Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (674)

Search Parameters:
Keywords = heavy rainfall events

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6642 KiB  
Article
Flood Impact and Evacuation Behavior in Toyohashi City, Japan: A Case Study of the 2 June 2023 Heavy Rain Event
by Masaya Toyoda, Reo Minami, Ryoto Asakura and Shigeru Kato
Sustainability 2025, 17(15), 6999; https://doi.org/10.3390/su17156999 (registering DOI) - 1 Aug 2025
Abstract
Recent years have seen frequent heavy rainfall events in Japan, often linked to Baiu fronts and typhoons. These events are exacerbated by global warming, leading to an increased frequency and intensity. As floods represent a serious threat to sustainable urban development and community [...] Read more.
Recent years have seen frequent heavy rainfall events in Japan, often linked to Baiu fronts and typhoons. These events are exacerbated by global warming, leading to an increased frequency and intensity. As floods represent a serious threat to sustainable urban development and community resilience, this study contributes to sustainability-focused risk reduction through integrated analysis. This study focuses on the 2 June 2023 heavy rain disaster in Toyohashi City, Japan, which caused extensive damage due to flooding from the Yagyu and Umeda Rivers. Using numerical models, this study accurately reproduces flooding patterns, revealing that high tides amplified the inundation area by 1.5 times at the Yagyu River. A resident questionnaire conducted in collaboration with Toyohashi City identifies key trends in evacuation behavior and disaster information usage. Traditional media such as TV remain dominant, but younger generations leverage electronic devices for disaster updates. These insights emphasize the need for targeted information dissemination and enhanced disaster preparedness strategies, including online materials and flexible training programs. The methods and findings presented in this study can inform local and regional governments in building adaptive disaster management policies, which contribute to a more sustainable society. Full article
Show Figures

Figure 1

17 pages, 4148 KiB  
Article
Disastrous Effects of Hurricane Helene in the Southern Appalachian Mountains Including a Review of Mechanisms Producing Extreme Rainfall
by Jeff Callaghan
Hydrology 2025, 12(8), 201; https://doi.org/10.3390/hydrology12080201 - 31 Jul 2025
Abstract
Hurricane Helene made landfall near Perry (Latitude 30.1 N) in the Big Bend area of Florida with a central pressure of 939 hPa. It moved northwards creating devastating damage and loss of life; however, the greatest damage and number of fatalities occurred well [...] Read more.
Hurricane Helene made landfall near Perry (Latitude 30.1 N) in the Big Bend area of Florida with a central pressure of 939 hPa. It moved northwards creating devastating damage and loss of life; however, the greatest damage and number of fatalities occurred well to the north around the City of Ashville (Latitude 35.6 N) where extreme rainfall fell and some of the strongest wind gusts were reported. This paper describes the change in the hurricane’s structure as it tracked northwards, how it gathered tropical moisture from the Atlantic and a turning wind profile between the 850 hPa and 500 hPa elevations, which led to such extreme rainfall. This turning wind profile is shown to be associated with extreme rainfall and loss of life from drowning and landslides around the globe. The area around Ashville suffered 157 fatalities, which is a considerable proportion of the 250 fatalities so far recorded in the whole United Stares from Helene. This is of extreme concern and should be investigated in detail as the public expect the greatest impact from hurricanes to be confined to coastal areas near the landfall site. It is another example of increased death tolls from tropical cyclones moving inland and generating heavy rainfall. As the global population increases and inland centres become more urbanised, run off from such rainfall events increases, which causes greater devastation. Full article
Show Figures

Figure 1

19 pages, 9218 KiB  
Article
A Hybrid ANN–GWR Model for High-Accuracy Precipitation Estimation
by Ye Zhang, Leizhi Wang, Lingjie Li, Yilan Li, Yintang Wang, Xin Su, Xiting Li, Lulu Wang and Fei Yao
Remote Sens. 2025, 17(15), 2610; https://doi.org/10.3390/rs17152610 - 27 Jul 2025
Viewed by 445
Abstract
Multi-source fusion techniques have emerged as cutting-edge approaches for spatial precipitation estimation, yet they face persistent accuracy limitations, particularly under extreme conditions. Machine learning offers new opportunities to improve the precision of these estimates. To bridge this gap, we propose a hybrid artificial [...] Read more.
Multi-source fusion techniques have emerged as cutting-edge approaches for spatial precipitation estimation, yet they face persistent accuracy limitations, particularly under extreme conditions. Machine learning offers new opportunities to improve the precision of these estimates. To bridge this gap, we propose a hybrid artificial neural network–geographically weighted regression (ANN–GWR) model that synergizes event recognition and quantitative estimation. The ANN module dynamically identifies precipitation events through nonlinear pattern learning, while the GWR module captures location-specific relationships between multi-source data for calibrated rainfall quantification. Validated against 60-year historical data (1960–2020) from China’s Yongding River Basin, the model demonstrates superior performance through multi-criteria evaluation. Key results reveal the following: (1) the ANN-driven event detection achieves 10% higher accuracy than GWR, with a 15% enhancement for heavy precipitation events (>50 mm/day) during summer monsoons; (2) the integrated framework improves overall fusion accuracy by more than 10% compared to conventional GWR. This study advances precipitation estimation by introducing an artificial neural network into the event recognition period. Full article
Show Figures

Figure 1

20 pages, 7363 KiB  
Article
Numerical Simulation Study of Rainfall-Induced Saturated–Unsaturated Landslide Instability and Failure
by Zhuolin Wu, Gang Yang, Wen Li, Xiangling Chen, Fei Liu and Yong Zheng
Water 2025, 17(15), 2229; https://doi.org/10.3390/w17152229 - 26 Jul 2025
Viewed by 333
Abstract
Rainfall infiltration is a key factor affecting the stability of the slope. To study the impact of rainfall on the instability mechanism and stability of slopes, this paper employs numerical simulation to establish a rainfall infiltration slope model and conducts a saturated–unsaturated slope [...] Read more.
Rainfall infiltration is a key factor affecting the stability of the slope. To study the impact of rainfall on the instability mechanism and stability of slopes, this paper employs numerical simulation to establish a rainfall infiltration slope model and conducts a saturated–unsaturated slope flow and solid coupling numerical analysis. By combining the strength reduction method with the calculation of slope stability under rainfall infiltration, the safety factor of the slope is obtained. A comprehensive analysis is conducted from the perspectives of the seepage field, displacement field and other factors to examine the impact of heavy rainfall patterns and rainfall intensities on the instability mechanism and stability of the slope. The results indicate that heavy rainfall causes the transient saturation zone within the landslide body to continuously move upward, forming a continuous sliding surface inside the slope, which may lead to instability and sliding of the soil in the upper part of the slope toe. The heavy rainfall patterns significantly affect the temporal and spatial evolution of pore water pressure, displacement and safety factors of the slope. Pore water pressure and displacement show a positive correlation with the rainfall intensity at various times during heavy rainfall events. The pre-peak rainfall pattern causes the largest decrease in the safety factor of the slope, and the slope failure occurs earlier, which is the most detrimental to the stability of the slope. The rainfall intensity is inversely proportional to the safety factor. As the rainfall intensity increases, the decrease in the slope’s safety factor becomes more significant, and the time required for slope instability is also shortened. The results of this study provide a scientific basis for analyzing rainfall-induced slope instability and failure. Full article
Show Figures

Figure 1

16 pages, 4815 KiB  
Technical Note
Preliminary Analysis of a Novel Spaceborne Pseudo Tripe-Frequency Radar Observations on Cloud and Precipitation: EarthCARE CPR-GPM DPR Coincidence Dataset
by Zhen Li, Shurui Ge, Xiong Hu, Weihua Ai, Jiajia Tang, Junqi Qiao, Shensen Hu, Xianbin Zhao and Haihan Wu
Remote Sens. 2025, 17(15), 2550; https://doi.org/10.3390/rs17152550 - 23 Jul 2025
Viewed by 220
Abstract
By integrating EarthCARE W-band doppler cloud radar observations with GPM Ku/Ka-band dual-frequency precipitation radar data, this study constructs a novel global “pseudo tripe-frequency” radar coincidence dataset comprising 2886 coincidence events (about one-third of the events detected precipitation), aiming to systematically investigating band-dependent responses [...] Read more.
By integrating EarthCARE W-band doppler cloud radar observations with GPM Ku/Ka-band dual-frequency precipitation radar data, this study constructs a novel global “pseudo tripe-frequency” radar coincidence dataset comprising 2886 coincidence events (about one-third of the events detected precipitation), aiming to systematically investigating band-dependent responses to cloud and precipitation structure. Results demonstrate that the W-band is highly sensitive to high-altitude cloud particles and snowfall (reflectivity < 0 dBZ), yet it experiences substantial signal attenuation under heavy precipitation conditions, and with low-altitude reflectivity reductions exceeding 50 dBZ, its probability density distribution is more widespread, with low-altitude peaks increasing first, and then decreasing as precipitation increases. In contrast, the Ku and Ka-band radars maintain relatively stable detection capabilities, with attenuation differences generally within 15 dBZ, but its probability density distribution exhibits multiple peaks. As the precipitation rate increases, the peak value of the dual-frequency ratio (Ka/W) gradually rises from approximately 10 dBZ to 20 dBZ, and can even reach up to 60 dBZ under heavy rainfall conditions. Several cases analyses reveal clear contrasts: In stratiform precipitation regions, W-band radar reflectivity is higher above the melting layer than below, whereas the opposite pattern is observed in the Ku and Ka bands. Doppler velocities exceeding 5 m s−1 and precipitation rates surpassing 30 mm h−1 exhibit strong positive correlations in convection-dominated regimes. Furthermore, the dataset confirms the impact of ice–water cloud phase interactions and terrain-induced precipitation variability, underscoring the complementary strengths of multi-frequency radar observations for capturing diverse precipitation processes. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

21 pages, 3623 KiB  
Article
Stage-Dependent Microphysical Structures of Meiyu Heavy Rainfall in the Yangtze-Huaihe River Valley Revealed by GPM DPR
by Zhongyu Huang, Leilei Kou, Peng Hu, Haiyang Gao, Yanqing Xie and Liguo Zhang
Atmosphere 2025, 16(7), 886; https://doi.org/10.3390/atmos16070886 - 19 Jul 2025
Viewed by 232
Abstract
This study presents a comprehensive analysis of the microphysical structures of Meiyu heavy rainfall (near-surface rainfall intensity > 8 mm/h) across different life stages in the Yangtze-Huaihe River Valley (YHRV). We classified the heavy rainfall events into three life stages of developing, mature, [...] Read more.
This study presents a comprehensive analysis of the microphysical structures of Meiyu heavy rainfall (near-surface rainfall intensity > 8 mm/h) across different life stages in the Yangtze-Huaihe River Valley (YHRV). We classified the heavy rainfall events into three life stages of developing, mature, and dissipating using ERA5 reanalysis and IMERG precipitation estimates, and examined vertical microphysical structures using Dual-frequency Precipitation Radar (DPR) data from the Global Precipitation Measurement (GPM) satellite during the Meiyu period from 2014 to 2023. The results showed that convective heavy rainfall during the mature stage exhibits peak radar reflectivity and surface rainfall rates, with the largest near-surface mass weighted diameter (Dm ≈ 1.8 mm) and the smallest droplet concentration (dBNw ≈ 38). Downdrafts in the dissipating stage preferentially remove large ice particles, whereas sustained moisture influx stabilizes droplet concentrations. Stratiform heavy rainfall, characterized by weak updrafts, displays narrower particle size distributions. During dissipation, particle breakups dominate, reducing Dm while increasing dBNw. The analysis of the relationship between microphysical parameters and rainfall rate revealed that convective heavy rainfall shows synchronized growth of Dm and dBNw during the developing stage, with Dm peaking at about 2.1 mm near 70 mm/h before stabilizing in the mature stage, followed by small-particle dominance in the dissipating stage. In contrast, stratiform rainfall exhibits a “small size, high concentration” regime, where the rainfall rate correlates primarily with increasing dBNw. Additionally, convective heavy rainfall demonstrates about 22% higher precipitation efficiency than stratiform systems, while stratiform rainfall shows a 25% efficiency surge during the dissipation stage compared to other stages. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

21 pages, 8601 KiB  
Article
Impact of Cloud Microphysics Initialization Using Satellite and Radar Data on CMA-MESO Forecasts
by Lijuan Zhu, Yuan Jiang, Jiandong Gong and Dan Wang
Remote Sens. 2025, 17(14), 2507; https://doi.org/10.3390/rs17142507 - 18 Jul 2025
Viewed by 254
Abstract
High-resolution numerical weather prediction requires accurate cloud microphysical initial conditions to enhance forecasting capabilities for high-impact severe weather events such as convective storms. This study integrated Fengyun-2 (FY-2) geostationary satellite data (equivalent blackbody temperature and total cloud cover) and next-generation 3D weather radar [...] Read more.
High-resolution numerical weather prediction requires accurate cloud microphysical initial conditions to enhance forecasting capabilities for high-impact severe weather events such as convective storms. This study integrated Fengyun-2 (FY-2) geostationary satellite data (equivalent blackbody temperature and total cloud cover) and next-generation 3D weather radar reflectivity from the China Meteorological Administration (CMA) to construct cloud microphysical initial fields and evaluate their impact on the CMA-MESO 3 km regional model. An analysis of the catastrophic rainfall event in Henan on 20 July 2021, and a 92-day continuous experiment (May–July 2024) revealed that assimilating cloud microphysical variables significantly improved precipitation forecasting: the equitable threat scores (ETSs) for 1 h forecasts of light, moderate, and heavy rain increased from 0.083, 0.043, and 0.007 to 0.41, 0.36, and 0.217, respectively, with average hourly ETS improvements of 21–71% for 2–6 h forecasts and increases in ETSs for light, moderate, and heavy rain of 7.5%, 9.8%, and 24.9% at 7–12 h, with limited improvement beyond 12 h. Furthermore, the root mean square error (RMSE) of the 2 m temperature forecasts decreased across all 1–72 h lead times, with a 4.2% reduction during the 1–9 h period, while the geopotential height RMSE reductions reached 5.8%, 3.3%, and 2.0% at 24, 48, and 72 h, respectively. Additionally, synchronized enhancements were observed in 10 m wind prediction accuracy. These findings underscore the critical role of cloud microphysical initialization in advancing mesoscale numerical weather prediction systems. Full article
Show Figures

Figure 1

17 pages, 2951 KiB  
Article
Long-Term Rainfall–Runoff Relationships During Fallow Seasons in a Humid Region
by Rui Peng, Gary Feng, Ying Ouyang, Guihong Bi and John Brooks
Climate 2025, 13(7), 149; https://doi.org/10.3390/cli13070149 - 16 Jul 2025
Viewed by 580
Abstract
The hydrological processes of agricultural fields during the fallow season in east-central Mississippi remain poorly understood, due to the region’s unique rainfall patterns. This study utilized long-term rainfall records from 1924 to 2023 to evaluate runoff characteristics and the runoff response to various [...] Read more.
The hydrological processes of agricultural fields during the fallow season in east-central Mississippi remain poorly understood, due to the region’s unique rainfall patterns. This study utilized long-term rainfall records from 1924 to 2023 to evaluate runoff characteristics and the runoff response to various rainfall events during fallow seasons in Mississippi by applying the DRAINMOD model. The analysis revealed that the average rainfall during the fallow season was 760 mm over the past 100 years, accounting for 65% of the annual total. In dry, normal, and wet fallow seasons, the average rainfall was 528, 751, and 1010 mm, respectively, corresponding to runoff of 227, 388, and 602 mm. Runoff frequency increased with wetter weather conditions, rising from 16 events in dry seasons to 23 in normal seasons and 30 in wet seasons. Over the past century, runoff dynamics were predominantly regulated by high-intensity rainfall events during the fallow season. Very heavy rainfall events (mean frequency = 11 events) generated 215 mm of runoff and accounted for 53% of the total runoff, while extreme rainfall events (mean frequency = 2 events) contributed 135 mm of runoff, making up 34% of the total runoff. Water table depth played a critical role in shaping spring runoff dynamics. As the water table decreased from 46 mm in March to 80 mm in May, the soil pore space increased from 5 mm in March to 14 mm in May. This increased soil infiltration and water storage capacity, leading to a steady decline in runoff. The study found that the mean daily runoff frequency dropped from 13.5% in March to 7.6% in May, while monthly runoff decreased from 74 to 38 mm. Increased extreme rainfall (R95p) in April contributed over 45% of the total runoff and resulted in the highest daily mean runoff of 20 mm, compared to 18 mm in March and 16 mm in May. The results from this century-long historical weather data could be used to enhance field-scale water resource management, predict potential runoff risks, and optimize planting windows in the humid east-central Mississippi. Full article
(This article belongs to the Section Weather, Events and Impacts)
Show Figures

Figure 1

18 pages, 3393 KiB  
Article
An Investigation of the Characteristics of the Mei–Yu Raindrop Size Distribution and the Limitations of Numerical Microphysical Parameterization
by Zhaoping Kang, Zhimin Zhou, Yinglian Guo, Yuting Sun and Lin Liu
Remote Sens. 2025, 17(14), 2459; https://doi.org/10.3390/rs17142459 - 16 Jul 2025
Viewed by 333
Abstract
This study examines a Mei-Yu rainfall event using rain gauges (RG) and OTT Parsivel disdrometers to observe precipitation characteristics and raindrop size distributions (RSD), with comparisons made against Weather Research and Forecasting (WRF) model simulations. Results show that Parsivel-derived rain rates (RR [...] Read more.
This study examines a Mei-Yu rainfall event using rain gauges (RG) and OTT Parsivel disdrometers to observe precipitation characteristics and raindrop size distributions (RSD), with comparisons made against Weather Research and Forecasting (WRF) model simulations. Results show that Parsivel-derived rain rates (RR) are slightly underestimated relative to RG measurements. Both observations and simulations identify 1–3 mm raindrops as the dominant precipitation contributors, though the model overestimates small and large drop contributions. At low RR, decreased small-drop and increased large-drop concentrations cause corresponding leftward and rightward RSD shifts with decreasing altitude—a pattern well captured by simulations. However, at elevated rainfall rates, the simulated concentration of large raindrops shows no significant increase, resulting in negligible rightward shifting of RSD in the model outputs. Autoconversion from cloud droplets to raindrops (ATcr), collision and breakup between raindrops (AGrr), ice melting (MLir), and evaporation of raindrops (VDrv) contribute more to the number density of raindrops. At 0.1 < RR < 1 mm·h−1, ATcr dominates, while VDrv peaks in this intensity range before decreasing. At higher intensities (RR > 20 mm·h−1), AGrr contributes most, followed by MLir. When the RR is high enough, the breakup of raindrops plays a more important role than collision, leading to a decrease in the number density of raindrops. The overestimation of raindrop breakup from the numerical parameterization may be one of the reasons why the RSD does not shift significantly to the right toward the surface under the heavy RR grade. The RSD near the surface varies with the RR and characterizes surface precipitation well. Toward the surface, ATcr and VDrv, but not AGrr, become similar when precipitation approaches. Full article
Show Figures

Figure 1

20 pages, 3380 KiB  
Article
Resilience of Mangrove Carbon Sequestration Under Typhoon Disturbance: Insights from Different Restoration Ages
by Youwei Lin, Ruina Liu, Yunfeng Shi, Shengjie Han, Huaibao Zhao and Zongbo Peng
Forests 2025, 16(7), 1165; https://doi.org/10.3390/f16071165 - 15 Jul 2025
Viewed by 296
Abstract
Typhoons are major climate disturbances that significantly impact coastal ecosystems, particularly mangrove forests. This study examines the effects of typhoons on mangrove communities at different stages of recovery, focusing on how environmental factors influence carbon storage and net ecosystem exchange (NEE). Three mangrove [...] Read more.
Typhoons are major climate disturbances that significantly impact coastal ecosystems, particularly mangrove forests. This study examines the effects of typhoons on mangrove communities at different stages of recovery, focusing on how environmental factors influence carbon storage and net ecosystem exchange (NEE). Three mangrove sites were selected based on their recovery age: young, moderately restored, and mature. The results revealed that typhoons had the most pronounced effect on young mangroves, resulting in significant reductions in both above-ground and soil carbon storage. In contrast, mid-aged and mature mangroves demonstrated greater resilience, with mature mangroves recovering most rapidly in terms of community structure and carbon storage. Key factors such as wind speed, heavy rainfall, and changes in photosynthetically active radiation (PAR) contributed to carbon storage losses, particularly in young mangrove forests. This study underscores the importance of recovery age in determining mangrove resilience to extreme weather events and offers insights for enhancing restoration and conservation strategies to mitigate the impacts of climate change on coastal carbon sequestration. Full article
(This article belongs to the Section Natural Hazards and Risk Management)
Show Figures

Figure 1

15 pages, 2700 KiB  
Article
Rainfall-Driven Nitrogen Dynamics in Catchment Ponds: Comparing Forest, Paddy Field, and Orchard Systems
by Mengdie Jiang, Yue Luo, Hengbin Xiao, Peng Xu, Ronggui Hu and Ronglin Su
Agriculture 2025, 15(14), 1459; https://doi.org/10.3390/agriculture15141459 - 8 Jul 2025
Viewed by 288
Abstract
The event scale method, employed for assessing changes in nitrogen (N) dynamics pre- and post-rain, provides insights into its transport to surface water systems. However, the relationships between N discharge in catchments dominated by different land uses and water quality remain unclear. This [...] Read more.
The event scale method, employed for assessing changes in nitrogen (N) dynamics pre- and post-rain, provides insights into its transport to surface water systems. However, the relationships between N discharge in catchments dominated by different land uses and water quality remain unclear. This study quantified variations in key N components in ponds across forest, paddy field, and orchard catchments before and after six rainfall events. The results showed that nitrate (NO3-N) was the main N component in the ponds. Post-rainfall, N concentrations increased, with ammonium (NH4+-N) and particulate nitrogen (PN) exhibiting significant elevations in agricultural ponds. Orchard catchments contributed the highest N load to the ponds, while forest catchments contributed the lowest. Following a heavy rainstorm event, total nitrogen (TN) loads in the ponds within forest, paddy field, and orchard catchments reached 6.68, 20.93, and 34.62 kg/ha, respectively. These loads were approximately three times higher than those observed after heavy rain events. The partial least squares structural equation model (PLS-SEM) identified that rainfall amount and changes in water volume were the dominant factors influencing N dynamics. Furthermore, the greater slopes of forest and orchard catchments promoted more N loss to the ponds post-rain. In paddy field catchments, larger catchment areas were associated with decreased N flux into the ponds, while larger pond surface areas minimized the variability in N concentration after rainfall events. In orchard catchment ponds, pond area was positively correlated with N concentrations and loads. This study elucidates the effects of rainfall characteristics and catchment heterogeneity on N dynamics in surface waters, offering valuable insights for developing pollution management strategies to mitigate rainfall-induced alterations. Full article
(This article belongs to the Special Issue Soil-Improving Cropping Systems for Sustainable Crop Production)
Show Figures

Figure 1

23 pages, 31371 KiB  
Article
Evaluations of GPM IMERG-Late Satellite Precipitation Product for Extreme Precipitation Events in Zhejiang Province
by Ruijin Zhu, Zhe Lv, Muzhi Li, Jiaxi Wu, Meiying Dong and Huiyan Xu
Atmosphere 2025, 16(7), 821; https://doi.org/10.3390/atmos16070821 - 6 Jul 2025
Viewed by 393
Abstract
In recent years, satellite products have played an increasingly significant role in monitoring and estimating global extreme weather events, owing to their advantages of an excellent spatiotemporal continuity and broad coverage. This study systematically evaluates the Global Precipitation Measurement (GPM) Integrated Multi-Satellite Retrievals [...] Read more.
In recent years, satellite products have played an increasingly significant role in monitoring and estimating global extreme weather events, owing to their advantages of an excellent spatiotemporal continuity and broad coverage. This study systematically evaluates the Global Precipitation Measurement (GPM) Integrated Multi-Satellite Retrievals for the GPM Late Run (IMERG-L) product for regional precipitation events based on the observations in Zhejiang Province from 2001 to 2020. In this study, seven typical precipitation indices with seven accuracy evaluation indexes are applied to analyze the performance of IMERG-L from multiple perspectives in terms of the precipitation intensity, frequency and spatial distribution dimensions. The results show that IMERG-L is capable of capturing the spatial distribution trends, especially in the frequency-based precipitation indices (CWD, R10mm and R20mm), which can depict the regional wetness and precipitation pattern. However, the product suffers from a systematic overestimation in capturing heavy precipitation and an extreme precipitation intensity, with a high false alarm rate and unstable accuracy, especially in heavy rainfall and above class events, where the Probability of Detection (POD) drops significantly, showing an obvious reduction in the recognition capability and risk of misclassification. Specifically, IMERG-L failed to reproduce the observed eastward-increasing trends in the annual maximum precipitation for both one-day (RX1day) and five-day (RX5day) durations, demonstrating its limitations in accurately capturing extreme precipitation patterns across Zhejiang Province. Overall, furthering the optimization and improvement of IMERG-L in reducing the intensity-dependent biases in heavy rainfall detection, increasing spatial inhomogeneity in trend representations and improving the false alarm suppression for extreme events are needed for the accurate monitoring and quantitative estimation of high-intensity extreme precipitation events. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

18 pages, 6379 KiB  
Article
Assessing Extreme Precipitation in Northwest China’s Inland River Basin Under a Novel Low Radiative Forcing Scenario
by Mingjie Yang, Lianqing Xue, Tao Lin, Peng Zhang and Yuanhong Liu
Water 2025, 17(13), 2009; https://doi.org/10.3390/w17132009 - 4 Jul 2025
Viewed by 339
Abstract
Accelerating climate change poses significant risks to water security and ecological stability in arid regions due to the increasing frequency and intensity of extreme precipitation events. As a climate-sensitive area, the inland river basin (IRB) of Northwest China—a critical water source for local [...] Read more.
Accelerating climate change poses significant risks to water security and ecological stability in arid regions due to the increasing frequency and intensity of extreme precipitation events. As a climate-sensitive area, the inland river basin (IRB) of Northwest China—a critical water source for local ecosystems and socioeconomic activities—remains insufficiently studied in terms of future extreme precipitation dynamics. This study evaluated the spatiotemporal evolution of extreme precipitation in the IRB under a new low radiative forcing scenario (SSP1-1.9) by employing four global climate models (GCMs: GFDL-ESM4, MRI-ESM2, MIROC6, and IPSL-CM6A-LR). Eight core extreme precipitation indices were analyzed to quantify changes during the near future (NF: 2021–2050) and far future (FF: 2071–2100) periods. Our research demonstrated that all four models were capable of capturing seasonal patterns and exhibited inherent uncertainty. The annual total precipitation (PRCPTOT) in mountainous regions showed minimal variation, while desert areas were projected to experience a 2-6-fold increase in precipitation in the NF and FF. The Precipitation Intensity Index (SDII) weakened by approximately −10% in mountainous areas but strengthened by around +10% in desert regions. Most mountainous areas showed an increase in the maximum consecutive dry days (CDD), whereas desert regions exhibited extended maximum consecutive wet days (CWD). Moderate rainfall (P1025) variations primarily ranged between −5% and +20%, with greater fluctuations in desert areas. Heavy rainfall (PG25) fluctuated between −40% and +40%, reflecting stark contrasts in extreme precipitation between arid basins and mountainous zones. The maximum 1-day precipitation (Rx1day) and maximum 5-day precipitation (Rx5day) both showed significant increases, which indicated heightened risks from extreme rainfall events in the future. Moreover, the IRB region experienced increased total precipitation, enhanced rainfall intensity, more frequent alternations between drought and precipitation, more frequent moderate-to-heavy rainfall days, and higher daily precipitation extremes in both the NF and FF periods. These findings provide critical data for regional development planning and emergency response strategy formulation. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

16 pages, 1421 KiB  
Article
News as a Climate Data Source: Studying Hydrometeorological Risks and Severe Weather via Local Television in Catalonia (Spain)
by Joan Targas, Tomas Molina and Gori Masip
Earth 2025, 6(3), 72; https://doi.org/10.3390/earth6030072 - 3 Jul 2025
Viewed by 323
Abstract
This study analyzes the evolution of hydrometeorological risks and severe weather events in Catalonia through an extensive review of 21,312 news reports aired by Televisió de Catalunya (TVC) between 1984 and 2019, 10,686 (50.1%) of which focused on events within Catalonia. The reports [...] Read more.
This study analyzes the evolution of hydrometeorological risks and severe weather events in Catalonia through an extensive review of 21,312 news reports aired by Televisió de Catalunya (TVC) between 1984 and 2019, 10,686 (50.1%) of which focused on events within Catalonia. The reports are categorized by the type of phenomenon, geographic location, and reported impact, enabling the identification of temporal trends. The results indicate a general increase in the frequency of news coverage of hydrometeorological and severe weather events—particularly floods and heavy rainfall—both in Catalonia and the broader Mediterranean region. This rise is attributed not only to a potential increase in such events, but also to the expansion and evolution of media coverage over time. In the Catalan context, the most frequently reported hazards are snowfalls and cold waves (3203 reports), followed by rainfall and flooding (3065), agrometeorological risks (2589), and wind or sea storms (1456). The study highlights that rainfall and flooding pose the most significant risks in Catalonia, as they account for the majority of the reports involving serious impacts—1273 cases of material damage and 150 involving fatalities. The normalized data reveal a growing proportion of reports on violent weather and floods, and a relative decline in snow-related events. Full article
Show Figures

Figure 1

17 pages, 5319 KiB  
Article
Quantitative Detection of Floating Debris in Inland Reservoirs Using Sentinel-1 SAR Imagery: A Case Study of Daecheong Reservoir
by Sunmin Lee, Bongseok Jeong, Donghyeon Yoon, Jinhee Lee, Jeongho Lee, Joonghyeok Heo and Moung-Jin Lee
Water 2025, 17(13), 1941; https://doi.org/10.3390/w17131941 - 28 Jun 2025
Viewed by 373
Abstract
Rapid rises in water levels due to heavy rainfall can lead to the accumulation of floating debris, posing significant challenges for both water quality and resource management. However, real-time monitoring of floating debris remains difficult due to the discrepancy between meteorological conditions and [...] Read more.
Rapid rises in water levels due to heavy rainfall can lead to the accumulation of floating debris, posing significant challenges for both water quality and resource management. However, real-time monitoring of floating debris remains difficult due to the discrepancy between meteorological conditions and the timing of debris accumulation. To address this limitation, this study proposes an amplitude change detection (ACD) model based on time-series synthetic aperture radar (SAR) imagery, which is less affected by weather conditions. The model statistically distinguishes floating debris from open water based on their differing scattering characteristics. The ACD approach was applied to 18 pairs of Sentinel-1 SAR images acquired over Daecheong Reservoir from June to September 2024. A stringent type I error threshold (α < 1 × 10−8) was employed to ensure reliable detection. The results revealed a distinct cumulative effect, whereby the detected debris area increased immediately following rainfall events. A positive correlation was observed between 10-day cumulative precipitation and the debris-covered area. For instance, on 12 July, a floating debris area of 0.3828 km2 was detected, which subsequently expanded to 0.4504 km2 by 24 July. In contrast, on 22 August, when rainfall was negligible, no debris was detected (0 km2), indicating that precipitation was a key factor influencing the detection sensitivity. Comparative analysis with optical imagery further confirmed that floating debris tended to accumulate near artificial barriers and narrow channel regions. Overall, this study demonstrates that this spatial pattern suggests the potential to use detection results to estimate debris transport pathways and inform retrieval strategies. Full article
Show Figures

Figure 1

Back to TopTop