Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (172)

Search Parameters:
Keywords = heat-resistant Mg alloy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 7092 KB  
Review
Toward High-Performance Mg-Matrix Composites: Recent Advances in Ceramic Reinforcement Strategies and Processing Innovations
by Yuefeng Ying, Weideng Wang, Guoqiang You, Yan Yang, Bin Jiang, Lin Yue and Qilin Shao
Materials 2026, 19(2), 365; https://doi.org/10.3390/ma19020365 - 16 Jan 2026
Viewed by 84
Abstract
Magnesium matrix composites formed by incorporating ceramic particles into a magnesium alloy matrix can effectively leverage the complementary properties of the matrix and reinforcement. This approach significantly enhances the mechanical properties of the material at both room and elevated temperatures, offering a viable [...] Read more.
Magnesium matrix composites formed by incorporating ceramic particles into a magnesium alloy matrix can effectively leverage the complementary properties of the matrix and reinforcement. This approach significantly enhances the mechanical properties of the material at both room and elevated temperatures, offering a viable solution to the inherent limitations of Mg alloys, such as insufficient absolute strength, stiffness, and poor heat resistance. This article reviews the latest research progress in the field of ceramic particle-reinforced magnesium matrix composites in recent years. First, the current research status of magnesium matrix composites reinforced with different types of ceramic particles is comprehensively summarized. Subsequently, it provides a summary and in-depth analysis of the principles, key technologies, and microstructural characteristics of both mainstream and emerging preparation processes, and discusses their advantages and disadvantages. Finally, the challenges in current research are analyzed, and future cutting-edge directions for developing high-performance ceramic particle-reinforced magnesium matrix composites are discussed. Full article
Show Figures

Figure 1

17 pages, 2919 KB  
Article
Enhancing Hydrogen Embrittlement Resistance of Al–Zn–Mg–Cu Alloys via Si Microalloying and Optimized Heat Treatment
by Huijun Shi, Ruian Hu, Yi Lu, Shengping Wen, Wu Wei, Xiaolan Wu, Kunyuan Gao, Hui Huang and Zuoren Nie
Metals 2026, 16(1), 76; https://doi.org/10.3390/met16010076 - 9 Jan 2026
Viewed by 149
Abstract
7xxx series aluminum alloys are critical structural materials in aerospace applications, but their susceptibility to hydrogen embrittlement (HE) poses significant challenges to service safety and durability. The effects of Si, Er, and Zr microalloying, combined with optimized heat treatments on the HE resistance [...] Read more.
7xxx series aluminum alloys are critical structural materials in aerospace applications, but their susceptibility to hydrogen embrittlement (HE) poses significant challenges to service safety and durability. The effects of Si, Er, and Zr microalloying, combined with optimized heat treatments on the HE resistance of Al–Zn–Mg–Cu alloys, were systematically investigated using transmission electron microscopy (TEM), scanning electron microscopy (SEM), and mechanical testing. Three alloys—1# (AlZnMgCuZr), 2# (AlZnMgCuErZr), and 3# (AlZnMgCuSiErZr)—were subjected to single-stage or two-stage homogenization, followed by solution treatments at 470 °C/2 h and 540 °C/1 h, and peak aging at 125 °C. The hydrogen charging experiment was conducted by first applying a modified acrylic resin coating to protect the gripping sections of the specimen, followed by a tensile test. Results demonstrate that alloy 3# with Si addition exhibited the lowest RAloss, followed by the 2# alloy, which effectively improved the alloys’ hydrogen embrittlement behavior. Compared with the solution in 470 °C/2 h, the 540 °C/1 h solution treatment enabled complete dissolution of Mg2Si phases, promoting homogeneous precipitation and peak hardness comparable to alloy 2#. Two-stage homogenization significantly enhanced the number density and refinement of L12-structured Al3(Er,Zr) nanoprecipitates. Silicon further accelerated the precipitation kinetics, leading to more Al3(Er,Zr) nanoprecipitates, finely dispersed T′/η′ phases, and lath-shaped GPB-II zones. The GPB-II zones effectively trapped hydrogen, thereby improving HE resistance. This work provides a viable strategy for enhancing the reliability of high-strength aluminum alloys in hydrogen-containing environments. Full article
Show Figures

Figure 1

9 pages, 2061 KB  
Article
Preparation of Highly Active Mg-Al-Li-B Alloys via High-Temperature Sintering
by Yuze Wang, Hanqing Xu, Zhihua Zhuang, Jinyan He, Wenlian Peng, Xinggao Zhang, Hao Chen and Liang Zhou
Materials 2026, 19(2), 217; https://doi.org/10.3390/ma19020217 - 6 Jan 2026
Viewed by 139
Abstract
Boron is a promising fuel, but its oxide layer impedes combustion. Alloying boron with other high-energy metals can significantly enhance its combustion performance. In this study, we sintered highly reactive lithium-containing Mg-Al-Li-B alloys using magnesium, aluminum–lithium alloy, and boron powder as raw materials. [...] Read more.
Boron is a promising fuel, but its oxide layer impedes combustion. Alloying boron with other high-energy metals can significantly enhance its combustion performance. In this study, we sintered highly reactive lithium-containing Mg-Al-Li-B alloys using magnesium, aluminum–lithium alloy, and boron powder as raw materials. The effects of sintering temperature and holding time on the microstructure were investigated, and the combustion heat value and oxidation resistance of the alloy were tested. Results indicate that sintering temperature significantly influences phase formation: increasing temperature boosts phase content while reducing metallic phases, with 1100 °C identified as the optimal sintering temperature. Holding time had no discernible impact on the phase composition or combustion heat value of the sintered alloy. Alloying enhances material density, thereby increasing volumetric heat value. Thermal oxidation performance tests demonstrate that Li addition significantly lowers the alloy’s oxidation reaction temperature and activation energy, enhancing its reactivity. This high-heat-value, highly reactive alloy holds significant potential for application in pyrotechnics and propellants. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Graphical abstract

13 pages, 5447 KB  
Article
The Effects of Sn, Mn, Er and Zr on Homogenized Microstructure and Mechanical Properties of 6082 Aluminum Alloy
by Jiayi Zhang, Yi Lu, Shengping Wen, Xiaolan Wu, Kunyuan Gao, Li Rong, Wu Wei, Hui Huang and Zuoren Nie
Coatings 2026, 16(1), 60; https://doi.org/10.3390/coatings16010060 - 5 Jan 2026
Viewed by 234
Abstract
This research systematically investigates the influence of multi-microalloying with Sn, Mn, Er, and Zr on the homogenized microstructure, aging behavior, and mechanical properties of a 6082 Al-Mg-Si alloy. The optimization of the homogenization treatment for the alloy was based on isochronal aging curves [...] Read more.
This research systematically investigates the influence of multi-microalloying with Sn, Mn, Er, and Zr on the homogenized microstructure, aging behavior, and mechanical properties of a 6082 Al-Mg-Si alloy. The optimization of the homogenization treatment for the alloy was based on isochronal aging curves and conductivity measurements. The results show that the addition of Mn, Er, and Zr can precipitate thermally stable Al(Fe,Mn)Si dispersoids and Al(Er,Zr) dispersoids. The three-stage homogenization treatment resulted in the precipitation of more heat-resistant dispersoids, thereby achieving the best thermal stability. During direct artificial aging, the initial hardening rate of the Mn-containing alloy was slightly delayed, but its peak hardness was significantly increased. This is due to the dispersoids offering additional heterogeneous nucleation sites for the strengthening precipitates. Meanwhile, the Sn atoms release their trapped vacancies at the aging temperature, thereby promoting atomic diffusion. However, short-term natural aging before artificial aging accelerated the early-stage aging response of the Sn-containing alloy but resulted in a reduced peak hardness. Notably, the co-microalloying with Mn and Sn led to a higher peak hardness during direct artificial aging, while it caused a more significant hardness loss when a natural aging preceded artificial aging, revealing a distinct synergistic negative effect. The reason for the negative synergy effect might be related to the weakened ability of Sn to release vacancies after natural aging. This study clarifies the process dependence of microalloying effects, providing a theoretical basis for optimizing aluminum alloy properties through the synergistic design of composition and processing routes. Full article
(This article belongs to the Special Issue Manufacturing and Surface Engineering, 5th Edition)
Show Figures

Figure 1

14 pages, 4563 KB  
Article
Effects of Direct Fluorination on the High-Temperature Oxidation Resistance of AZ31 Magnesium Alloy
by Yu Wang, Jae-Ho Kim and Susumu Yonezawa
Materials 2026, 19(1), 156; https://doi.org/10.3390/ma19010156 - 2 Jan 2026
Viewed by 181
Abstract
Fluorination has been proposed as an effective surface modification method for magnesium. The high-temperature oxidation behavior and protective mechanism of fluorinated AZ31 magnesium alloys, especially under prolonged isothermal conditions, have not been systematically investigated. In this study, an efficient and safe surface fluorination [...] Read more.
Fluorination has been proposed as an effective surface modification method for magnesium. The high-temperature oxidation behavior and protective mechanism of fluorinated AZ31 magnesium alloys, especially under prolonged isothermal conditions, have not been systematically investigated. In this study, an efficient and safe surface fluorination method that requires no post-treatment was developed to directly fluorinate the surface of AZ31 machining chips using F2 gas. By adjusting the fluorination parameters, including fluorine gas pressure, temperature, and reaction time, the content and uniformity of the surface MgF2 layer were effectively improved. High-temperature isothermal oxidation tests demonstrated a remarkable enhancement in oxidation resistance after fluorination; specifically, the weight change of the fluorinated samples decreased from 64.65% for the untreated alloy to 0.68% after oxidation at 450 °C for 12 h. To verify the formation of the MgF2 layer and its protective mechanism, all samples were systematically characterized before and after heat treatment using XPS, SEM/EDS, and XRD. The results confirm that direct fluorination with F2 is an effective approach for improving the high-temperature stability of AZ31 magnesium alloy. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Graphical abstract

18 pages, 2743 KB  
Article
Axial Solidification Experiments to Mimic Net-Shaped Castings of Aluminum Alloys—Interfacial Heat-Transfer Coefficient and Thermal Diffusivity
by Ravi Peri, Ahmed M. Teamah, Xiaochun Zeng, Mohamed S. Hamed and Sumanth Shankar
Processes 2026, 14(1), 128; https://doi.org/10.3390/pr14010128 - 30 Dec 2025
Viewed by 253
Abstract
Net-shaped casting processes in the automotive industry have proved to be difficult to simulate due to the complexities of the interactions amongst thermal, fluid, and solute transport regimes in the solidifying domain, along with the interface. The existing casting simulation software lacks the [...] Read more.
Net-shaped casting processes in the automotive industry have proved to be difficult to simulate due to the complexities of the interactions amongst thermal, fluid, and solute transport regimes in the solidifying domain, along with the interface. The existing casting simulation software lacks the necessary real-time estimation of thermophysical properties (thermal diffusivity and thermal conductivity) and the interfacial heat-transfer coefficient (IHTC) to evaluate the thermal resistances in a casting process and solve the temperature in the solidifying domain. To address these shortcomings, an axial directional solidification experiment setup was developed to map the thermal data as the melt solidifies unidirectionally from the chill surface under unsteady-state conditions. A Dilute Eutectic Cast Aluminum (DECA) alloy, Al-5Zn-1Mg-1.2Fe-0.07Ti, Eutectic Cast Aluminum (ECA) alloys (A365 and A383), and pure Al (P0303) were used to demonstrate the validity of the experiments to evaluate the thermal diffusivity (α) of both the solid and liquid phases of the solidifying metal using an inverse heat-transfer analysis (IHTA). The thermal diffusivity varied from 0.2 to 1.9 cm2/s while the IHTC changed from 9500 to 200 W/m2K for different alloys in the solid and liquid phases. The heat flux was estimated from the chill side with transient temperature distributions estimated from IHTA for either side of the mold–metal interface as an input to compute the interfacial heat-transfer coefficient (IHTC). The results demonstrate the reliability of the axial solidification experiment apparatus in accurately providing input to the casting simulation software and aid in reproducing casting numerical simulation models efficiently. Full article
Show Figures

Figure 1

36 pages, 42073 KB  
Article
FEM Numerical Calculations and Experimental Verification of Extrusion Welding Process of 7075 Aluminium Alloy Tubes
by Dariusz Leśniak, Konrad Błażej Laber and Jacek Madura
Materials 2026, 19(1), 75; https://doi.org/10.3390/ma19010075 - 24 Dec 2025
Viewed by 487
Abstract
Extrusion of AlZnMgCu alloys is associated with a very high plastic resistance of the materials at forming temperatures and significant friction resistance, particularly at the contact surface between the ingots and the container. In technological practice, this translates into high maximum extrusion forces, [...] Read more.
Extrusion of AlZnMgCu alloys is associated with a very high plastic resistance of the materials at forming temperatures and significant friction resistance, particularly at the contact surface between the ingots and the container. In technological practice, this translates into high maximum extrusion forces, often close to the capacity of hydraulic presses, and the occurrence of surface cracking of extruded profiles, resulting in a reduction in metal exit speed (production process efficiency). The accuracy of mathematical material models describing changes in the plastic stress of a material as a function of deformation, depending on the forming temperature and deformation speed, plays a very important role in the numerical modelling of extrusion processes using the finite element method (FEM). Therefore, three mathematical material models of the tested aluminium alloy were analysed in this study. In order to use the results of plastometric tests determined on the Gleeble device, they were approximated with varying degrees of accuracy using the Hnsel–Spittel equation and then implemented into the material database of the QForm-Extrusion® programme. A series of numerical FEM calculations were performed for the extrusion of Ø50 × 3 mm tubes made of 7075 aluminium alloy using chamber dies for two different billet heating temperatures, 480 °C and 510 °C, and for three different material models. The metal flow was analysed in terms of geometric stability and dimensional deviations in the wall thickness of the extruded tube and its surface quality, as well as the maximum force in the extrusion process. Experimental studies of the industrial extrusion process of the tubes, using a press with a maximum force of 28 MN and a container diameter of 7 inches, confirmed the significant impact of the accuracy of the material model used on the results of the FEM numerical calculations. It was found that the developed material model of aluminium alloy 7075 number 1 allows for the most accurate representation of the actual conditions of deformation and quality of extruded tubes. Moreover, the material data obtained on the Gleeble simulator made it possible to determine the limit temperature of the extruded alloy, above which the material loses its cohesion and cracks appear on the surface of the extruded profiles. Full article
(This article belongs to the Special Issue Advances in Materials Processing (4th Edition))
Show Figures

Figure 1

13 pages, 4315 KB  
Article
Formation of the Structure, Properties, and Corrosion Resistance of Zirconium Alloy Under Three-Roll Skew Rolling Conditions
by Anna Kawałek, Alexandr Arbuz, Kirill Ozhmegov, Irina Volokitina, Andrey Volokitin, Nikita Lutchenko and Fedor Popov
Materials 2025, 18(24), 5578; https://doi.org/10.3390/ma18245578 - 11 Dec 2025
Viewed by 329
Abstract
Zirconium and its alloys are widely used in nuclear power engineering due to their favorable physical and mechanical properties and their low thermal-neutron absorption cross-section. Their high corrosion resistance in aqueous and steam environments at elevated temperatures is essential for the reliable operation [...] Read more.
Zirconium and its alloys are widely used in nuclear power engineering due to their favorable physical and mechanical properties and their low thermal-neutron absorption cross-section. Their high corrosion resistance in aqueous and steam environments at elevated temperatures is essential for the reliable operation of fuel assemblies and is associated with the formation of a stable, compact ZrO2 oxide layer. However, under reactor conditions, the presence of hydrogen, iodine and other fission products can reduce corrosion resistance, making detailed corrosion assessment necessary. Manufacturing technology, alongside alloy composition, also plays a decisive role in determining corrosion behavior. This study presents corrosion test results for a Zr-1%Nb alloy processed under thermomechanical conditions corresponding to rolling in a special type of three-roll skew rolling–Radial-Shear Rolling (RSR). The applied rolling technology ensured the formation of a pronounced ultrafine-grained (UFG) structure in the near-surface layers, with an average grain size below 0.6 µm. EBSD and TEM observations revealed a largely equiaxed microstructure with refined grains and increased grain boundary density. The corrosion testing was performed in high-temperature steam vessels at 400 °C and 10.3 MPa for 72, 336, 720 and 1440 h. The results demonstrate that RSR processing is an efficient alternative to conventional multi-pass normal bar rolling with vacuum heat treatments, allowing a significant reduction in processing steps and eliminating the need for expensive tooling and intermediate thermal or chemical treatments. Bars manufactured using this method meet the ASTM B351 requirements. The specific weight gain did not exceed 22 mg/dm2 after 72 h and 34.5 mg/dm2 after 336 h. After 1440 h, the samples exhibited a continuous, uniform dark-grey oxide layer with an average thickness below 5.3 µm. Full article
Show Figures

Figure 1

17 pages, 4425 KB  
Article
Corrosion Behavior of Cu-Mg Alloy Contact Wire in Controlled Humid Heat Environments
by Yuan Yuan, Xinyao Jiang, Like Pan, Yong Pang, Zejun Wang and Zhu Xiao
Coatings 2025, 15(12), 1435; https://doi.org/10.3390/coatings15121435 - 5 Dec 2025
Cited by 1 | Viewed by 349
Abstract
This study investigated the corrosion behavior of cold-drawn Cu-0.43 wt% Mg alloy wires, which were intended for high-speed railway contact lines, under varying temperature (30–50 °C) and relative humidity (85% and 93%) conditions in controlled humid heat environments. The corrosion resistance of the [...] Read more.
This study investigated the corrosion behavior of cold-drawn Cu-0.43 wt% Mg alloy wires, which were intended for high-speed railway contact lines, under varying temperature (30–50 °C) and relative humidity (85% and 93%) conditions in controlled humid heat environments. The corrosion resistance of the alloy wires after 48 h of humid heat testing was evaluated using electrochemical methods such as polarization curves and electrochemical impedance spectroscopy. The morphology and composition of the corrosion products were characterized using scanning electron microscopy/energy-dispersive spectroscopy (SEM/EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The results demonstrated superior corrosion resistance for specimens exposed to higher temperature and lower humidity (50 °C, 85% RH), as evidenced by lower corrosion current densities and higher film/charge transfer resistances compared to lower temperature and higher humidity conditions (30 °C, 93% RH). This enhanced resistance correlated with the formation of denser, more continuous protective corrosion films observed under high-temperature and low-humidity conditions. Surface analyses confirmed that the corrosion films consisted primarily of copper oxides (Cu2O and CuO), with only trace amounts of magnesium oxides detected, suggesting Mg played a minor role in the composition of the mature passive film under these conditions. These findings provide crucial data on the environmental degradation behavior of Cu-Mg contact wires, which is particularly relevant for applications in coastal or humid regions. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Figure 1

16 pages, 6650 KB  
Article
The Influence of Long-Period Stacking Ordered Structures on Heat Resistance of Mg-12Y-0.6Mn-xZn (x = 0, 4, 6 wt.%) Alloys
by Yang Xiao, Jia She, Xuerui Jing, Renju Cheng, Lu Wu, Wei Zhang, Aitao Tang and Bin Jiang
Metals 2025, 15(12), 1335; https://doi.org/10.3390/met15121335 - 4 Dec 2025
Viewed by 374
Abstract
Magnesium alloys, noted for their exceptional characteristics such as low density, remarkable specific strength at room temperature, and superior damping capabilities, are progressively emerging as vital engineering structural materials in the aerospace, automotive, and 3C industries. Despite their commendable room-temperature properties, including consistently [...] Read more.
Magnesium alloys, noted for their exceptional characteristics such as low density, remarkable specific strength at room temperature, and superior damping capabilities, are progressively emerging as vital engineering structural materials in the aerospace, automotive, and 3C industries. Despite their commendable room-temperature properties, including consistently high strengths and ductility, the relatively poor mechanical performance of magnesium alloys under elevated-temperature conditions limits their applicability in such environments. In this research, we prepared a series of extruded Mg-12Y-0.6Mn-xZn (x = 0, 4, 6 wt.%) alloys enriched with a large volume fraction of long-period stacking ordered (LPSO) structures. We conducted a thorough investigation into the elevated-temperature structural stability of these alloys, exploring the impact of volume fraction on their microstructures, properties, and strengthening mechanisms. Intriguingly, our findings revealed a positive effect of Mn particles on enhancing the elevated-temperature stability of the LPSO phase. Notably, the Mg-12Y-6Zn-0.6Mn (wt.%) alloy demonstrated exceptional ultimate tensile strength (UTS) and tensile yield strength (TYS) of 388 MPa and 258 MPa, respectively, at room temperature, while maintaining UTS and TYS values of 270 MPa and 225 MPa, respectively, at 300 °C. This study provides theoretical support for the application of magnesium alloys in elevated-temperature environments. Full article
Show Figures

Graphical abstract

12 pages, 15632 KB  
Article
Effects of Sn Microalloying on the Microstructure and Properties of Al-Mg-Mn-Si Alloy
by Yue Chai, Shengping Wen, Xiaolan Wu, Kunyuan Gao, Wu Wei, Li Rong, Hui Huang and Zuoren Nie
Metals 2025, 15(12), 1280; https://doi.org/10.3390/met15121280 - 23 Nov 2025
Viewed by 570
Abstract
Microalloying with Sn is a pivotal strategy for enhancing the strength and thermal stability of Al-Mg-Mn-Si alloys by enabling microstructural optimization. This study systematically investigates the influence of 0.1 wt.% Sn on an Al-4.0Mg-1.0Mn-0.2Si alloy through a comparative analysis with a Sn-free counterpart. [...] Read more.
Microalloying with Sn is a pivotal strategy for enhancing the strength and thermal stability of Al-Mg-Mn-Si alloys by enabling microstructural optimization. This study systematically investigates the influence of 0.1 wt.% Sn on an Al-4.0Mg-1.0Mn-0.2Si alloy through a comparative analysis with a Sn-free counterpart. The experimental methodology included isochronal aging and isothermal aging, room-temperature tensile testing, electrical conductivity measurements, and detailed microstructural characterization via transmission electron microscopy (TEM) and optical microscopy (OM). The results unequivocally demonstrate that Sn addition significantly enhances the alloy’s microhardness, tensile properties, and heat resistance. Specifically, the Sn-containing alloy (1#) achieved a peak hardness of 98.4 HV during a three-stage aging process, which is 14.1% higher than the 84.5 HV of the Sn-free alloy (2#). In the as-rolled state, alloy 1# exhibited ultimate tensile strength (UTS) and yield strength (YS) of 397 MPa and 344 MPa, representing increases of 20.2% and 15.7%, respectively, without compromising ductility. Microstructural analysis revealed that the enhancement is attributed to the Sn-promoted formation of finely dispersed α-AlMnSi precipitates. These precipitates effectively pin dislocations, strengthening the alloy, and simultaneously suppress recrystallization nucleation and growth, thereby elevating the recrystallization temperature and improving overall heat resistance. This work confirms that microalloying with Sn is an effective strategy for developing high-performance Al-Mg-Mn-Si alloys with superior mechanical properties and thermal stability. Full article
Show Figures

Figure 1

13 pages, 5096 KB  
Article
Microstructure and Mechanical Properties of Friction Stir Welded the Novel Al-Mg-Zn-Si Alloy
by Junzhe Huang, Ying Li, Xiwu Li, Hongwei Yan, Lizhen Yan, Kai Wen, Yanan Li, Guanjun Gao, Kai Zhu, Mingyang Yu, Yongan Zhang and Baiqing Xiong
Materials 2025, 18(23), 5269; https://doi.org/10.3390/ma18235269 - 21 Nov 2025
Viewed by 659
Abstract
The high-Mg-content Al-Mg-Zn-Si alloy, as a novel aluminum alloy, exhibits excellent strength, toughness, and corrosion resistance, demonstrating significant application potential in lightweight structural components for aerospace, weapon systems, rail transportation, and other fields. In this study, friction stir welding was employed to weld [...] Read more.
The high-Mg-content Al-Mg-Zn-Si alloy, as a novel aluminum alloy, exhibits excellent strength, toughness, and corrosion resistance, demonstrating significant application potential in lightweight structural components for aerospace, weapon systems, rail transportation, and other fields. In this study, friction stir welding was employed to weld the high-Mg-content Al-Mg-Zn-Si alloy. Subsequent aging treatment was applied to establish the relationship between the mechanical properties and microstructural characteristics of the welded joint, aiming to elucidate the strengthening mechanisms of the new alloy and provide insights for achieving high-quality welds. The results indicate that the microhardness profile of the as-welded joint exhibited a “W” shape, with overall low hardness values and minor differences between zones. After the aging treatment, the microhardness increased significantly in the base material (BM), the thermo-mechanically affected zone (TMAZ), and the stir zone (SZ), whereas the heat-affected zone (HAZ) adjacent to the SZ exhibited only a marginal increase, making it the softest region in the aged joint. The yield strength and ultimate tensile strength of the aged joint increased to 327 MPa and 471 MPa, respectively. The enhancement in microhardness and strength after aging treatment was attributed to the precipitation of numerous nano-sized T-phase particles within grains. Interestingly, the tensile samples of the aged joint fractured in the high-hardness SZ instead of the low-hardness HAZ. This fracture behavior was primarily attributed to continuous grain boundary precipitates, which reduced intergranular cohesion. In contrast, the elongated grain structure in the HAZ more effectively resisted intergranular crack propagation compared to the equiaxed grains in the SZ. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Graphical abstract

29 pages, 5981 KB  
Article
Determination of Annealing Temperature of Thin-Walled Samples from Al-Mn-Mg-Ti-Zr Alloys for Mechanical Properties Restoration of Defective Parts After SLM
by Nikita Nikitin, Roman Khmyrov, Pavel A. Podrabinnik, Nestor Washington Solis Pinargote, Anton Smirnov, Idarmachev Idarmach, Tatiana V. Tarasova and Sergey N. Grigoriev
J. Manuf. Mater. Process. 2025, 9(11), 371; https://doi.org/10.3390/jmmp9110371 - 12 Nov 2025
Viewed by 829
Abstract
The aim of this work is to investigate the effect of annealing (at temperatures ranging from 260 °C to 530 °C) of thin-walled Al-Mn-Mg-Ti-Zr samples manufactured by selective laser melting (SLM) on their tensile mechanical properties, hardness, and surface roughness. The results of [...] Read more.
The aim of this work is to investigate the effect of annealing (at temperatures ranging from 260 °C to 530 °C) of thin-walled Al-Mn-Mg-Ti-Zr samples manufactured by selective laser melting (SLM) on their tensile mechanical properties, hardness, and surface roughness. The results of this study may contribute to the development of post-processing modes for thin-walled products made of corrosion-resistant aluminum alloys with increased strength, manufactured using SLM technology. Hierarchical clustering methods allowed us to identify three groups of thin-walled samples with different strain-hardening mechanisms depending on the annealing temperature. The greatest hardening is achieved in the first group of samples annealed at 530 °C. Metallographic analysis showed that at this heat treatment temperature, there are practically no micropores (macrodefects) and microcracks. X-ray phase analysis showed the precipitation of Ti and Zr, as well as the formation of an intermetallic phase with a composition of Mg8Al16. At lower heat treatment temperatures, from 260 °C to 500 °C, the observed hardening is statistically significantly lower than at 530 °C. This phenomenon, combined with the formation of intermetallic phases and the precipitation of titanium/zirconium, contributes to the hardening of thin-walled Al-Mn-Mg-Ti-Zr alloy samples manufactured by SLM. The main results of this study show that the optimal strain hardening of thin-walled Al-Mn-Mg-Ti-Zr alloy samples manufactured by SLM is achieved by heat treatment at 530 °C for 1 h. The strengthening mechanism has two characteristics: (1) dispersion strengthening due to the formation of precipitates and (2) reduction in macrodefects at high temperatures. Full article
Show Figures

Figure 1

18 pages, 4157 KB  
Article
Exploring the Impact of Cooling Environments on the Machinability of AM-AlSi10Mg: Optimizing Cooling Techniques and Predictive Modelling
by Zhenhua Dou, Kai Guo, Jie Sun and Xiaoming Huang
Machines 2025, 13(11), 984; https://doi.org/10.3390/machines13110984 - 24 Oct 2025
Viewed by 437
Abstract
Additively manufactured (AM) aluminum (Al) alloys are very useful in sectors like automotive, manufacturing, and aerospace because they have unique mechanical properties, such as their light weight, etc. AlSi10Mg made by laser powder bed fusion (LPBF) is one of the most promising materials [...] Read more.
Additively manufactured (AM) aluminum (Al) alloys are very useful in sectors like automotive, manufacturing, and aerospace because they have unique mechanical properties, such as their light weight, etc. AlSi10Mg made by laser powder bed fusion (LPBF) is one of the most promising materials because it has a high strength-to-weight ratio, good thermal resistance, and good corrosion resistance. But machining AlSi10Mg parts is still hard because they have unique microstructural properties from the way they were produced. This research investigates the machining efficacy of the AM-AlSi10Mg alloy in distinct cutting conditions (dry, flood, chilled air, and minimal quantity lubrication with castor oil). The study assesses how different cooling conditions affect important performance metrics such as cutting temperature, surface roughness, and tool wear. Due to castor oil’s superior lubricating and film-forming properties, MQL (Minimal Quantity Lubrication) reduces heat generation between 80 °C and 98 °C for the distinct speed–feed combinations. The Multi-Objective Optimization by Ratio Analysis (MOORA) approach is used to determine the ideal cooling and machining conditions (MQL, Vc of 90 m/min, and fr of 0.05 mm/rev). The relative closeness values derived from the MOORA approach were used to predict machining results using machine learning (ML) models (MLP, GPR, and RF). The MLP showed the strongest relationship between the measured and predicted values, with R values of 0.9995 in training and 0.9993 in testing. Full article
(This article belongs to the Special Issue Neural Networks Applied in Manufacturing and Design)
Show Figures

Figure 1

21 pages, 6101 KB  
Article
The Mechanism of Microstructure Refinement and the Synergistic Strength–Ductility Enhancement in Al–Zn–Mg–Cu Alloys Processed by Continuous Rheo-Extrusion
by Ziren Wang, Jiazhi An, Mei Xu, Haixia Zhang, Guoli Wei, Chengliang Yang, Zhenpeng Wei, Wenzheng Shen and Wanwu Ding
Metals 2025, 15(11), 1167; https://doi.org/10.3390/met15111167 - 23 Oct 2025
Viewed by 540
Abstract
Al–Zn–Mg–Cu alloys are well known for their outstanding strength, toughness, and corrosion resistance, arising from the balanced addition of Mg, Zn, and Cu. However, conventional casting methods often lead to grain boundary segregation and the formation of coarse Fe-rich phases, which severely limit [...] Read more.
Al–Zn–Mg–Cu alloys are well known for their outstanding strength, toughness, and corrosion resistance, arising from the balanced addition of Mg, Zn, and Cu. However, conventional casting methods often lead to grain boundary segregation and the formation of coarse Fe-rich phases, which severely limit subsequent heat treatment and plastic processing. To overcome these drawbacks, this study systematically investigates the effects of the Continuous Rheo-Extrusion (CRE) process on the microstructure and mechanical performance of Al–Zn–Mg–Cu alloys using XRD, EBSD, SEM, and TEM analyses. The CRE process refines the average grain size from 53.5 μm to 16.1 μm and raises the fraction of high-angle grain boundaries to 88.8%. Moreover, coarse Fe-rich phases are fragmented to below 5 μm, while the elemental distribution of Zn, Mg, and Cu becomes more homogeneous, effectively reducing grain boundary segregation. The Al2Cu precipitates are refined from 106.3 nm to 11.7 nm, corresponding to an 88.9% size reduction. These microstructural optimizations yield a remarkable increase in tensile strength (from 204.7 ± 23.7 MPa to 338.0 ± 9.3 MPa) and elongation (from 11.4 ± 2.4% to 13.8 ± 1.3%). Quantitative analysis confirms that dislocation and precipitation strengthening are the dominant contributors to this improvement. Overall, the CRE process enhances microstructural uniformity through the synergistic effects of shear deformation, continuous dynamic recrystallization (CDRX), and dynamic precipitation, thereby providing a solid theoretical and practical foundation for short-process fabrication of high-strength, high-ductility Al–Zn–Mg–Cu alloys. Full article
Show Figures

Figure 1

Back to TopTop