Vegetation Composition and Environmental Relationships of Two Amaranthus Species Communities in Variant Agroecosystems at Fayoum Depression, Egypt
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Measurements
2.2.1. Vegetation Analysis
RC: Relative cover
2.2.2. Sampling and Physiochemical Analysis of Soil
2.3. Data Analysis
2.3.1. Community Classification and Clustering
2.3.2. Ordination and Environmental Fitting
2.3.3. Indicator Species Analysis
2.3.4. Multivariate Regression Tree (MRT)
3. Results
3.1. Floristic Composition of the Study Area
3.2. Biological Spectrum of Species
3.3. Phytogeographical Affinities
3.4. Indicator Species
3.5. Multivariate Regression Tree
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Radicetti, E.; Mancinelli, R. Sustainable weed control in the agro-ecosystems. Sustainability 2021, 13, 8639. [Google Scholar] [CrossRef]
- de Campos, M.L.; Lacerda, M.L.; Aspiazú, I.; de Carvalho, A.J.; Silva, R.F. Períodos de interferência de plantas daninhas na cultura do feijão-caupi. Rev. Caatinga 2023, 36, 1–8. [Google Scholar]
- Blanco, Y. El Rol De Las Arvenses Como Componente En La Biodiversidad De Los Agroecosistemas. Cul. Trop. 2016, 37, 34–56. [Google Scholar] [CrossRef]
- Singh, A.; Balech, R.; Barpete, S.; Gupta, P.; Bouhlal, O.; Tawkaz, S.; Kaul, S.; Tripathi, K.; Amri, A.; Maalouf, F.; et al. Wild Lathyrus—A Treasure of Novel Diversity. Plants 2024, 13, 3028. [Google Scholar] [CrossRef]
- FAO. Standard Operating Procedure for Soil Organic Carbon Walkley-Black Method; Food and Agriculture Organization of United Nations: Rome, Italy, 2019; Volume 1, pp. 1–27. [Google Scholar]
- Çakmakçı, R.; Salık, M.A.; Çakmakçı, S. Assessment and principles of environmentally sustainable food and agriculture systems. Agriculture 2023, 13, 1073. [Google Scholar] [CrossRef]
- McCormick, S.; Aldous, A.; Yarbrough, L. Climate action in the United States. PL. Clim. 2023, 2, e0000175. [Google Scholar] [CrossRef]
- Vincent, L.; Sivaraj, N.; Anushma, P.; Ganeshan, S.; Rajasekharan, P.E. Diversity, distribution, collection and conservation of amaranth germplasm from Andhra Pradesh. Acta Hortic. 2019, 1241, 99–104. [Google Scholar] [CrossRef]
- Jamalluddin, N.; Symonds, R.C.; Mayes, S.; Ho, W.K.; Massawe, F. Diversifying crops for food and nutrition security: A case of vegetable amaranth, an ancient climate-smart crop. In Food Security and Nutrition; Elsevier: Amsterdam, The Netherlands, 2021; Chapter 6. [Google Scholar]
- Al-Sherif, E.A.; Ismael, M.A.; Karam, M.A.; ElFayoumi, H.H. Weed flora of fayoum (Egypt), one of the oldest agricultural regions in the world. Planta Daninha 2018, 28, 36. [Google Scholar] [CrossRef]
- Barich, B.E. Rethinking the North African Neolithic—The multifaceted aspects of a long-lasting revolution. Neolit. Mediterr. Basin Transit. Food-Prod. Econ. N. Af. S. Eur. Levant 2021, 19, 43. [Google Scholar]
- Sanon, A.; Béguiristain, T.; Cébron, A.; Berthelin, J.; Ndoye, I.; Leyval, C.; Sylla, S.; Duponnois, R. Changes in soil diversity and global activities following invasions of the exotic invasive plant, Amaranthus viridis L., decrease the growth of native sahelian Acacia species. FEMS Microbiol. Ecol. 2009, 70, 118–131. [Google Scholar] [CrossRef]
- Nemadodzi, L.E.; Managa, G.M.; Prinsloo, G. The use of Gonimbrasia belina (Westwood, 1849) and Cirina forda (Westwood, 1849) caterpillars (lepidoptera: Sarturniidae) as food sources and income generators in Africa. Foods 2023, 12, 2184. [Google Scholar] [CrossRef]
- Fouad, M.S.; Ghareeb, M.A.; Hamed, A.A.; Aidy, E.A.; Tabudravu, J.; Sayed, A.M.; Mwaheb, M.A. Exploring the antioxidant, anticancer and antimicrobial potential of Amaranthus viridis L. collected from Fayoum depression: Phytochemical, and biological aspects. S. Afr. J. Bot. 2024, 166, 297–310. [Google Scholar] [CrossRef]
- Abd El-Ghani, M.M.; Hamdy, R.S.; Hamed, A.B. Habitat diversity and floristic analysis of Wadi El-Natrun Depression, Western Desert, Egypt. Phyto. Balca. 2015, 21, 3. [Google Scholar]
- Effat, H.A.; El-Zeiny, A. Modeling potential zones for solar energy in Fayoum, Egypt, using satellite and spatial data. Model. Earth Syst. Environ. 2017, 3, 1529–1542. [Google Scholar] [CrossRef]
- Ismail, M.H.; Zaki, P.H.; Fuad, M.F.A.; Jemali, N.J.N. Analysis of importance value index of unlogged and logged peat swamp forest in Nenasi Forest Reserve, Peninsular Malaysia. Int. J. Bonorowo Wetl. 2017, 7, 74–78. [Google Scholar] [CrossRef]
- Stanford, J.A.; Ward, J.V.; Liss, W.J.; Frissell, C.A.; Williams, R.N.; Lichatowich, J.A.; Coutant, C.C. A general protocol for restoration of regulated rivers. Regul. Rivers Res. Manag. 1996, 12, 391–413. [Google Scholar] [CrossRef]
- Friedman, J.M.; Scott, M.L.; Auble, G.T. Water Management and Cottonwood Forest Dynamics Along Prairie Streams. In Ecology and Conservation of Great Plains Vertebrates; Springer: Berlin/Heidelberg, Germany, 1997; pp. 49–71. [Google Scholar]
- Patten, D.T. Riparian ecosytems of semi-arid North America: Diversity and human impacts. Wetlands 1998, 18, 498–512. [Google Scholar] [CrossRef]
- Nilsson, C.; Berggren, K. Alterations of riparian ecosystems caused by river regulation. BioScience 2000, 50, 783–792. [Google Scholar] [CrossRef]
- POWO Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. 2021. Available online: http://powo.science.kew.org/ (accessed on 27 September 2021).
- Raunkiaer, C. The Life Forms of Plants and Statistical Plant Geography: Being the Collected Papers of C. Raunkiaer; Clarendon Press: Oxford, UK, 1934. [Google Scholar]
- Zohary, M. Flora Palaestina: Platanaceae to Umbelliferae; Israel Academy of Sciences and Humanities: Jerusalem, Israel, 1972; Volume 2, p. 489. [Google Scholar]
- Orhan, U.; Kılınç, E. Estimating soil texture with laser-guided Bouyoucos. Automatika 2020, 61, 1–10. [Google Scholar] [CrossRef]
- Scrimgeour, C. Soil Sampling and Methods of Analysis, 2nd ed.; Carter, M.R., Gregorich, E.G., Eds.; CRC Press: Boca Raton, FL, USA, 2008; p. 1224. ISBN -13: 978-0-8593-3586-0. [Google Scholar] [CrossRef]
- Stoltz, E.; Greger, M. Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings. Environ. Exp. Bot. 2002, 47, 271–280. [Google Scholar] [CrossRef]
- Sherrod, L.A.; Dunn, G.; Peterson, G.A.; Kolberg, R.L.; Sherrod, L.A.; Dunn, G.; Peterson, G.A.; Kolberg, R.L. Inorganic carbon analysis by modified pressure-calcimeter method. Soil Sci. Soc. Am. J. 2002, 66, 299–305. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Oksanen, J. Vegan: An Introduction to Ordination. 2015. Available online: http://cran.r-project.org/web/packages/vegan/vignettes (accessed on 31 August 2019).
- Kruskal, J.B. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 1964, 29, 1–27. [Google Scholar] [CrossRef]
- Dufrêne, M.; Legendre, P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr. 1997, 67, 345–366. [Google Scholar] [CrossRef]
- De Cáceres, M.; Legendre, P.; Moretti, M. Improving indicator species analysis by combining groups of sites. Oikos 2010, 119, 1674–1684. [Google Scholar] [CrossRef]
- Kassas, M. Ecological consequences of water development project, Keynote paper. In The Environmental Future 7; Polunin, N., Ed.; Macmillan: London, UK, 1972; pp. 215–246. [Google Scholar]
- Linder, H.P.; Lehmann, C.E.R.; Archibald, S.; Osborne, C.P.; Richardson, D.M. Global grass (Poaceae) success underpinned by traits facilitating colonization, persistence and habitat transformation. Biol. Rev. 2018, 93, 1125–1144. [Google Scholar] [CrossRef] [PubMed]
- Boulos, L.; Fahmy, G. Grasses in ancient Egypt. Kew Bull. 2007, 62, 507–511. [Google Scholar]
- Abd El-Ghani, M.M. Weed plant communities of orchards in Siwa Oasis. Feddes Repert. 1994, 105, 387–398. [Google Scholar] [CrossRef]
- Shaheen, A.M. Weed diversity of newly farmed lands on the southern border of Egypt (eastern and western shores of Lake Nasser). Pak. J. Biol. Sci. 2002, 5, 602–608. [Google Scholar] [CrossRef]
- Shaltout, K.H.; Sharaf El-Din, A. Habitat types and plant communities along transect in the Nile Delta region. Fed. Rep. 1988, 99, 159–162. [Google Scholar]
- Abd El-Ghani, M.M.; Soliman, A.; Hamdy, R.; Bennoba, E.E. Weed flora in the new reclaimed lands along the northern sector of the Nile Valley in Egypt. Turk. J. Bot. 2013, 37, 464–488. [Google Scholar]
- Doucet, C.; Weaver, S.E.; Hamill, A.S.; Zhang, J. Separating the effects of crop rotation from weed management on weed density and diversity. Weed Sci. 1999, 47, 729–735. [Google Scholar] [CrossRef]
- Khan, A.M.; Li, Q.; Saqib, Z.; Khan, N.; Habib, T.; Khalid, N.; Majeed, M.; Tariq, A. MaxEnt modelling and impact of climate change on habitat suitability variations of economically important Chilgoza Pine (Pinus gerardiana Wall.) in South Asia. Forests 2022, 13, 715. [Google Scholar] [CrossRef]
- Tassadduq, S.S.; Akhtar, S.; Waheed, M.; Bangash, N.; Nayab, D.E.; Majeed, M.; Abbasi, S.; Muhammad, M.; Alataway, A.; Dewidar, A.Z.; et al. Ecological distribution patterns of wild grasses and abiotic factors. Sustainability 2002, 14, 11117. [Google Scholar] [CrossRef]
- Khedr, A.H.H.; Cadotte, M.W.; El-Keblawy, A.; Lovett-Doust, J. Phylogenetic diversity and ecological features in the Egyptian flora. Biodivers. Conserv. 2002, 11, 1809–1824. [Google Scholar] [CrossRef]
- Brown, P.H.; Welch, R.M.; Cary, E.E. Nickel: A micronutrient essential for higher plants. Plant Physiol. 1987, 85, 801–803. [Google Scholar] [CrossRef]
- Rabinovich, A.; Di, R.; Lindert, S.; Heckman, J. Nickel and Soil Fertility: Review of Benefits to Environment and Food Security. Environments 2024, 11, 177. [Google Scholar] [CrossRef]
- Abdel-Fattah, M.K.; Mohamed, E.S.; Wagdi, E.M.; Shahin, S.A.; Aldosari, A.A.; Lasaponara, R.; Alnaimy, M.A. Quantitative evaluation of soil quality using principal component analysis: The case study of El-Fayoum depression Egypt. Sustainability 2021, 13, 1824. [Google Scholar] [CrossRef]
- Sharaf-El-Din, A.; Shaltout, K.H. On the phytosociology of Wadi Araba in the Eastern Desert of Egypt. In Proceedings of the 4th Egyptian Conference of Botany, Ismaileyah, Egypt, 16–19 April 1985; pp. 1311–1325. [Google Scholar]
- Dasti, A.; Agnew, A.D.Q. The vegetation of Cholistan and Thai deserts, Pakistan. J. Arid. Environ. 1994, 27, 193–208. [Google Scholar] [CrossRef]
- Abd El-Ghani, M.M.; Fawzy, A.M. Plant diversity around springs and wells in five oases of the Western Desert, Egypt. Inter. J. Agri. Biol. 2006, 8, 249–255. [Google Scholar]
- El Hadidi, M.N. Natural Vegetation. In The Agriculture of Egypt; Craig, G.N., Ed.; Oxford University Press: Oxford, UK, 1993; pp. 39–62. [Google Scholar]
- Sheded, M.G.; Hamed, S.T.; Badry, M.O. Vegetation analysis of six riverian islands in hyper-arid environments at Qena Gover norate (Upper Egypt). Acta Bot. Hung. 2014, 56, 409–431. [Google Scholar] [CrossRef]
- Boulos, L. Flora of Egypt Checklist—Revised Annotated Edition; Al Hadara Publishing: Cairo, Egypt, 2009; p. 410. [Google Scholar]
Family | Plant Species | Life Span | Life Form | Chorotype | Habit | Abbreviation |
---|---|---|---|---|---|---|
Aizoaceae | Trianthema portulacastrum L. | Annual | Th | PAN | Herb | Tri por |
Amaranthaceae | Amaranthus hybridus L. | Annual | Th | PAN | Herb | Ama hyb |
Amaranthus viridis L. | Annual | Th | COS | Herb | Ama vir | |
Anacardiaceae | Mangifera indica L. | Perennial | Ph | PAN | Tree | Man ind |
Schinus terebinthifolia Raddi | Perennial | Ph | PAN | Tree | Sch ter | |
Asteraceae | Artemisia herba-alba Asso | Perennial | Ch | IT | Shrub | Art her |
Helianthus annus L. | Annual | Th | ME + IT | Shrub | Hel ann | |
Pluchea dioscoridis (L.) DC. | Perennial | Ph | SA + SZ | Shrub | Plu dio | |
Xanthium strumarium L. | Annual | Th | NEO | Herb | Xan str | |
Arecaceae | Phoenix dactylifera L. | Perennial | Pha | SA + IT | Tree | Pho dac |
Brassicaceae | Lepidium coronopus (L.) Al-Shehbaz | Annual | Th | ME + IT + ES | Herb | Lep cor |
Chenopodiaceae | Chenopodiastrum murale (L.) S.Fuentes, Uotila & Borsch | Annual | Th | COS | Herb | Che mur |
Convolvulaceae | Convolvulus arvensis L. | Perennial | He | COS | Herb | Con arv |
Cucurbitaceae | Citrullus lanatus (Thunb.) Matsum. & Nakai | Annual | He | PAN | Herb | Cit lan |
Cucumis melo L. | Annual | Th | IT | Herb | Cuc mel | |
Cucumis sativus L. | Annual | Th | IT | Herb | Cuc sat | |
Cucurbita pepo L. | Annual | Th | NEO. | Herb | Cuc pep | |
Cyperaceae | Cyperus rotundus L. | Perennial | Ge | COS | Herb | Cyp rot |
Euphorbiaceae | Euphorbia peplus L. | Annual | Th | ES + IT + ME + SS + SZ | Herb | Eup pep |
Ricinus communis L. | Perennial | Ph | SZ | Shrub | Ric com | |
Fabaceae | Alhagi graecorum Boiss | Perennial | Ch | IT + ME + SA + SZ | Sub-shrub | Alh gra |
Lamiaceae | Mentha piperita L. | Perennial | Ch | EU + CA | Herb | Men pip |
Origanum majorana L. | Perennial | Ch | ME | Sub-shrub | Ori maj | |
Malvacea | Abelmoschus esculentus (L.) Moench | Annual | Th | PAL | Herb | Abe esc |
Gossypium barbadense L. | Annual | Ch | NEO | Shrub | Gos bar | |
Malva parviflora L. | Annual | Th | ME + IT | Herb | Mal par | |
Moraceae | Morus nigra L. | Perennial | Ph | PAN | Tree | Mor nig |
Oleaceae | Olea europaea L. | Perennial | Ph | ME | Tree | Ole eur |
Pedaliaceae | Sesamum indicum L. | Annual | Th | PAL | Herb | Ses ind |
Poaceae | Cymbopogon citratus (DC.) Stapf | Perennial | Th | SA | Herb | Cym cit |
Cynodon dactylon (L.) Pers. | Perennial | Ge | COS | Herb | Cyn dac | |
Dinebra retroflexa (Vahl) Panz | Annual | Th | PAN | Herb | Din ret | |
Diplachne fusca (L.) P.Beauv. ex Roem. & Schult. | Perennial | He | PAN | Herb | Dip fus | |
Echinochloa colonum (L.) Link | Annual | Th | PAL | Herb | Ech col | |
Imperata cylindrica (L.) Raeusch. | Perennial | Ge | ME + IT + SA + SZ | Herb | Imp cyl | |
Paspalum distichum L. | Perennial | Ge | NEO | Herb | Pas dis | |
Phragmites australis (Cav.) Trin. ex Steud. | Perennial | GH | COS | Herb | Phr aus | |
Polypogon monspeliensis (L.) Desf. | Annual | Th | ME + IT + SZ + SA | Herb | Pol mon | |
Sorghum bicolor (L.) Moench | Annual | Th | PAL | Herb | Sor bic | |
Sorghum halepense (L.) Pers. | Perennial | He | PAN | Herb | Sor hal | |
Zea mays L. | Annual | Th | PAN | Herb | Zea may | |
Polygonaceae | Persicaria decipiens (R.Br.) K.L.Wilson | Annual | GH | IT + ME + SS+ SZ | Herb | Per dec |
Portulacaceae | Portulaca oleracea L. | Annual | Th | IT + ME +SA + SZ | Herb | Por ole |
Punicaceae | Punica granatun L. | Perennial | Ph | ME + IT | Tree | Pun gra |
Rhamnaceae | Ziziphus spina-christi (L.) Desf. | Perennial | Ph | IT + ME + SA + SZ | Tree | Ziz spi |
Rosaceae | Pyrus communis L. | Perennial | Ph | ME | Tree | Pyr com |
Rutaceae | Citrus aurantiifolia (Christm.) Swingle | Perennial | Ph | PAL | Tree | Cit aur 1 |
Citrus aurantium L. | Perennial | Ph | PAL | Tree | Cit aur 2 | |
Solanaceae | Capsicum annum L. | Annual | Th | NEO | Herb | Cap ann |
Capsicum frutescens L. | Perennial | Th | PAN | Herb | Cap fru | |
Solanum lycopersicum L. | Annual | Th | NEO | Herb | Sol lyc | |
Solanum melongena L. | Annual | Ph | GC | Herb | Sol mel | |
Solanum nigrum L. | Annual | Th | COS | Herb | Sol nig | |
Tiliaceae | Corchorus olitorius L. | Annual | Th | PAL | Herb | Cor oli |
Verbinaceae | Lantana camara L. | Perennial | Ph | NEO | Sub-shrub | Lan cam |
Vitaceae | Vitis vinifera L. | Perennial | Ph | Hol | Shrub | Vit vin |
District | Indicator Species | Stat. p Value | Significance |
---|---|---|---|
Ibshaway | Gossypium barbadense | 0.99 | 0.001 *** |
Cucumis sativus | 0.707 | 0.037 * | |
Abelmoschus esculentus | 0.679 | 0.024 * | |
Ibshaway + Itsa | Corchorus olitorius | 0.865 | 0.003 ** |
Tameyah | Sorghum bicolor | 0.993 | 0.001 *** |
Fayoum | Sesamum indicum | 0.99 | 0.001 *** |
Itsa + Youssef Al Seddik | Zea mays | 0.963 | 0.001 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fouad, M.S.; Megahed, M.A.; Abo El-Kassem, N.A.; Zahran, H.F.; Abdel-Hafeez, A.-N.A.A. Vegetation Composition and Environmental Relationships of Two Amaranthus Species Communities in Variant Agroecosystems at Fayoum Depression, Egypt. Diversity 2025, 17, 551. https://doi.org/10.3390/d17080551
Fouad MS, Megahed MA, Abo El-Kassem NA, Zahran HF, Abdel-Hafeez A-NAA. Vegetation Composition and Environmental Relationships of Two Amaranthus Species Communities in Variant Agroecosystems at Fayoum Depression, Egypt. Diversity. 2025; 17(8):551. https://doi.org/10.3390/d17080551
Chicago/Turabian StyleFouad, Mai Sayed, Manar A. Megahed, Nabil A. Abo El-Kassem, Hoda F. Zahran, and Abdel-Nasser A. A. Abdel-Hafeez. 2025. "Vegetation Composition and Environmental Relationships of Two Amaranthus Species Communities in Variant Agroecosystems at Fayoum Depression, Egypt" Diversity 17, no. 8: 551. https://doi.org/10.3390/d17080551
APA StyleFouad, M. S., Megahed, M. A., Abo El-Kassem, N. A., Zahran, H. F., & Abdel-Hafeez, A.-N. A. A. (2025). Vegetation Composition and Environmental Relationships of Two Amaranthus Species Communities in Variant Agroecosystems at Fayoum Depression, Egypt. Diversity, 17(8), 551. https://doi.org/10.3390/d17080551