The Influence of Long-Period Stacking Ordered Structures on Heat Resistance of Mg-12Y-0.6Mn-xZn (x = 0, 4, 6 wt.%) Alloys
Abstract
1. Introduction
2. Experimental Procedure
3. Result
3.1. Microstructure
3.2. Mechanical Properties
4. Discussion
4.1. The Strengthening Effect of 18R-LPSO on Mechanical Properties at Room Temperature
4.2. The Strengthening Effect of 18R-LPSO Phase on Mechanical Properties at Elevated Temperature
4.3. The Effect of Mn on LPSO
5. Conclusions
- (1)
- At room temperature, the large volume fraction 18R-LPSO phase after extrusion effectively improves the strength of the alloy, but the continuous and complete blocky 18R-LPSO phase greatly reduces the ductility of the alloy.
- (2)
- Due to the high -volume fraction of LPSO phase in the alloys, the calculation of alloy strength should be based on the strength superposition of composite materials. The strengthening effect of precipitation gradually increases with the volume fraction of the LPSO phase, which in YZ4 alloy is 266.80 MPa, and in YZ6 alloy is 269.68 MPa. The volume fraction of the LPSO phase in YZ6 increased by 21% compared to YZ4 alloy, and the corresponding precipitation strengthening contribution of the LPSO phase increased by 57.8 MPa.
- (3)
- The dislocations are accumulated in the LPSO phase both in YZ4 and YZ6 alloys, LPSO serving as a barrier to impede the movement of dislocations, limiting the accumulation of dislocations inside the LPSO structure without expanding into the α-Mg matrix. The superior stability of the LPSO can cause pinning effects on the grain boundaries, hindering their movement and improving the alloy’s strength.
- (4)
- Some kinks formed in YZ4 and YZ6 alloys after extrusion, which can further accommodate the dislocations generated during deformation and improve the strength of the alloy after the formation of the kink in LPSO. As the volume fraction of the LPSO phase increases, the kink of LPSO changes from multi-angle to single angle, which is the reason why the YZ4 has better ductility.
- (5)
- At elevated temperatures, due to the excellent thermal stability of the 18R-LPSO phase, the large volume fraction of blocky 18R-LPSO effectively prevents crack propagation at elevated temperature, thereby improving the elevated-temperature performance of the alloy.
- (6)
- The Mn particles pinned in the 18R-LPSO phase as an obstacle to dislocation may reduce the stacking fault energy of the system and make it more stable, which enhances the thermal stability of the 18R-LPSO phase, thereby enhancing the stability of the alloy at elevated temperature.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Akbarzadeh, F.Z.; Sarraf, M.; Ghomi, E.R.; Kumar, V.V.; Salehi, M.; Ramakrishna, S.; Bae, S. A state-of-the-art review on recent advances in the fabrication and characteristics of magnesium-based alloys in biomedical applications. J. Magnes. Alloys 2024, 12, 2569–2594. [Google Scholar] [CrossRef]
- Wang, S.; Du, C.; Shen, X.; Wu, X.; Ouyang, S.; Tan, J.; She, J.; Tang, A.; Chen, X.; Pan, F. Rational design, synthesis and prospect of biodegradable magnesium alloy vascular stents. J. Magnes. Alloys 2023, 11, 3012–3037. [Google Scholar] [CrossRef]
- Qin, X.; Liu, H.; Chen, Y.; Sun, C.; Yan, K.; Ju, J.; Jiang, J.; Bai, J.; Xue, F. Significant refinement of 18R-LPSO phase and enhancement of mechanical properties in Mg97Y2Zn1 alloy through an industrially viable processing method. J. Alloys Compd. 2025, 1024, 180211. [Google Scholar] [CrossRef]
- Hu, J.; Wu, J.; Liu, X.; Zhao, D.; Liang, L.; Peng, J. Influence of Y/Zn Ratio on Secondary Phase Strengthening of Mg-Y-Zn Alloy. Metals 2025, 15, 359. [Google Scholar] [CrossRef]
- He, J.; Chen, W.Z.; Zhang, Z.J.; Chen, X.M. Extrusion techniques on microstructure optimization and quantitative analysis of texture influence on ductility improvement for heat-resistant Mg–Nd–Zn–Zr magnesium alloy. J. Mater. Sci. 2022, 57, 4334–4353. [Google Scholar] [CrossRef]
- Jin, Q.; Shao, X.; Li, J.; Peng, Z.; Lv, M.; Zhang, B.; Li, Y.; Ma, X. The Role of Melt Cooling Rate on the Interface between 18R and Mg Matrix in Mg97Zn1Y2 Alloys. J. Magnes. Alloys 2023, 11, 2883–2890. [Google Scholar] [CrossRef]
- Wang, G.; Mao, P.; Wang, Z.; Zhou, L.; Wang, F.; Liu, Z. High strain rates deformation behavior of an as-extruded Mge2.5Zne4Ymagnesium alloy containing LPSO phase at high temperatures. J. Mater. Res. Technol. 2022, 21, 35–50. [Google Scholar]
- Oñorbe, E.; Garcés, G.; Pérez, P.; Cabezas, S.; Klaus, M.; Genzel, C.; Frutos, E.; Adeva, P. The evolution of internal strain in Mg–Y–Zn alloys with a long period stacking ordered structure. Scr. Mater. 2011, 65, 719–722. [Google Scholar] [CrossRef]
- Wu, S.Z.; Qiao, X.G.; Qin, S.H.; Chi, Y.Q.; Zheng, M.Y. Improved strength in wrought Mg–Y–Ni alloys by adjusting the block-shaped LPSO phase and plate-shaped γ’ phase. Mater. Sci. Eng. 2022, 831, 142–198. [Google Scholar] [CrossRef]
- Luo, A.A. Recent magnesium alloy development for elevated temperature applications. Int. Mater. Rev. 2004, 49, 13–30. [Google Scholar] [CrossRef]
- Ding, W.J.; Wu, Y.J.; Peng, L.M.; Zeng, X.Q.; Yuan, G.Y.; Lin, D.L. Formation of 14H-type long period stacking ordered structure in the as-cast and solid solution treated Mg-Gd-Zn-Zr alloys. J. Mater. Res. 2009, 24, 1842–1854. [Google Scholar] [CrossRef]
- Xu, C.; Zheng, M.Y.; Wu, K.; Wang, E.D.; Fan, G.H.; Xu, S.W.; Kamado, S.; Liu, X.D.; Wang, G.J.; Lv, X.Y. Effect of cooling rate on the microstructure evolution and mechanical properties of homogenized Mg–Gd–Y–Zn–Zr alloy. Mater. Sci. Eng. A 2013, 559, 364–370. [Google Scholar] [CrossRef]
- Hagihara, K.; Kinoshita, A.; Fukusumi, Y.; Yamasaki, M.; Kawamura, Y. High-temperature compressive deformation behavior of Mg97Zn1Y2 extruded alloy containing a long-period stacking ordered (LPSO) phase. Mater. Sci. Eng. A 2013, 560, 71–79. [Google Scholar] [CrossRef]
- Zhu, Y.M.; Morton, A.J.; Nie, J.F. The 18R and 14H long-period stacking ordered structures in Mg–Y–Zn alloys. Acta Mater. 2010, 58, 2936–2947. [Google Scholar] [CrossRef]
- Liu, H.; Bai, J.; Yan, K.; Yan, J.; Ma, A.; Jiang, J. Comparative studies on evolution behaviors of 14H LPSO precipitates in as-cast and as-extruded Mg–Y–Zn alloys during annealing at 773 K. Mater. Des. 2016, 93, 9–18. [Google Scholar] [CrossRef]
- Xu, C.; Nakata, T.; Fan, G.H.; Li, X.W.; Tang, G.Z.; Geng, L.; Kamado, S. Microstructure and mechanical properties of extruded Mg–Gd–Y–Zn alloy with Mn or Zr addition. J. Mater. Sci. 2019, 54, 10473–10488. [Google Scholar] [CrossRef]
- Wang, Y.; Rong, W.; Wu, Y.J.; Peng, L.M.; Chen, J.; Ding, W.J. Effects of Mn addition on the microstructures and mechanical properties of the Mg-15Gd-1 Zn alloy. J. Alloys Compd. 2016, 698, 1066–1076. [Google Scholar] [CrossRef]
- GB/T 228-2002; Code for Metallic materials—Tensile Testing at Ambient Temperature. China Standard Press: Beijing, China, 2022.
- GB 145-85; Code for Center Holes. China Standard Press: Beijing, China, 1985.
- Hao, J.; Zhang, J.; Wang, H.; Cheng, W.; Bai, Y. Microstructure and mechanical properties of Mg-Zn-Y-Mn magnesium alloys with different Zn/Y atomic ratio. J. Mater. Res. Technol. 2022, 19, 1645–1650. [Google Scholar] [CrossRef]
- Zhao, D.; Hu, J.; Wang, R.; Yan, G.; Song, W.; Liang, L.; Peng, J. The Effect of Y Content on the Strength and Toughness of Mg-Y-Zn Alloys. Metals 2025, 10, 1134. [Google Scholar] [CrossRef]
- Bai, Y.; Teng, X.; Ye, B.; Wang, G.; Zhao, D.; Cheng, W. Thermophysical Properties for Mg–Y–Zn Alloys with Various Phase Types: Microstructural Role and Numerical Prediction. Metall. Mater. Trans. A 2025, 56, 2976–2988. [Google Scholar] [CrossRef]
- Singh, A.; Watanabe, M.; Kato, A.; Tsai, A.P. Microstructure and strength of quasicrystal containing extruded Mg–Zn–Y alloys for elevated temperature application. Mater. Sci. Eng. A 2004, 385, 382–396. [Google Scholar] [CrossRef]
- Jeong, H.T.; Kim, W.J. The hot compressive deformation behavior of cast Mg-Gd-Y-Zn-Zr alloys with and without LPSO phase in their initial microstructures. J. Magnes. Alloys 2022, 10, 2901–2917. [Google Scholar] [CrossRef]
- Garcés, G.; Requena, G.; Tolnai, D.; Pérez, P.; Adeva, P.; Stark, A.; Schell, N. Influence of rare-earth addition on the long-period stacking ordered phase in cast Mg–Y–Zn alloys. J. Mater. Sci. 2014, 49, 2714–2722. [Google Scholar] [CrossRef]
- Itoi, T.; Inazawa, T.; Yamasaki, M.; Kawamura, Y.; Hirohashi, M. Microstructure and mechanical properties of Mg-Zn-Y alloy sheet prepared by hot-rolling. Mater. Sci. Eng. A 2013, 560, 216–223. [Google Scholar] [CrossRef]
- Yan, B.; Dong, X.; Ma, R.; Chen, S.; Pan, Z.; Ling, H. Effects of heat treatment on microstructure, mechanical properties and damping capacity of Mg-Zn-Y-Zr alloy. Mater. Sci. Eng. A 2014, 594, 168–177. [Google Scholar] [CrossRef]
- Oñorbe, E.; Garcés, G.; Pérez, P.; Adeva, P. Effect of the LPSO volume fraction on the microstructure and mechanical properties of Mg-Y2x-Znx alloys. J. Mater. Sci. 2012, 47, 1085–1093. [Google Scholar] [CrossRef]
- Meng, M.; Lei, G.X.; Zhang, H.L.; Zhang, X.H.; Yu, J.M. Precipitate characteristics and precipitation-strengthening mechanism of Mg-13Gd-4Y-2Zn-0.6Zr alloy. J. Mater. Res. Technol. 2023, 23, 5783–5795. [Google Scholar] [CrossRef]
- Zhu, Y.M.; Morton, A.J.; Nie, J.F. Growth and transformation mechanisms of 18R and 14H in Mg–Y–Zn alloys. Acta Mater. 2012, 60, 6562–6572. [Google Scholar] [CrossRef]
- Nie, J.F.; Zhu, Y.M.; Morton, A.J. On the structure, transformation and deformation of long-period stacking ordered phases in Mg-Y-Zn alloys. Metall. Mater. Trans. A 2014, 45, 3338–3348. [Google Scholar] [CrossRef]
- Li, C.Q.; Xu, D.K.; Zeng, Z.R.; Wang, B.J.; Sheng, L.Y.; Chen, X.B.; Han, E.H. Effect of volume fraction of LPSO phases on corrosion and mechanical properties of Mg-Zn-Y alloys. Mater. Des. 2017, 121, 430–441. [Google Scholar] [CrossRef]
- Xu, C.; Nakata, T.; Fan, G.H.; Li, X.W.; Tang, G.Z.; Kamado, S. Enhancing strength and creep resistance of Mg–Gd–Y–Zn–Zr alloy by substituting Mn for Zr. J. Magnes. Alloys 2019, 7, 388–399. [Google Scholar] [CrossRef]
- Anyanwu, I.A.; Kamado, S.; Kojima, Y. Aging characteristics and high temperature tensile properties of Mg-Gd-Y-Zr alloys. Mater. Trans. 2001, 42, 1206–1211. [Google Scholar] [CrossRef]
- Chen, D.J.; Wang, Q.; Zhang, L.; Li, T.; Yuan, J.W.; Shi, G.L. Comparison of Thermal Deformation Behavior and Characteristics of Mg-Gd-Y-Zn Alloys with and without Bulk LPSO Phase. Materials 2023, 16, 5943. [Google Scholar] [CrossRef]
- Su, N.; Wu, Y.; Deng, Q.; Chang, Z.; Wu, Q.; Xue, Y.; Yang, K.; Chen, Q.; Peng, L. Synergic effects of Gd and Y contents on the age-hardening response and elevated-temperature mechanical properties of extruded Mg-Gd (-Y)-Zn-Mn alloys. Mater. Sci. Eng. A 2021, 810, 141019. [Google Scholar] [CrossRef]
- Xiao, G.Y.; Yang, H.; Qin, J.Q.; Ma, W.Q. Microstructure evolution and quench sensitivity characterizations of Mg-9.5 Gd-0.9 Zn-0.5 Zr alloy. Vacuum 2020, 181, 109651. [Google Scholar] [CrossRef]
- Xia, X.; Zhang, K.; Ma, M.; Li, T. Microstructures and strengthening mechanisms of Mg-8.2 Gd-4.6 Y-1.5 Zn-0.4 Zr alloy containing LPSO, β′ and γ type phases. J. Rare Earths 2020, 38, 1119–1125. [Google Scholar] [CrossRef]
- Hagihara, K.; Kinoshita, A.; Sugino, Y.; Yamasaki, M.; Kawamura, Y.; Yasuda, H.Y.; Umakoshi, Y. Effect of long-period stacking ordered phase on mechanical properties of Mg97Zn1Y2 extruded alloy. Acta Mater. 2010, 19, 6282–6293. [Google Scholar] [CrossRef]
- Shao, X.H.; Yang, Z.Q.; Ma, X.L. Strengthening and toughening mechanisms in Mg–Zn–Y alloy with a long period stacking ordered structure. Acta Mater. 2010, 58, 4760–4771. [Google Scholar] [CrossRef]
- Leng, Z.; Zhang, J.; Zhang, M.; Liu, X.; Zhan, H.; Wu, R. Microstructure and high mechanical properties of Mg–9RY–4Zn (RY: Y-rich misch metal) alloy with long period stacking ordered phase. Mater. Sci. Eng. A 2012, 540, 38–45. [Google Scholar] [CrossRef]
- Chino, Y.; Mabuchi, M.; Hagiwara, S.; Iwasaki, H.; Yamamoto, A.; Tsubakino, H. Novel equilibrium two phase Mg alloy with the long-period ordered structure. Scr. Mater. 2004, 51, 711–714. [Google Scholar] [CrossRef]
- Gao, H.; Ikeda, K.; Morikawa, T.; Higashida, K. Analysis of kink boundaries in deformed synchronized long-period stacking ordered magnesium alloys. Mater. Lett. 2015, 146, 30–33. [Google Scholar] [CrossRef]
- Liu, F.; Xie, H.J.; Li, Y. Partial Substitution of Gd with Y on the Lattice Parameter, Microstructure, and Mechanical Properties of the As-Cast Mg-4Gd-2Zn Alloy. J. Mater. Eng. Perform. 2022, 32, 3542–3549. [Google Scholar] [CrossRef]
- Wang, J.; Yuan, Y.; Cheng, X.; Li, Y.; Jiang, S.; Chen, T.; Tang, A.; Wu, L.; Wang, J.; Pan, F. First-principle study of the basal-plane stacking fault energies of ternary Mg alloys. J. Mater. Sci. 2022, 57, 18417–18436. [Google Scholar] [CrossRef]
- Hagihara, K.; Yokotani, N.; Umakoshi, Y. Plastic deformation behavior of Mg12YZn with 18R long-period stacking ordered structure. Intermetallics 2010, 18, 267–276. [Google Scholar] [CrossRef]
- Tong, L.B.; Li, X.H.; Zhang, H.J. Effect of long period stacking ordered phase on the microstructure, texture and mechanical properties of extruded Mg–Y–Zn alloy. Mater. Sci. Eng. A 2013, 563, 177–183. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, X.; Hu, W.; Li, J.; Le, Q.; Bao, L.; Zhu, Z.; Cui, J. Microstructures, mechanical properties and corrosion behaviors of Mg-Y-Zn-Zr alloys with specific Y/Zn mole ratios. J. Alloys Compd. 2015, 624, 116–125. [Google Scholar] [CrossRef]
- Li, Y.; Xiao, W.; Wang, F.; Hu, T.; Ma, C. The roles of long period stacking ordered structure and Zn solute in the hot deformation behavior of Mg-Gd-Zn alloys. J. Alloys Compd. 2018, 745, 33–43. [Google Scholar] [CrossRef]
- Chen, B.; Lin, D.L.; Zeng, X.Q.; Lu, C. Elevated temperature mechanical behavior of Mg-Y-Zn alloys. Mater. Sci. Forum 2007, 546, 237–240. [Google Scholar] [CrossRef]
- Inoue, A.; Kawamura, Y.; Matsushita, M.; Hayashi, K. High strength nanocrystalline Mg-based alloys. J. Metastable Nanocrystalline Mater. 2002, 13, 509–518. [Google Scholar] [CrossRef]
- Liu, X.; Hu, W.; Le, Q.; Zhang, Z.; Bao, L.; Cui, J. Microstructures and mechanical properties of high performance Mg–6Gd–3Y–2Nd–0.4 Zr alloy by indirect extrusion and aging treatment. Mater. Sci. Eng. A 2014, 612, 380–386. [Google Scholar] [CrossRef]
- Ren, Q.; Yuan, S.; Wang, J.; Ma, D.; Li, W.; Wang, L. Microstructure and High-Temperature Mechanical Properties of Mg-1Al-12Y Alloy Containing LPSO Phase. Metals 2023, 13, 158. [Google Scholar] [CrossRef]
- Zhu, Q.; Li, Y.; Zhang, H.; Wang, J.; Jiang, H.; Zhao, J. Revealing the Interaction between Dislocations and LPSO–Precipitates Structure in a Mg-Y-Al Alloy at Different Temperatures. Crystals 2024, 14, 1018. [Google Scholar] [CrossRef]
- Su, N.; Xue, X.; Zhou, H.; Wu, Y.; Deng, Q.; Yang, K.; Chen, Q.; Chen, B.; Peng, L. Effects of nanoprecipitates and LPSO structure on deformation and fracture behaviour of high-strength Mg-Gd-Y-Zn-Mn alloys. Mater. Charact. 2020, 165, 110396. [Google Scholar] [CrossRef]
- Gröbner, J.; Kozlov, A.; Fang, X.Y.; Geng, J.; Nie, J.F.; Schmid-Fetzer, R. Phase equilibria and transformations in ternary Mg-rich Mg–Y–Zn alloys. Acta Mater. 2012, 60, 5948–5962. [Google Scholar] [CrossRef]
- Fan, T.W.; Tang, B.Y.; Peng, L.M.; Ding, W.J. First-principles study of long-period stacking ordered-like multi-stacking fault structures in pure magnesium. Scripta Mater. 2011, 64, 942–945. [Google Scholar] [CrossRef]
- Yang, H.; Chen, X.; Huang, G.; Song, J.; She, J.; Tan, J.; Zheng, K.; Jin, Y.; Jiang, B.; Pan, F. Microstructures and mechanical properties of titanium-reinforced magnesium matrix composites: Review and perspective. J. Magnes. Alloys 2022, 10, 2311–2333. [Google Scholar] [CrossRef]













| Sample | Temperature | UTS (MPa) | TYS (MPa) | δ (%) |
|---|---|---|---|---|
| YZ0 | RT | 313 ± 2 | 210 ± 1 | 7.5 |
| 300 °C | 249 ± 2 | 186 ± 1 | 39.6 | |
| YZ4 | RT | 392 ± 3 | 241 ± 2 | 12.9 |
| 300 °C | 253 ± 2 | 195 ± 1 | 39.6 | |
| YZ6 | RT | 388 ± 3 | 258 ± 2 | 9.0 |
| 300 °C | 270 ± 2 | 225 ± 1 | 38.5 |
| Sample | Vf (%) | l (μm) | d (μm) |
|---|---|---|---|
| YZ4 | 42 | 85.6 ± 4.2 | 15.5 ± 1.3 |
| YZ6 | 63 | 93.9 ± 5.5 | 13.8 ± 1.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Y.; She, J.; Jing, X.; Cheng, R.; Wu, L.; Zhang, W.; Tang, A.; Jiang, B. The Influence of Long-Period Stacking Ordered Structures on Heat Resistance of Mg-12Y-0.6Mn-xZn (x = 0, 4, 6 wt.%) Alloys. Metals 2025, 15, 1335. https://doi.org/10.3390/met15121335
Xiao Y, She J, Jing X, Cheng R, Wu L, Zhang W, Tang A, Jiang B. The Influence of Long-Period Stacking Ordered Structures on Heat Resistance of Mg-12Y-0.6Mn-xZn (x = 0, 4, 6 wt.%) Alloys. Metals. 2025; 15(12):1335. https://doi.org/10.3390/met15121335
Chicago/Turabian StyleXiao, Yang, Jia She, Xuerui Jing, Renju Cheng, Lu Wu, Wei Zhang, Aitao Tang, and Bin Jiang. 2025. "The Influence of Long-Period Stacking Ordered Structures on Heat Resistance of Mg-12Y-0.6Mn-xZn (x = 0, 4, 6 wt.%) Alloys" Metals 15, no. 12: 1335. https://doi.org/10.3390/met15121335
APA StyleXiao, Y., She, J., Jing, X., Cheng, R., Wu, L., Zhang, W., Tang, A., & Jiang, B. (2025). The Influence of Long-Period Stacking Ordered Structures on Heat Resistance of Mg-12Y-0.6Mn-xZn (x = 0, 4, 6 wt.%) Alloys. Metals, 15(12), 1335. https://doi.org/10.3390/met15121335
