Stage-Dependent Microphysical Structures of Meiyu Heavy Rainfall in the Yangtze-Huaihe River Valley Revealed by GPM DPR
Abstract
1. Introduction
2. Data and Methods
2.1. Dataset
2.1.1. GPM DPR
2.1.2. ERA5
2.1.3. IMERG
2.2. Selection of Heavy Rainfall Profiles
2.3. Identifying the Stages of Heavy Rainfall Events
3. Results
3.1. Vertical Structures of Radar Reflectivity Factor
3.2. DSD Parameters Analysis
3.2.1. Vertical Structures of DSD Parameters
3.2.2. Vertical Microphysical Variations
3.2.3. The Relationship Between Near-Surface Microphysics and Rainfall Rate
3.3. Comparative Analysis of Precipitation Efficiency
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, J.; Liu, Y.; Ding, Y.; Wu, Z. Towards influence of Arabian Sea SST anomalies on the withdrawal date of Meiyu over the Yangtze-Huaihe River basin. Atmos. Res. 2020, 249, 105340. [Google Scholar] [CrossRef]
- Pan, X.; Li, T.; Sun, Y.; Zhu, Z. Cause of extreme heavy and persistent rainfall over Yangtze River in summer 2020. Adv. Atmos. Sci. 2021, 38, 1994–2009. [Google Scholar] [CrossRef]
- Naud, C.M.; Martin, J.E.; Ghosh, P.; Elsaesser, G.S.; Booth, J.F.; Posselt, D.J. Lifecycle-type matters for extratropical cyclone precipitation production. Geophys. Res. Lett. 2025, 52, e2025GL115153. [Google Scholar] [CrossRef]
- Wang, J.; He, H.J.; Liu, X.F.; Wu, B.G. Interannual variability of the Meiyu onset over Yangtze-Huaihe River Valley and analyses of its previous strong influence signal. Chin. Sci. Bull. 2008, 54, 687–695. [Google Scholar] [CrossRef]
- Chen, Y.L.; Zhang, A.Q.; Zhang, Y.H.; Cui, C.G.; Wan, R.; Wang, B.; Fu, Y.F. A heavy precipitation event in the Yangtze River basin led by an eastward moving Tibetan plateau cloud system in the summer of 2016. J. Geophys. Res. Atmos. 2020, 125, e2020JD032429. [Google Scholar] [CrossRef]
- Bai, M.X.; Zheng, J.Y.; Zhang, L. Potential causes of megapluvials in the Yangtze–Huaihe River valley over the last millennium. Glob. Planet. Change 2023, 231, 104292. [Google Scholar] [CrossRef]
- Cui, Y.; Jiang, Z.H.; Chen, W.L.; Zhang, R.Y. Projections of the 21st century Changjiang-Huaihe River Basin extreme precipitation events. Adv. Clim. Change Res. 2012, 3, 76–83. [Google Scholar] [CrossRef]
- Zhou, B.T.; Xu, Y.; Wu, J.; Dong, S.Y.; Shi, Y. Changes in temperature and precipitation extreme indices over China: Analysis of a high-resolution grid dataset. Int. J. Climatol. 2015, 36, 1051–1066. [Google Scholar] [CrossRef]
- Li, L.; Zhai, P.M.; Chen, Y.; Ni, Y.Q. Low-frequency oscillations of the East Asia–Pacific teleconnection pattern and their impacts on persistent heavy precipitation in the Yangtze–Huai River valley. J. Meteorol. Res. 2016, 30, 459–471. [Google Scholar] [CrossRef]
- Wu, X.J.; Wang, L.C.; Niu, Z.G.; Jiang, W.X.; Cao, Q. More extreme precipitation over the Yangtze River Basin, China: Insights from historical and projected perspectives. Atmos. Res. 2023, 292, 106883. [Google Scholar] [CrossRef]
- Moseley, C.; Berg, P.; Haerter, J.O. Probing the precipitation life cycle by iterative rain cell tracking. J. Geophys. Res. Atmos. 2013, 118, 13361–13370. [Google Scholar] [CrossRef]
- Witte, M.K.; Chuang, P.Y.; Feingold, G. On clocks and clouds. Atmos. Chem. Phys. 2014, 14, 6729–6738. [Google Scholar] [CrossRef]
- Booth, J.F.; Naud, C.M.; Jeyaratnam, J. Extratropical cyclone precipitation life cycles: A satellite-based analysis. Geophys. Res. Lett. 2018, 45, 8647–8654. [Google Scholar] [CrossRef]
- Zhang, A.Q.; Fu, Y.F. Life cycle effects on the vertical structure of precipitation in East China measured by Himawari-8 and GPM DPR. Mon. Weather Rev. 2018, 146, 2183–2199. [Google Scholar] [CrossRef]
- Zhang, A.Q.; Chen, C.; Chen, Y.L.; Li, W.B.; Chen, S.M.; Fu, Y.F. Resilient dataset of rain clusters with life cycle evolution during April to June 2016–2020 over eastern Asia based on observations from the GPM DPR and Himawari-8 AHI. Earth Syst. Sci. Data 2022, 14, 1433–1445. [Google Scholar] [CrossRef]
- Yokoyama, C.; Takayabu, Y.N. A statistical study on rain characteristics of tropical cyclones using TRMM satellite data. Mon. Weather Rev. 2008, 136, 3848–3862. [Google Scholar] [CrossRef]
- D’Adderio, L.P.; Vulpiani, G.; Porcù, F.; Tokay, A.; Meneghini, R. Comparison of GPM core observatory and Ground-Based radar retrieval of Mass-Weighted mean raindrop diameter at midlatitude. J. Hydrometeorol. 2018, 19, 1583–1598. [Google Scholar] [CrossRef]
- Sun, Y.T.; Dong, X.Q.; Cui, W.J.; Zhou, Z.M.; Fu, Z.K.; Zhou, L.L.; Deng, Y.; Cui, C.G. Vertical structures of typical Meiyu precipitation events retrieved from GPM-DPR. J. Geophys. Res. Atmos. 2019, 125, e2019JD031466. [Google Scholar] [CrossRef]
- Meneghini, R.; Liao, L.; Iguchi, T. A generalized Dual-Frequency Ratio (DFR) approach for rain retrievals. J. Atmos. Ocean. Technol. 2022, 39, 1309–1329. [Google Scholar] [CrossRef]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The global precipitation measurement mission. Bull. Am. Meteorol. Soc. 2013, 95, 701–722. [Google Scholar] [CrossRef]
- Skofronick-Jackson, G.; Petersen, W.A.; Berg, W.; Kidd, C.; Stocker, E.F.; Kirschbaum, D.B.; Kakar, R.; Braun, S.A.; Huffman, G.J.; Iguchi, T.; et al. The Global Precipitation Measurement (GPM) mission for science and society. Bull. Am. Meteorol. Soc. 2016, 98, 1679–1695. [Google Scholar] [CrossRef] [PubMed]
- Masaki, T.; Iguchi, T.; Kanemaru, K.; Furukawa, K.; Yoshida, N.F.; Kubota, T. Calibration of the Dual-Frequency Precipitation radar onboard the Global Precipitation Measurement core observatory. IEEE Trans. Geosci. Remote Sens. 2020, 60, 5100116. [Google Scholar] [CrossRef]
- Kou, L.L.; Mao, Y.; Wang, Z.X.; Chen, A.J.; Chu, Z.G. Comparisons of three-dimensional reflectivity and precipitation rate from GPM dual-frequency precipitation radar and ground dual-polarization radar. Atmos. Res. 2022, 282, 106521. [Google Scholar] [CrossRef]
- Iguchi, T.; Seto, S.; Meneghini, R.; Yoshida, N.; Awaka, J.; Le, M.; Chandrasekar, V.; Brodzik, S.; Kubota, T. GPM/DPR Level-2 Algorithm Theoretical Basis Document; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2021. Available online: https://arthurhou.pps.eosdis.nasa.gov/Documents/ATBD_DPR_V07A.pdf (accessed on 15 July 2025).
- Hu, P.; Kou, L.L.; Wang, W.J.; Gao, H.Y.; Xie, Y.Q.; Zhang, L.G. Vertical microphysical structures of summer heavy rainfall in the Yangtze-Huaihe River Valley from GPM DPR data. Atmos. Res. 2024, 315, 107833. [Google Scholar] [CrossRef]
- Rivero-Ordaz, L.; Merino, A.; Navarro, A.; Tapiador, F.J.; Sánchez, J.L.; García-Ortega, E. Detection and characterization of hailstorms over France using DPR data onboard the GPM core observatory. Atmos. Res. 2024, 302, 107308. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Nicolas, J.L.; Peubey, C.; Radu, R.; Schepers, D.; Simmons, A.; Soci, C.; Abdalla, S.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Lavers, D.A.; Simmons, A.; Vamborg, F.; Rodwell, M.J. An evaluation of ERA5 precipitation for climate monitoring. Q. J. R. Meteorol. Soc. 2022, 148, 3152–3165. [Google Scholar] [CrossRef]
- Tan, J.; Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J. Diurnal cycle of IMERG V06 precipitation. Geophys. Res. Lett. 2019, 46, 13584–13592. [Google Scholar] [CrossRef]
- Wang, J.; Wolff, D.B.; Tan, J.; Marks, D.A.; Pippitt, J.L.; Huffman, G.J. Validation of IMERG oceanic precipitation over Kwajalein. Remote Sens. 2022, 14, 3753. [Google Scholar] [CrossRef]
- Zhu, S.Y.; Li, Z.; Chen, M.Y.; Wen, Y.X.; Gao, S.; Zhang, J.Q.; Wang, J.; Nan, Y.; Ferraro, S.C.; Tsoodle, T.E.; et al. How has the latest IMERG V07 improved the precipitation estimates and hydrologic utility over CONUS against IMERG V06? J. Hydrol. 2024, 654, 132257. [Google Scholar] [CrossRef]
- Yang, S.; Surratt, M.; Whitcomb, T.R.; Camacho, C. Evaluation of IMERG and GSMAP for tropical Cyclone applications. Geophys. Res. Lett. 2024, 51, e2023g1106414. [Google Scholar] [CrossRef]
- Pradhan, R.K.; Markonis, Y.; Godoy, V.; Rodrigo, M.; Anahi, V.-P.; Andreadis, K.M.; Nikolopoulos, E.I.; Papalexiou, S.M. Review of GPM IMERG performance: A global perspective. Remote Sens. Environ. 2021, 268, 112754. [Google Scholar] [CrossRef]
- Gaona, M.F.R.; Villarini, G.; Zhang, W.; Vecchi, G.A. The added value of IMERG in characterizing rainfall in tropical cyclones. Atmos. Res. 2018, 209, 95–102. [Google Scholar] [CrossRef]
- Huang, W.R.; Chang, Y.H.; Liu, P.Y. Assessment of IMERG precipitation over Taiwan at multiple timescales. Atmos. Res. 2018, 214, 239–249. [Google Scholar] [CrossRef]
- Maghsood, F.F.; Hashemi, H.; Hosseini, S.H.; Berndtsson, R. Ground Validation of GPM IMERG precipitation products over Iran. Remote Sens. 2019, 12, 48. [Google Scholar] [CrossRef]
- Wu, Z.H.; Zhang, Y.; Zhang, L.F.; Hao, X.L.; Lei, H.C.; Zheng, H.P. Validation of GPM precipitation products by comparison with ground-based parsivel disdrometers over Jianghuai region. Water 2019, 11, 1260. [Google Scholar] [CrossRef]
- Gatlin, P.N.; Petersen, W.A.; Pippitt, J.L.; Berendes, T.A.; Wolff, D.B.; Tokay, A. The GPM validation network and evaluation of satellite-based retrievals of the rain drop size distribution. Atmosphere 2020, 11, 1010. [Google Scholar] [CrossRef]
- Seto, S.; Iguchi, T.; Meneghini, R.; Awaka, J.; Kubota, T.; Masaki, T.; Takahashi, N. The precipitation rate retrieval algorithms for the GPM Dual-frequency Precipitation Radar. J. Meteorol. Soc. Jpn. Ser. II 2020, 99, 205–237. [Google Scholar] [CrossRef]
- Seela, B.K.; Janapati, J.; Lin, P.L.; Lan, C.H.; Huang, M.Q. Evaluation of GPM DPR rain parameters with north Taiwan disdrometers. J. Hydrometeorol. 2023, 25, 47–64. [Google Scholar] [CrossRef]
- Pabla, C.S.; Wolff, D.B.; Marks, D.A.; Wingo, S.M.; Pippitt, J.L. GPM ground validation at NASA Wallops precipitation research facility. J. Atmos. Ocean. Technol. 2022, 39, 1199–1215. [Google Scholar] [CrossRef]
- Gao, J.; Tang, G.Q.; Hong, Y. Similarities and improvements of GPM Dual-Frequency Precipitation Radar (DPR) upon TRMM Precipitation Radar (PR) in global precipitation rate estimation, type classification and vertical profiling. Remote Sens. 2017, 9, 1142. [Google Scholar] [CrossRef]
- Gao, Y.; Wu, T.W.; Wang, J.; Tang, S.H. Evaluation of GPM Dual-Frequency Precipitation Radar (DPR) rainfall products using the rain gauge network over China. J. Hydrometeorol. 2020, 22, 547–559. [Google Scholar] [CrossRef]
- McErlich, C.; McDonald, A.; Renwick, J.; Schuddeboom, A. An assessment of Extra-Tropical Cyclone precipitation extremes over the Southern Hemisphere using ERA5. Geophys. Res. Lett. 2023, 50, e2023GL104130. [Google Scholar] [CrossRef]
- Booth, J.F.; Naud, C.M.; Willison, J. Evaluation of extratropical cyclone precipitation in the North Atlantic Basin: An analysis of ERA-Interim, WRF, and two CMIP5 models. J. Clim. 2017, 31, 2345–2360. [Google Scholar] [CrossRef] [PubMed]
- Crawford, A.D.; Alley, K.E.; Cooke, A.M.; Serreze, M.C. Synoptic climatology of Rain-on-Snow events in Alaska. Mon. Weather Rev. 2019, 148, 1275–1295. [Google Scholar] [CrossRef]
- Crawford, A.D.; Serreze, M.C. Projected changes in the Arctic Frontal Zone and summer Arctic Cyclone activity in the CESM large ensemble. J. Clim. 2017, 30, 9847–9869. [Google Scholar] [CrossRef]
- Hell, M.C.; Gille, S.T.; Cornuelle, B.D.; Miller, A.J.; Bromirski, P.D.; Crawford, A.D. Estimating Southern Ocean storm positions with seismic observations. J. Geophys. Res. Ocean. 2020, 125, e2019JG015898. [Google Scholar] [CrossRef]
- Koyama, T.; Stroeve, J.; Cassano, J.; Crawford, A. Sea ice loss and Aarctic cyclone activity from 1979 to 2014. J. Clim. 2017, 30, 4735–4754. [Google Scholar] [CrossRef]
- Bengtsson, L.; Hodges, K.I.; Roeckner, E. Storm tracks and climate change. J. Clim. 2006, 19, 3518–3543. [Google Scholar] [CrossRef]
- Bengtsson, L.; Hodges, K.I.; Keenlyside, N. Will Extratropical Storms Intensify in a Warmer Climate? J. Clim. 2009, 22, 2276–2301. [Google Scholar] [CrossRef]
- Jensen, M.P.; Petersen, W.A.; Bansemer, A.; Bharadwaj, N.; Carey, L.D.; Cecil, D.J.; Collis, S.M.; Del Genio, A.D.; Dolan, B.; Gerlach, J.; et al. The Midlatitude Continental Convective Clouds Experiment (MC3E). Bull. Am. Meteorol. Soc. 2015, 97, 1667–1686. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Chen, F.J. Precipitation microphysics of tropical cyclones over the Western North Pacific Based on GPM DPR observations: A preliminary analysis. J. Geophys. Res. Atmos. 2019, 124, 3124–3142. [Google Scholar] [CrossRef]
- Hu, X.; Ai, W.H.; Qiao, J.Q.; Hu, S.S.; Han, D.; Yan, W. Microphysics of summer precipitation over Yangtze-Huai River Valley region in China revealed by GPM DPR observation. Earth Space Sci. 2021, 9, e2021ea002021. [Google Scholar] [CrossRef]
- Sui, C.-H.; Li, X.; Yang, M.-J. On the definition of precipitation efficiency. J. Atmos. Sci. 2007, 64, 4506–4513. [Google Scholar] [CrossRef]
- Wang, M.J.; Zhao, K.; Xue, M.; Zhang, G.F.; Liu, S.; Wen, L.; Chen, G. Precipitation microphysics characteristics of a Typhoon Matmo rainband after landfall over eastern China based on polarimetric radar observations. J. Geophys. Res. Atmos. 2016, 121, 12415–12433. [Google Scholar] [CrossRef]
- Ai, Y.; Li, W.; Meng, Z.; Li, J. Life Cycle Characteristics of MCSs in Middle East China Tracked by Geostationary Satellite and Precipitation Estimates. Mon. Weather Rev. 2016, 144, 2517–2530. [Google Scholar] [CrossRef]
Developing | Mature | Dissipating | |
---|---|---|---|
Convective precipitation occurrence (%) | 42.2 | 55.4 | 56.0 |
Average surface rainfall rate of convective (mm/h) | 25.66 | 26.30 | 25.81 |
Stratiform precipitation occurrence (%) | 57.8 | 44.6 | 44.0 |
Average surface rainfall rate of stratiform (mm/h) | 16.15 | 16.28 | 15.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Z.; Kou, L.; Hu, P.; Gao, H.; Xie, Y.; Zhang, L. Stage-Dependent Microphysical Structures of Meiyu Heavy Rainfall in the Yangtze-Huaihe River Valley Revealed by GPM DPR. Atmosphere 2025, 16, 886. https://doi.org/10.3390/atmos16070886
Huang Z, Kou L, Hu P, Gao H, Xie Y, Zhang L. Stage-Dependent Microphysical Structures of Meiyu Heavy Rainfall in the Yangtze-Huaihe River Valley Revealed by GPM DPR. Atmosphere. 2025; 16(7):886. https://doi.org/10.3390/atmos16070886
Chicago/Turabian StyleHuang, Zhongyu, Leilei Kou, Peng Hu, Haiyang Gao, Yanqing Xie, and Liguo Zhang. 2025. "Stage-Dependent Microphysical Structures of Meiyu Heavy Rainfall in the Yangtze-Huaihe River Valley Revealed by GPM DPR" Atmosphere 16, no. 7: 886. https://doi.org/10.3390/atmos16070886
APA StyleHuang, Z., Kou, L., Hu, P., Gao, H., Xie, Y., & Zhang, L. (2025). Stage-Dependent Microphysical Structures of Meiyu Heavy Rainfall in the Yangtze-Huaihe River Valley Revealed by GPM DPR. Atmosphere, 16(7), 886. https://doi.org/10.3390/atmos16070886