The Mechanism of Microstructure Refinement and the Synergistic Strength–Ductility Enhancement in Al–Zn–Mg–Cu Alloys Processed by Continuous Rheo-Extrusion
Abstract
1. Introduction
2. Materials and Methods
2.1. Material Preparation
2.2. Mechanical Property Measurement
2.3. Microstructure Characterization
2.3.1. X-Ray Diffraction (XRD) Analysis
2.3.2. Scanning Electron Microscopy (SEM) Analysis
2.3.3. Transmission Electron Microscopy (TEM) Analysis
3. Results
3.1. Microstructure
3.2. Tensile Property Differences
4. Discussion
4.1. Dislocation Reorganization and Subgrain Formation (Polygonization Stage)
4.2. Subgrain Boundary Merging and Increased Orientation Difference (Core CDRX Stage)
4.3. HAGBs Migration and Grain Refinement (Completion of Recrystallization)
4.3.1. Grain Refinement Strengthening
4.3.2. Second-Phase Strengthening
4.3.3. Dislocation Strengthening
5. Conclusions
- 1.
- Compared to the traditional gravity casting process, the mechanical properties of Al–Zn–Mg–Cu alloys fabricated using the CRE process are significantly improved: tensile strength, yield strength and elongation increased from 204.7 ± 23.7 MPa, 97.7 ± 12.0 MPa and 11.4 ± 2.4% to 338.0 ± 9.3 MPa, 183.9 ± 7.2 MPa and 13.8 ± 1.3%, respectively, achieving a simultaneous improvement in both strength and ductility.
- 2.
- The CRE process significantly refines the microstructure of the Al–Zn–Mg–Cu alloys: the average grain size is refined from 53.5 μm to 16.1 μm, the fraction of high-angle grain boundaries increases to 88.8%, and the average orientation difference angle increases to 40.8°. Meanwhile, coarse Fe-rich phases are broken down to below 5 μm, and Al2Cu phases are refined from 106.3 nm to 11.7 nm with a more uniform distribution.
- 3.
- Quantitative analysis shows that dislocation strengthening and second-phase strengthening are the dominant factors contributing to the increase in yield strength. The refinement of Fe-rich phases and the uniform dispersion Al2Cu phases improve Orowan strengthening efficiency. Furthermore, the formation and evolution of a high-density dislocation network further enhance deformability and optimize the stress distribution.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shen, G.; Chen, X.; Yan, J.; Fan, L.; Yang, Z.; Zhang, J.; Guan, R. A Review of Progress in the Study of Al-Mg-Zn(-Cu) Wrought Alloys. Metals 2023, 13, 345. [Google Scholar] [CrossRef]
- Lei, C.; Wang, Q.; Ebrahimi, M.; Li, D.; Tang, H.; Zhang, N.; Cai, H. Hot Deformation Behavior and Processing Maps of an As-Cast Al-5Mg-3Zn-1Cu (wt%) Alloy. Materials 2023, 16, 4093. [Google Scholar] [CrossRef] [PubMed]
- Shen, G.; Chen, X.; Yan, J.; Fan, L.; Yang, Z.; Zhang, J.; Guan, R. Effects of heat treatment processes on the mechanical properties, microstructure evolution, and strengthening mechanisms of Al–Zn–Mg–Cu alloy. J. Mater. Res. Technol. 2023, 27, 5380–5388. [Google Scholar] [CrossRef]
- Zhao, Y.; Tian, T.; Jia, H.; Ma, P.; Yang, Z.; Xu, J.; Zha, M.; Wang, H. Effects of Mg/Zn ratio and pre-aging on microstructure and mechanical properties of Al–Zn–Mg–Cu alloys. J. Mater. Res. Technol. 2023, 27, 1874–1885. [Google Scholar] [CrossRef]
- Liu, H.; Zhao, Z.; Zhang, D.; Zhang, J. Mechanical property and microstructure evolution of novel Al–Mg–Zn(–Cu) alloys under dynamic impact. Mater. Sci. Technol. 2021, 37, 852–862. [Google Scholar] [CrossRef]
- Geng, Y. Study on the Early-Stage Precipitation Strengthening Mechanism and Plastic Instability Behavior of the Al-Mg-Zn(-Cu) Alloy for Automotive Application. Ph.D. Thesis, University of Science and Technology Beijing, Beijing, China, 29 May 2023. [Google Scholar]
- Mei, L.; Yang, M.; Chen, X.; Jin, Q.; Wang, Y.; Li, Y. Precipitate evolution and properties of an Al–Zn–Mg–Cu alloy processed by thermomechanical treatment. Mater. Sci. Eng. A 2023, 867, 144716. [Google Scholar] [CrossRef]
- Chen, X.; Liu, K.; Liu, Q.; Kong, J.; Cristino, V.A.; Lo, K.-H.; Xie, Z.; Wang, Z.; Song, D.; Kwok, C.-T. Influence of Zn Content on the Corrosion and Mechanical Properties of Cast and Friction Stir-Welded Al-Si-Mg-Fe-Zn Alloys. Materials 2025, 18, 3306. [Google Scholar] [CrossRef] [PubMed]
- Wen, K.; Li, X.W.; Xiong, B.Q.; Liu, H.L.; Wang, Y.J.; Li, Z.H.; Zhang, Y.A.; Li, Y.N. Influence of minor Sc additions on grain refinement and microstructure characteristics of a high Zn-containing Al–Zn–Mg–Cu-Zr alloy. J. Cent. South Univ. 2022, 29, 780–794. [Google Scholar] [CrossRef]
- Dutkiewicz, J.; Atkinson, H.; Lityńska-Dobrzyńska, L.; Czeppe, T.; Modigell, M. Characterization of semi-solid processing of aluminium alloy 7075 with Sc and Zr additions. Mater. Sci. Eng. A 2013, 580, 362–373. [Google Scholar] [CrossRef]
- Won, S.-J.; So, H.; Han, J.-W.; Oh, S.J.; Kim, K.-H. Roles of Sc and Ag Microalloying Elements in the Mechanical Properties of Al–Zn–Mg–Cu (Al7xxx) Alloy. Metals 2023, 13, 244. [Google Scholar] [CrossRef]
- Afifi, M.A.; Hamdy, M.; Brechtl, J.; Khan, M.A.; Fahim, I.S. Enhancing mechanical properties of Al–Zn–Mg–Cu alloys: The impact of high strain rate compression and subsequent heat treatment on microstructural evolution. Mater. Today Commun. 2024, 40, 110131. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, Y.; Liu, Y.; Xiao, Z.; Yang, L.; Huang, Y. Microstructural evolution and phase transformation behavior of Al-8.1Zn-2.0Mg-1.0Cu-0.2Ag-0.15Zr alloy during isothermal compression. J. Mater. Res. Technol. 2024, 33, 1018–1031. [Google Scholar] [CrossRef]
- Guan, R.; Tie, D.; Li, Z.; An, Y.; Wang, X.; Li, Q.; Chen, X. Microstructure evolution and mechanical property improvement of aluminum alloys with high magnesium content during continuous rheo-extrusion. Mater. Sci. Eng. A 2018, 738, 31–37. [Google Scholar] [CrossRef]
- Yang, S.; Li, B.; Tian, W.; Xu, Z.; Zhang, Y.; Qi, W.; Guan, R. Effect of Sc on microstructure and mechanical properties of Al-Mg alloys during continuous rheo-extrusion. J. Alloys Compd. 2025, 1017, 179070. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, M.; Yang, B.; Bai, J.; Guan, R. A Calculation Model for Cooling Rate of Aluminum Alloy Melts during Continuous Rheo-Extrusion. Materials 2021, 14, 5684. [Google Scholar] [CrossRef] [PubMed]
- Ning, Y.; Yang, L.; Gao, M.; Guan, R. Effect of Extrusion Ratio on Microstructure and Properties of Al-1.5Fe-0.4Cr Alloy Obtained by Continuous Rheo-Extrusion. Metals 2024, 14, 1310. [Google Scholar] [CrossRef]
- Yang, B.; Gao, M.; Liu, Y.; Pan, S.; Meng, S.; Fu, Y.; Guan, R. Formation mechanism of refined Al6 (Mn, Fe) phase particles during continuous rheo-extrusion and its contribution to tensile properties in Al–Mg–Mn–Fe alloys. Mater. Sci. Eng. A 2023, 872, 144952. [Google Scholar] [CrossRef]
- Yang, B.; Gao, M.; Wang, Y.; Guan, R. Dynamic recrystallization behavior and mechanical properties response of rheo-extruded Al–Mg alloys with various Mg contents. Mater. Sci. Eng. A 2022, 849, 143450. [Google Scholar] [CrossRef]
- Lei, C.; Wang, Q.; Tang, H.; Liu, T.; Li, Z.; Jiang, H.; Wang, K.; Ebrahimi, M.; Ding, W. Hot deformation constitutive model and processing maps of homogenized Al–5Mg–3Zn–1Cu alloy. J. Mater. Res. Technol. 2021, 14, 324–339. [Google Scholar] [CrossRef]
- GB/T 228.1-2021; Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature. Standardization Administration of China (SAC), Standards Press of China: Beijing, China, 2021.
- GB/T 4340.1-2024; Metallic Materials—Vickers Hardness Test—Part 1: Test Method. Standardization Administration of China (SAC), Standards Press of China: Beijing, China, 2024.
- Zhang, Z.; Li, Y.; Li, H.; Zhang, D.; Zhang, J. Effect of high Cu concentration on the mechanical property and precipitation behavior of Al–Mg–Zn-(Cu) crossover alloys. J. Mater. Res. Technol. 2022, 20, 4585–4596. [Google Scholar] [CrossRef]
- Wu, S.; Zhu, B.; Jiang, W.; Qiu, H.; Guo, Y. Hot Deformation Behavior and Microstructure Evolution of a Novel Al-Zn-Mg-Li-Cu Alloy. Materials 2022, 15, 6769. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.-Q.; Jia, H.-L.; Tian, T.; Gu, T.; Ma, P.-K.; Song, J.-W.; Zha, M.; Wang, H.-Y. Improved mechanical properties of Al-xMg-yZn-Cu alloys via optimized Mg/Zn ratio and thermomechanical processing. Mater. Sci. Eng. A 2024, 911, 146916. [Google Scholar] [CrossRef]
- Yang, Z.; Tang, J.; Mo, X.; Chen, W.; Fu, D.; Zhang, H.; Teng, J.; Jiang, F. Microstructure, mechanical properties, and strengthening mechanisms of ultra-high strength Al–Zn–Mg–Cu alloy prepared by continuous extrusion forming process. Mater. Des. 2024, 242, 112985. [Google Scholar] [CrossRef]
- He, F.; Shi, L.; Wu, C. Effect of Elastic Strain Energy on Dynamic Recrystallization During Friction Stir Welding of Dissimilar Al/Mg Alloys. Metals 2025, 15, 577. [Google Scholar] [CrossRef]
- Huang, K.; Logé, R.E. A review of dynamic recrystallization phenomena in metallic materials. Mater. Des. 2016, 111, 548–574. [Google Scholar] [CrossRef]
- Yang, M.; Liu, S.; Zhang, Y.; Tang, J.; Zhang, M. Mechanism for enhanced precipitation strengthening due to the addition of copper to Al-Zn-Mg alloys with high Zn/Mg ratio. Mater. Des. 2023, 234, 112295. [Google Scholar] [CrossRef]
- Dong, B.; Xia, Y.; Cai, X.; Lin, S.; Fan, C. Addition of Sc in wire-based directed energy deposition of Al–Zn–Mg–Cu alloy: Microalloying to refine grains and improve mechanical properties. Addit. Manuf. 2023, 67, 103494. [Google Scholar] [CrossRef]
- Yang, B.; Wang, Y.; Gao, M.; Wang, C.; Guan, R. Microstructural evolution and strengthening mechanism of Al–Mg alloys with fine grains processed by accumulative continuous extrusion forming. J. Mater. Sci. Technol. 2022, 128, 195–204. [Google Scholar] [CrossRef]
- Wei, S.; Kim, J.; Tasan, C.C. In-situ investigation of plasticity in a Ti-Al-V-Fe (α+ β) alloy: Slip mechanisms, strain localization, and partitioning. Int. J. Plast. 2022, 148, 103131. [Google Scholar] [CrossRef]
- Santos-Güemes, R.; Bellón, B.; Esteban-Manzanares, G.; Segurado, J.; Capolungo, L.; LLorca, J. Multiscale modelling of precipitation hardening in Al–Cu alloys: Dislocation dynamics simulations and experimental validation. Acta Mater. 2020, 188, 475–485. [Google Scholar] [CrossRef]
- Ren, X.; Jiang, X.; Yuan, T.; Zhao, X.; Chen, S. Microstructure and properties research of Al–Zn–Mg–Cu alloy with high strength and high elongation fabricated by wire arc additive manufacturing. J. Mater. Process. Technol. 2022, 307, 117665. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, D.; Liu, H.; Zhuang, L.; Zhang, J. Precipitation hardening and intergranular corrosion behavior of novel Al–Mg–Zn (-Cu) alloys. J. Alloys Compd. 2021, 853, 157199. [Google Scholar] [CrossRef]
- Sha, G.; Cerezo, A. Early-stage precipitation in Al–Zn–Mg–Cu alloy (7050). Acta Mater. 2004, 52, 4503–4516. [Google Scholar] [CrossRef]
- Song, C.-R.; Dong, B.-X.; Zhang, S.-Y.; Yang, H.-Y.; Liu, L.; Kang, J.; Meng, J.; Luo, C.-J.; Wang, C.-G.; Cao, K.; et al. Recent progress of Al–Mg alloys: Forming and preparation process, microstructure manipulation and application. J. Mater. Res. Technol. 2024, 31, 3255–3286. [Google Scholar] [CrossRef]
- Cao, L.; Lin, X.; Zhang, Z.; Bai, M.; Wu, X. Effect of Hot Deformation and Heat Treatment on the Microstructure and Properties of Spray-Formed Al–Zn–Mg–Cu Alloys. Metals 2024, 14, 451. [Google Scholar] [CrossRef]











| Element | Al | Mg | Zn | Cu | Mn | Ti | Fe | Si | Zr | Cr |
|---|---|---|---|---|---|---|---|---|---|---|
| Content | Bal. | 1.96 | 3.23 | 0.20 | 0.02 | 0.02 | 0.21 | 0.05 | 0.01 | 0.13 |
| Sample | Average Grain Size (μm) | Fraction of HAGBs (%) | Average Misorientation Agle (°) |
|---|---|---|---|
| Gravity casting | 53.5 | 81.8 | 16.4 |
| CRE | 16.1 | 88.8 | 40.8 |
| Symbol | Description | Values | Unit | Ref. |
|---|---|---|---|---|
| k | Hall-Petch coefficient | 0.14 | MPa·m1/2 | [23] |
| d | Average grain size | 53.5/16.1 | μm | This work |
| G | Shear modulus | 26.0 | GPa | [19] |
| b | Burgers vector | 0.286 | nm | [23] |
| dsp | Average diameter of secondary phases | 106.3/11.73 | nm | This work |
| fv | Volume fraction of secondary phases | 0.017/0.085 | - | This work |
| a | Fe-rich phase size | 256.21/63.33 | nm | This work |
| M | Mean orientation factor | 3 | - | [23] |
| ρ | Dislocation density | 1.32 × 1013/1.04 × 1014 | m−2 | This work |
| α | Constant | 0.3 | - | [31] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; An, J.; Xu, M.; Zhang, H.; Wei, G.; Yang, C.; Wei, Z.; Shen, W.; Ding, W. The Mechanism of Microstructure Refinement and the Synergistic Strength–Ductility Enhancement in Al–Zn–Mg–Cu Alloys Processed by Continuous Rheo-Extrusion. Metals 2025, 15, 1167. https://doi.org/10.3390/met15111167
Wang Z, An J, Xu M, Zhang H, Wei G, Yang C, Wei Z, Shen W, Ding W. The Mechanism of Microstructure Refinement and the Synergistic Strength–Ductility Enhancement in Al–Zn–Mg–Cu Alloys Processed by Continuous Rheo-Extrusion. Metals. 2025; 15(11):1167. https://doi.org/10.3390/met15111167
Chicago/Turabian StyleWang, Ziren, Jiazhi An, Mei Xu, Haixia Zhang, Guoli Wei, Chengliang Yang, Zhenpeng Wei, Wenzheng Shen, and Wanwu Ding. 2025. "The Mechanism of Microstructure Refinement and the Synergistic Strength–Ductility Enhancement in Al–Zn–Mg–Cu Alloys Processed by Continuous Rheo-Extrusion" Metals 15, no. 11: 1167. https://doi.org/10.3390/met15111167
APA StyleWang, Z., An, J., Xu, M., Zhang, H., Wei, G., Yang, C., Wei, Z., Shen, W., & Ding, W. (2025). The Mechanism of Microstructure Refinement and the Synergistic Strength–Ductility Enhancement in Al–Zn–Mg–Cu Alloys Processed by Continuous Rheo-Extrusion. Metals, 15(11), 1167. https://doi.org/10.3390/met15111167
