated with a Comparable Immune Response against SARS-CoV-2. Vaccines 2022, 10, 1462. [Google Scholar] [CrossRef] [PubMed]
- WHO (EMRO). News: Media Center. Available online: http://www.emro.who.int/media/news/glimmer-of-hope-covid-19-vaccines-roll-out-in-countries-of-the-eastern-mediterranean-region.html (accessed on 5 January 2025).
- France 24. Egypt Plans to Make 1 Billion Sinovac Vaccines a Year. Available online: https://www.france24.com/en/live-news/20210901-egypt-plans-to-make-1-billion-sinovac-vaccines-a-year (accessed on 5 January 2025).
- Boshra, M.S.; Hussein, R.R.S.; Mohsen, M.; Elberry, A.A.; Altyar, A.E.; Tammam, M.; Sarhan, R.M. A Battle against COVID-19: Vaccine Hesitancy and Awareness with a Comparative Study between Sinopharm and AstraZeneca. Vaccines 2022, 10, 292. [Google Scholar] [CrossRef] [PubMed]
- Boshra, M.S.; Elgendy, M.O.; Abdelaty, L.N.; Tammam, M.; Alanazi, A.S.; Alzarea, A.I.; Alsahali, S.; Sarhan, R.M. Knowledge, Attitude, and Acceptance of Sinopharm and AstraZeneca’s COVID-19 Vaccines among Egyptian Population: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2022, 19, 16803. [Google Scholar] [CrossRef]
- Shields, A.M.; Faustini, S.E.; Kristunas, C.A.; Cook, A.M.; Backhouse, C.; Dunbar, L.; Ebanks, D.; Emmanuel, B.; Crouch, E.; Kröger, A.; et al. COVID-19: Seroprevalence and Vaccine Responses in UK Dental Care Professionals. J. Dent. Res. 2021, 100, 1220–1227. [Google Scholar] [CrossRef]
- Karachaliou, M.; Moncunill, G.; Espinosa, A.; Castaño-Vinyals, G.; Rubio, R.; Vidal, M.; Jiménez, A.; Prados, E.; Carreras, A.; Cortés, B.; et al. SARS-CoV-2 infection, vaccination, and antibody response trajectories in adults: A cohort study in Catalonia. BMC Med. 2022, 20, 347. [Google Scholar] [CrossRef] [PubMed]
- Torres-Estrella, C.U.; Reyes-Montes, M.D.R.; Duarte-Escalante, E.; Sierra Martínez, M.; Frías-De-León, M.G.; Acosta-Altamirano, G. Vaccines Against COVID-19: A Review. Vaccines 2022, 10, 414. [Google Scholar] [CrossRef] [PubMed]
- Tejedor Vaquero, S.; de Campos-Mata, L.; Ramada, J.M.; Díaz, P.; Navarro-Barriuso, J.; Ribas-Llaurado, C.; Rodrigo Melero, N.; Carolis, C.; Cerutti, A.; Gimeno, R.; et al. The mRNA-1273 Vaccine Induces Cross-Variant Antibody Responses to SARS-CoV-2 With Distinct Profiles in Individuals With or Without Pre-Existing Immunity. Front. Immunol. 2021, 12, 737083. [Google Scholar] [CrossRef]
- Yan, X.; Han, X.; Fan, Y.; Fang, Z.; Long, D.; Zhu, Y. Duration of SARS-CoV-2 viral RNA in asymptomatic carriers. Crit. Care 2020, 24, 245. [Google Scholar] [CrossRef] [PubMed]
- Murata, T.; Sakurai, A.; Suzuki, M.; Komoto, S.; Ide, T.; Ishihara, T.; Doi, Y. Shedding of Viable Virus in Asymptomatic SARS-CoV-2 Carriers. mSphere 2021, 6, e00019-21. [Google Scholar] [CrossRef]
- van Zyl-Smit, R.N.; Richards, G.; Leone, F.T. Tobacco smoking and COVID-19 infection. Lancet Respir. Med. 2020, 8, 664–665. [Google Scholar] [CrossRef]
- Padmavathi, V.; Alagesan, K.; Noeiaghdam, S.; Fernandez-Gamiz, U.; Angayarkanni, M.; Govindan, V. Tobacco smoking model containing snuffing class. Heliyon 2023, 9, e20792. [Google Scholar] [CrossRef]
- He, Y.; He, Y.; Hu, Q.; Yang, S.; Li, J.; Liu, Y.; Hu, J. Association between smoking and COVID-19 severity: A multicentre retrospective observational study. Medicine 2022, 101, e29438. [Google Scholar] [CrossRef]
- Ponticelli, D.; Losa, L.; Campagna, D.; Magliuolo, R.; Vitale, A.; Cacciapuoti, D.; Zampella, A.; Alleanza, L.; Schiavone, B.; Spicuzza, L.; et al. Smoking habits predict adverse effects after mRNA COVID-19 vaccine: Empirical evidence from a pilot study. Public Health 2023, 219, 18–21. [Google Scholar] [CrossRef]
- Al-Mhanna, S.B.; Wan Ghazali, W.S.; Maqsood, A.; Mohamed, M.; Ahmed, N.; Afolabi, H.A.; Mutalub, Y.B.; Heboyan, A.; Zafar, M.S. Physical activities pre- and post-COVID-19 vaccination and its implementations: A narrative review. SAGE Open Med. 2023, 11, 20503121231158981. [Google Scholar] [CrossRef]
- Barni, L.; Carrasco-Vega, E.; Olivieri, M.; Galán-Mercant, A.; Guiducci, S.; Picariello, F.; González-Sánchez, M. Does Physical Exercise Enhance the Immune Response after Vaccination? A Systematic Review for Clinical Indications of COVID-19 Vaccine. Int. J. Environ. Res. Public Health 2023, 20, 5183. [Google Scholar] [CrossRef] [PubMed]
- Pisoschi, A.M.; Pop, A.; Iordache, F.; Stanca, L.; Geicu, O.I.; Bilteanu, L.; Serban, A.I. Antioxidant, anti-inflammatory and immunomodulatory roles of vitamins in COVID-19 therapy. Eur. J. Med. Chem. 2022, 232, 114175. [Google Scholar] [CrossRef] [PubMed]
- Hetta, H.F.; Muhammad, K.; El-Masry, E.A.; Taha, A.E.; Ahmed, E.A.; Phares, C.; Kader, H.A.; Waheed, Y.; Zahran, A.M.; Yahia, R.; et al. The interplay between vitamin D and COVID-19: Protective or bystander? Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 2131–2145. [Google Scholar] [CrossRef] [PubMed]
- Feentved Ødum, S.L.; Kongsbak-Wismann, M. Vitamin D and SARS-CoV-2. Basic Clin. Pharmacol. Toxicol. 2023, 133, 6–15. [Google Scholar] [CrossRef]
- Chauss, D.; Freiwald, T.; McGregor, R.; Yan, B.; Wang, L.; Nova-Lamperti, E.; Kumar, D.; Zhang, Z.; Teague, H.; West, E.E.; et al. Autocrine vitamin D signaling switches off pro-inflammatory programs of TH1 cells. Nat. Immunol. 2022, 23, 62–74. [Google Scholar] [CrossRef]
- Fateh, H.L.; Kareem, G.; Rezaeian, S.; Moludi, J.; Kamari, N. The Effect of Vit-D Supplementation on the Side Effect of BioNTech, Pfizer Vaccination and Immunoglobulin G Response Against SARS-CoV-2 in the Individuals Tested Positive for COVID-19: A Randomized Control Trial. Clin. Nutr. Res. 2023, 12, 269–282. [Google Scholar] [CrossRef]
- Shakoor, H.; Feehan, J.; Mikkelsen, K.; Al Dhaheri, A.S.; Ali, H.I.; Platat, C.; Ismail, L.C.; Stojanovska, L.; Apostolopoulos, V. Be well: A potential role for vitamin B in COVID-19. Maturitas 2021, 144, 108–111. [Google Scholar] [CrossRef]
- Pavlidou, E.; Poulios, E.; Papadopoulou, S.K.; Fasoulas, A.; Dakanalis, A.; Giaginis, C. Clinical Evidence on the Potential Beneficial Effects of Diet and Dietary Supplements against COVID-19 Infection Risk and Symptoms’ Severity. Med. Sci. 2024, 12, 11. [Google Scholar] [CrossRef]
- Romani, A.; Sergi, D.; Zauli, E.; Voltan, R.; Lodi, G.; Vaccarezza, M.; Caruso, L.; Previati, M.; Zauli, G. Nutrients, herbal bioactive derivatives and commensal microbiota as tools to lower the risk of SARS-CoV-2 infection. Front. Nutr. 2023, 10, 1152254. [Google Scholar] [CrossRef]
- Mardi, A.; Kamran, A.; Pourfarzi, F.; Zare, M.; Hajipour, A.; Doaei, S.; Abediasl, N.; Hackett, D. Potential of macronutrients and probiotics to boost immunity in patients with SARS-COV-2: A narrative review. Front. Nutr. 2023, 10, 1161894. [Google Scholar] [CrossRef]
- Srivastava, R.; Singh, N.; Kanda, T.; Yadav, S.; Yadav, S.; Choudhary, P.; Atri, N. Promising role of Vitamin D and plant metabolites against COVID-19: Clinical trials review. Heliyon 2023, 9, e21205. [Google Scholar] [CrossRef] [PubMed]
- Pawar, K.S.; Mastud, R.N.; Pawar, S.K.; Pawar, S.S.; Bhoite, R.R.; Bhoite, R.R.; Kulkarni, M.V.; Deshpande, A.R. Oral Curcumin With Piperine as Adjuvant Therapy for the Treatment of COVID-19: A Randomized Clinical Trial. Front. Pharmacol. 2021, 12, 669362. [Google Scholar] [CrossRef] [PubMed]
- Jaber, B.A.; Qureshi, R.; Abd-Alrazaq, A.; Rahman, M.A.; Househ, M.; Shah, Z.; Alam, T. Clinical Trials on Alternative Medicines for COVID-19. Stud. Health Technol. Inform. 2022, 295, 366–369. [Google Scholar] [CrossRef] [PubMed]
Antibodies Positivity | Total (n = 400) | Non-Vaccinated (n = 200) | Vaccinated (n = 200) | χ2 | p |
---|---|---|---|---|---|
IgG | 225 (56.3%) | 109 (54.5%) | 116 (58.0%) | 0.498 | 0.480 |
IgM | 53 (13.3%) | 22 (11%) | 31 (15.5%) | 1.762 | 0.184 |
IgG only | 196 (49%) | 96 (48%) | 100 (50%) | 0.160 | 0.689 |
IgM only | 24 (6%) | 9 (4.5%) | 15 (7.5%) | 1.596 | 0.207 |
IgG and IgM | 29 (7.3%) | 13 (6.5%) | 16 (8%) | 0.335 | 0.563 |
Antibodies Positivity | Total (n = 400) | Non-Vaccinated (n = 200) | Vaccinated: Type of Vaccine | χ2 | p | ||
---|---|---|---|---|---|---|---|
Pfizer-BioNTech (n = 28) | Oxford-AstraZeneca (n = 51) | Sinopharm/Sinovac-CoronaVac (n = 121) | |||||
IgG | 225 (56.3%) | 109 (54.5%) | 12 (42.9%) | 25 (49.0%) | 79 (65.3%) | 7.391 | 0.060 |
IgM | 53 (13.3%) | 22 (11%) | 5 (17.9%) | 7 (13.7%) | 19 (15.7%) | 2.041 | 0.564 |
IgG only | 196 (49%) | 96 (48%) | 10 (35.7%) | 21 (41.2%) | 69 (57%) | 6.425 | 0.093 |
IgM only | 24 (6%) | 9 (4.5%) | 3 (10.7%) | 3 (5.9%) | 9 (7.4%) | 2.770 | MCp = 0.395 |
IgG and IgM | 29 (7.3%) | 13 (6.5%) | 2 (7.1%) | 4 (7.8%) | 10 (8.3%) | 0.603 | MCp = 0.907 |
Antibodies Positivity | Total (n = 400) | Non-Vaccinated (n = 200) | Vaccinated: Number of Doses | χ2 | p | |
---|---|---|---|---|---|---|
One Dose (n = 8) | Two Doses (n = 192) | |||||
IgG | 225 (56.3%) | 109 (54.5%) | 8 (100%) | 108 (56.3%) | 6.950 * | MCp = 0.029 * |
IgM | 53 (13.3%) | 22 (11%) | 2 (25%) | 29 (15.1%) | 2.416 | 0.299 |
IgG only | 196 (49%) | 96 (48%) | 6 (75%) | 94 (49%) | 2.141 | MCp = 0.365 |
IgM only | 24 (6%) | 9 (4.5%) | 0 (0% | 15 (7.8%) | 2.427 | 0.297 |
IgG and IgM | 29 (7.3%) | 13 (6.5%) | 2 (25%) | 14 (7.3%) | 3.916 | 0.141 |
Total (n = 200) | Anti-SARS-CoV-2 IgM | Test of Sig. | p1 | Anti-SARS-CoV-2 IgG | Test of Sig. | p2 | ||||
---|---|---|---|---|---|---|---|---|---|---|
Negative (n = 169) | Positive (n = 31) | Negative (n = 84) | Positive (n = 116) | |||||||
Gender | Male | 83 (41.5%) | 69 (40.8%) | 14 (45.2%) | χ2 = 0.203 | 0.653 | 38 (45.2%) | 45 (38.8%) | χ2 = 0.834 | 0.361 |
Female | 117 (58.5%) | 100 (59.2%) | 17 (54.7%) | 46 (54.8%) | 71 (61.2%) | |||||
Age (Years) | Mean ± SD. | 18.1 ± 0.3 | 18.1 ± 0.3 | 18.2 ± 0.4 | t = 0.662 | 0.509 | 18.2 ± 0.4 | 18.1 ± 0.3 | t = 2.267 * | 0.025 * |
Median (Min.–Max.) | 18.0 (18.0–19.0) | 18 (18–19) | 18 (18–19) | 18.0 (18.0–19.0) | 18.0 (18.0–19.0) | |||||
BMI (kg/m2) | Mean ± SD. | 25.3 ± 2.8 | 25.4 ± 2.8 | 24.9 ± 2.7 | U = 2152.0 | 0.114 | 25.7 ± 3.3 | 25.1 ± 2.4 | U = 4410.50 | 0.253 |
Median (Min.–Max.) | 25.7 (18.4–35.4) | 25.8 (18.4–35.4) | 24.7 (20.5–35.4) | 25.9 (19.5–35.4) | 25.7 (18.4–31.6) | |||||
IgM | Negative | 169 (84.5%) | 69 (82.1%) | 100 (86.2%) | χ2 = 0.614 | FEp = 0.433 | ||||
Positive | 31 (15.5%) | 15 (17.9%) | 16 (13.8%) | |||||||
IgG | Negative | 84 (42.0%) | 69 (40.8%) | 15 (48.4%) | χ2 = 0.614 | 0.433 | ||||
Positive | 116 (58.0%) | 100 (59.2%) | 16 (51.6%) | |||||||
Q1—Previous COVID-19-like symptoms | No | 92 (46%) | 77 (45.6%) | 15 (48.4%) | χ2 = 0.084 | 0.772 | 62 (73.8%) | 30 (25.9%) | χ2 = 45.091 * | <0.001 * |
Yes | 108 (54%) | 92 (54.4%) | 16 (51.6%) | 22 (26.2%) | 86 (74.1) | |||||
Q1—Previous hospital isolation due to COVID-19-like symptoms (n = 108) | No | 108 (54%) | 92 (54.4%) | 16 (51.6%) | – | – | 22 (26.2%) | 86 (74.1) | – | – |
Yes | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | |||||
Q2—Previous RT-PCR-positive SARS-CoV-2 diagnosis | No | 200 (100%) | 169 (100%) | 31 (100) | – | – | 84 (100%) | 116 (100) | – | – |
Yes | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | |||||
Q3—Previous RT-PCR-negative SARS-CoV-2 test | No | 200 (100%) | 169 (100%) | 31 (100) | – | – | 84 (100%) | 116 (100) | – | – |
Yes | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | |||||
Q4—Contact with a person having a positive SARS-CoV-2-RNA PCR test | No | 167 (83.5%) | 141 (83.4%) | 26 (83.9%) | χ2 = 0.004 | 0.952 | 66 (78.6%) | 101 (87.1%) | χ2 = 2.553 | 0.110 |
Yes | 33 (16.5%) | 28 (16.6%) | 5 (16.1%) | 18 (21.4%) | 15 (12.9%) | |||||
Q5—Contact with a person suffering from COVID-19-like symptoms without RT-PCR testing or with negative RT-PCR results | No | 80 (40%) | 69 (40.8%) | 11 (35.5%) | χ2 = 0.312 | 0.577 | 37 (44%) | 43 (37.1%) | χ2 = 0.989 | 0.320 |
Yes | 120 (60%) | 100 (59.2%) | 20 (64.5%) | 47 (56%) | 73 (62.9%) | |||||
Smoking | No | 188 (94.0%) | 159 (94.1%) | 29 (93.5%) | χ2 = 0.013 | FEp = 1.000 | 76 (90.5%) | 112 (96.6%) | χ2 = 3.189 | 0.074 |
Yes | 12 (6.0%) | 10 (5.9%) | 2 (6.5%) | 8 (9.5%) | 4 (3.4%) | |||||
Physical activity | No | 153 (76.5%) | 132 (78.1%) | 21 (67.7%) | χ2 = 1.565 | 0.211 | 66 (78.6%) | 87 (75.0%) | χ2 = 0.346 | 0.557 |
Yes | 47 (23.5%) | 37 (21.9%) | 10 (32.3%) | 18 (21.4%) | 29 (25.0%) | |||||
Vitamin supplements | No | 145 (72.5%) | 125 (74.0%) | 20 (64.5%) | χ2 = 1.173 | 0.279 | 66 (78.6%) | 79 (68.1%) | χ2 = 2.678 | 0.102 |
Yes | 55 (27.5%) | 44 (26.0%) | 11 (35.5%) | 18 (21.4%) | 37 (31.9%) | |||||
Healthy diet | No | 118 (59.0%) | 102 (60.4%) | 16 (51.6%) | χ2 = 0.828 | 0.363 | 55 (65.5%) | 63 (54.3%) | χ2 = 2.511 | 0.113 |
Yes | 82 (41.0%) | 67 (39.6%) | 15 (48.4%) | 29 (34.5%) | 53 (45.7%) | |||||
Herbal supplements | No | 184 (92.0%) | 155 (91.7%) | 29 (93.5%) | χ2 = 0.120 | 1.000 | 77 (91.7%) | 107 (92.2%) | χ2 = 0.022 | 0.882 |
Yes | 16 (8.0%) | 14 (8.3%) | 2 (6.5%) | 7 (8.3%) | 9 (7.8%) |
Total (n = 200) | Anti-SARS-CoV-2 IgM | Test of Sig. | p1 | Anti-SARS-CoV-2 IgG | Test of Sig. | p2 | ||||
---|---|---|---|---|---|---|---|---|---|---|
Negative (n = 178) | Positive (n = 22) | Negative (n = 91) | Positive (n = 109) | |||||||
Gender | Male | 90 (45.0) | 76 (42.7%) | 14 (63.6%) | χ2 = 3.469 | 0.063 | 43 (47.3%) | 47 (43.1%) | χ2 = 0.342 | 0.558 |
Female | 110 (55.0) | 102 (57.3%) | 8 (36.4%) | 48 (52.7%) | 62 (56.9%) | |||||
Age (Years) | Mean ± SD. | 18.2 ± 0.4 | 18.15 ± 0.35 | 18.2 ± 0.4 | t = 0.441 | 0.660 | 18.2 ± 0.4 | 18.1 ± 0.3 | t = 1.697 | 0.091 |
Median (Min.–Max.) | 18.0 (18.0–19.0) | 18.0 (18.0–19.0) | 18.0 (18.0–19.0) | 18.0 (18.0–19.0) | 18.0 (18.0–19.0) | |||||
BMI (kg/m2) | Mean ± SD. | 25.35 ± 2.58 | 25.3 ± 2.7 | 25.6 ± 1.9 | U = 1855.50 | 0.689 | 25.5 ± 2.7 | 25.2 ± 2.5 | U = 4618.000 | 0.402 |
Median (Min.–Max.) | 25.7 (18.4–35.4) | 25.7 (18.4–35.4) | 25.6 (21.8–29.4) | 25.8 (19.5–35.4) | 25.7 (18.4–35.4) | |||||
IgM | Negative | 178 (89.0) | 82 (90.1%) | 96 (88.1%) | χ2 = 0.210 | 0.647 | ||||
Positive | 22 (11.0) | 9 (9.9%) | 13 (11.9%) | |||||||
IgG | Negative | 91 (45.5) | 82 (46.1%) | 9 (40.9%) | χ2 = 0.210 | 0.647 | ||||
Positive | 109 (54.5) | 96 (53.9%) | 13 (59.1%) | |||||||
Q1—Previous COVID-19-like symptoms | No | 76 (38%) | 69 (38.8%) | 7 (31.8%) | χ2 = 0.401 | 0.527 | 50 (54.9%) | 26 (23.9%) | χ2 = 20.350 * | <0.001 * |
Yes | 124 (62%) | 109 (61.2%) | 15 (68.2%) | 41 (45.1%) | 83 (76.1%) | |||||
Q1—Previous hospital isolation due to COVID-19-like symptoms (n = 124) | No | 124 (62%) | 109 (61.2%) | 15 (68.2%) | – | – | 41 (45.1%) | 83 (76.1%) | – | – |
Yes | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | |||||
Q2—Previous RT-PCR-positive SARS-CoV-2 diagnosis | No | 200 (100%) | 178 (100%) | 22 (100%) | – | – | 91 (100%) | 109 (100%) | – | – |
Yes | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | |||||
Q3—Previous RT-PCR-negative SARS-CoV-2 test | No | 200 (100%) | 178 (100%) | 22 (100%) | – | – | 91 (100%) | 109 (100%) | – | – |
Yes | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | |||||
Q4—Contact with a person having a positive SARS-CoV-2-RNA PCR test | No | 148 (74%) | 135 (75.8%) | 13 (59.1%) | χ2 = 2.856 | 0.091 | 63 (69.2%) | 85 (78%) | χ2 = 1.974 | 0.160 |
Yes | 52 (26%) | 43 (24.2%) | 9 (40.9%) | 28 (30.8%) | 24 (22%) | |||||
Q5—Contact with a person suffering from COVID-19-like symptoms without RT-PCR test or with negative RT-PCR results | No | 70 (35%) | 64 (36%) | 6 (27.3%) | χ2 = 0.649 | 0.421 | 33 (36.3%) | 37 (33.9%) | χ2 = 0.117 | 0.732 |
Yes | 130 (65%) | 114 (64%) | 16 (72.7%) | 58 (63.7%) | 72 (66.1%) | |||||
Smoking | No | 193 (96.5%) | 171 (96.1%) | 22 (100.0%) | χ2 = 0.897 | FEp = 1.000 | 87 (95.6%) | 106 (97.2%) | χ2 = 0.397 | FEp = 0.704 |
Yes | 7 (3.5%) | 7 (3.9%) | 0 (0.0%) | 4 (4.4%) | 3 (2.8%) | |||||
Physical activity | No | 75 (37.5%) | 67 (37.6%) | 8 (36.4%) | χ2 = 0.014 | 0.907 | 32 (35.2%) | 43 (39.4%) | χ2 = 0.388 | 0.533 |
Yes | 125 (62.5%) | 111 (62.4%) | 14 (63.6%) | 59 (64.8%) | 66 (60.6%) | |||||
Vitamin supplements | No | 71 (35.5%) | 67 (37.6%) | 4 (18.2%) | χ2 = 3.238 | 0.072 | 32 (35.2%) | 39 (35.8%) | χ2 = 0.008 | 0.928 |
Yes | 129 (64.5%) | 111 (62.4%) | 18 (81.8%) | 59 (64.8%) | 70 (64.2%) | |||||
Healthy diet | No | 97 (48.5%) | 85 (47.8%) | 12 (54.5%) | χ2 = 0.362 | 0.548 | 45 (49.5%) | 52 (47.7%) | χ2 = 0.060 | 0.806 |
Yes | 103 (51.5%) | 93 (52.2%) | 10 (45.5%) | 46 (50.5%) | 57 (52.3%) | |||||
Herbal supplements | No | 169 (84.5%) | 148 (83.1%) | 21 (95.5%) | χ2 = 2.265 | FEp = 0.210 | 67 (73.6%) | 102 (93.6%) | χ2 = 15.073 * | <0.001 * |
Yes | 31 (15.5%) | 30 (16.9%) | 1 (4.5%) | 24 (26.4%) | 7 (6.4%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taha, A.E.; Amer, I.; Sharawy, S.E.; Ghazy, A.A. Estimation of Anti-SARS-CoV-2 IgM/IgG Seroprevalence Among Non-Vaccinated and Vaccinated University Students: A Cross-Sectional Egyptian Study. Viruses 2025, 17, 378. https://doi.org/10.3390/v17030378
Taha AE, Amer I, Sharawy SE, Ghazy AA. Estimation of Anti-SARS-CoV-2 IgM/IgG Seroprevalence Among Non-Vaccinated and Vaccinated University Students: A Cross-Sectional Egyptian Study. Viruses. 2025; 17(3):378. https://doi.org/10.3390/v17030378
Chicago/Turabian StyleTaha, Ahmed E., Ibrahim Amer, Shimaa El Sharawy, and Amany A. Ghazy. 2025. "Estimation of Anti-SARS-CoV-2 IgM/IgG Seroprevalence Among Non-Vaccinated and Vaccinated University Students: A Cross-Sectional Egyptian Study" Viruses 17, no. 3: 378. https://doi.org/10.3390/v17030378
APA StyleTaha, A. E., Amer, I., Sharawy, S. E., & Ghazy, A. A. (2025). Estimation of Anti-SARS-CoV-2 IgM/IgG Seroprevalence Among Non-Vaccinated and Vaccinated University Students: A Cross-Sectional Egyptian Study. Viruses, 17(3), 378. https://doi.org/10.3390/v17030378