Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (907)

Search Parameters:
Keywords = heat of hydration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4070 KiB  
Article
Effects of Aggregate Size and Nozzle Diameter on Printability and Mechanical Properties of 3D Printed Ferronickel Slag–GGBFS Concrete
by Suguo Wang, Xing Wang, Xueyuan Yan and Shanghong Chen
Materials 2025, 18(15), 3681; https://doi.org/10.3390/ma18153681 - 5 Aug 2025
Abstract
Ferronickel slag and ground granulated blast-furnace slag (GGBFS) are solid waste by-products from the metallurgical industry. When incorporated into concrete, they help promote resource utilization, reduce hydration heat, and lower both solid waste emissions and the carbon footprint. To facilitate the application of [...] Read more.
Ferronickel slag and ground granulated blast-furnace slag (GGBFS) are solid waste by-products from the metallurgical industry. When incorporated into concrete, they help promote resource utilization, reduce hydration heat, and lower both solid waste emissions and the carbon footprint. To facilitate the application of ferronickel slag–GGBFS concrete in 3D printing, this study examines how aggregate size and nozzle diameter affect its performance. The investigation involves in situ printing, rheological characterization, mechanical testing, and scanning electron microscopy (SEM) analysis. Results indicate that excessively large average aggregate size negatively impacts the smooth extrusion of concrete strips, resulting in a cross-sectional width that exceeds the preset dimension. Excessively small average aggregate size results in insufficient yield stress, leading to a narrow cross-section of the extruded strip that fails to meet printing specifications. The extrusion performance is closely related to both the average aggregate size and nozzle diameter, which can significantly influence the normal extrusion stability and print quality of 3D printed concrete strips. The thixotropic performance improves with an increase in the aggregate size. Both compressive and flexural strengths improve with increasing aggregate size but decrease with an increase in the printing nozzle size. Anisotropy in mechanical behavior decreases progressively as both parameters mentioned increase. By examining the cracks and pores at the interlayer interface, this study elucidates the influence mechanism of aggregate size as well as printing nozzle parameters on the mechanical properties of 3D printed ferronickel slag–GGBFS concrete. This study also recommends the following ranges. When the maximum aggregate size exceeds 50% of the nozzle diameter, smooth extrusion is not achievable. If it falls between 30% and 50%, extrusion is possible but shaping remains unstable. When it is below 30%, both stable extrusion and good shaping can be achieved. Full article
Show Figures

Figure 1

20 pages, 3271 KiB  
Article
Calculation Model for the Degree of Hydration and Strength Prediction in Basalt Fiber-Reinforced Lightweight Aggregate Concrete
by Yanqun Sun, Haoxuan Jia, Jianxin Wang, Yanfei Ding, Yanfeng Guan, Dongyi Lei and Ying Li
Buildings 2025, 15(15), 2699; https://doi.org/10.3390/buildings15152699 - 31 Jul 2025
Viewed by 217
Abstract
The combined application of fibers and lightweight aggregates (LWAs) represents an effective approach to achieving high-strength, lightweight concrete. To enhance the predictability of the mechanical properties of fiber-reinforced lightweight aggregate concrete (LWAC), this study conducts an in-depth investigation into its hydration characteristics. In [...] Read more.
The combined application of fibers and lightweight aggregates (LWAs) represents an effective approach to achieving high-strength, lightweight concrete. To enhance the predictability of the mechanical properties of fiber-reinforced lightweight aggregate concrete (LWAC), this study conducts an in-depth investigation into its hydration characteristics. In this study, high-strength LWAC was developed by incorporating low water absorption LWAs, various volume fractions of basalt fiber (BF) (0.1%, 0.2%, and 0.3%), and a ternary cementitious system consisting of 70% cement, 20% fly ash, and 10% silica fume. The hydration-related properties were evaluated through isothermal calorimetry test and high-temperature calcination test. The results indicate that incorporating 0.1–0.3% fibers into the cementitious system delays the early hydration process, with a reduced peak heat release rate and a delayed peak heat release time compared to the control group. However, fitting the cumulative heat release over a 72-h period using the Knudsen equation suggests that BF has a minor impact on the final degree of hydration, with the difference in maximum heat release not exceeding 3%. Additionally, the calculation model for the final degree of hydration in the ternary binding system was also revised based on the maximum heat release at different water-to-binder ratios. The results for chemically bound water content show that compared with the pre-wetted LWA group, under identical net water content conditions, the non-pre-wetted LWA group exhibits a significant reduction at three days, with a decrease of 28.8%; while under identical total water content conditions it shows maximum reduction at ninety days with a decrease of 5%. This indicates that pre-wetted LWAs help maintain an effective water-to-binder ratio and facilitate continuous advancement in long-term hydration reactions. Based on these results, influence coefficients related to LWAs for both final degree of hydration and hydration rate were integrated into calculation models for degrees of hydration. Ultimately, this study verified reliability of strength prediction models based on degrees of hydration. Full article
Show Figures

Figure 1

15 pages, 2594 KiB  
Article
Novel Zwitterionic Hydrogels with High and Tunable Toughness for Anti-Fouling Application
by Kefan Wu, Xiaoyu Guo, Jingyao Feng, Xiaoxue Yang, Feiyang Li, Xiaolin Wang and Hui Guo
Gels 2025, 11(8), 587; https://doi.org/10.3390/gels11080587 - 30 Jul 2025
Viewed by 212
Abstract
Zwitterionic hydrogels have emerged as eco-friendly anti-fouling materials owing to their superior hydration-mediated resistance to biofouling. Nevertheless, their practical utility remains constrained by intrinsically poor mechanical robustness. Herein, this study proposes a novel strategy to develop novel tough zwitterionic hydrogels by freezing the [...] Read more.
Zwitterionic hydrogels have emerged as eco-friendly anti-fouling materials owing to their superior hydration-mediated resistance to biofouling. Nevertheless, their practical utility remains constrained by intrinsically poor mechanical robustness. Herein, this study proposes a novel strategy to develop novel tough zwitterionic hydrogels by freezing the gels’ polymer network. As a proof of concept, a zwitterionic hydrogel was synthesized via copolymerization of hydrophobic monomer phenyl methacrylate (PMA) and hydrophilic cationic monomer N-(3-dimethylaminopropyl) methacrylamide (DMAPMA), followed by post-oxidation to yield a zwitterionic structure. At service temperature, the rigid and hydrophobic PMA segments remain frozen, while the hydrophilic zwitterionic units maintain substantial water content by osmotic pressure. Synergistically, the zwitterionic hydrogel achieves robust toughness and adhesiveness, with high rigidity (66 MPa), strength (4.78 MPa), and toughness (2.53 MJ/m3). Moreover, the hydrogel exhibits a distinct temperature-dependent behavior by manifesting softer and more stretchable behavior after heating, since the thawing of the gel network at high temperatures increases segmental mobility. Therefore, it achieved satisfactory adhesiveness to substrates (80 kPa). Additionally, the hydrogel demonstrated remarkable anti-fouling performance, effectively suppressing biofilm formation and larval attachment. In summary, this work opens up promising prospects for the development of zwitterionic hydrogels with high application potential. Full article
Show Figures

Figure 1

17 pages, 2495 KiB  
Article
Production Capacity and Temperature–Pressure Variation Laws in Depressurization Exploitation of Unconsolidated Hydrate Reservoir in Shenhu Sea Area
by Yuanwei Sun, Yuanfang Cheng, Yanli Wang, Jian Zhao, Xian Shi, Xiaodong Dai and Fengxia Shi
Processes 2025, 13(8), 2418; https://doi.org/10.3390/pr13082418 - 30 Jul 2025
Viewed by 253
Abstract
The Shenhu sea area is rich in unconsolidated hydrate reserves, but the formation mineral particles are small, the rock cementation is weak, and the coupling mechanism of hydrate phase change, fluid seepage, and formation deformation is complex, resulting in unclear productivity change law [...] Read more.
The Shenhu sea area is rich in unconsolidated hydrate reserves, but the formation mineral particles are small, the rock cementation is weak, and the coupling mechanism of hydrate phase change, fluid seepage, and formation deformation is complex, resulting in unclear productivity change law under depressurization exploitation. Therefore, a thermal–fluid–solid–chemical coupling model for natural gas hydrate depressurization exploitation in the Shenhu sea area was constructed to analyze the variation law of reservoir parameters and productivity. The results show that within 0–30 days, rapid near-well pressure drop (13.83→9.8 MPa, 36.37%) drives peak gas production (25,000 m3/d) via hydrate dissociation, with porosity (0.41→0.52) and permeability (75→100 mD) increasing. Within 30–60 days, slower pressure decline (9.8→8.6 MPa, 12.24%) and fines migration cause permeability fluctuations (120→90 mD), reducing gas production to 20,000 m3/d. Within 60–120 days, pressure stabilizes (~7.6 MPa) with residual hydrate saturation < 0.1, leading to stable low permeability (60 mD) and gas production (15,000 m3/d), with cumulative production reaching 2.2 × 106 m3. This study clarifies that productivity is governed by coupled “pressure-driven dissociation–heat limitation–fines migration” mechanisms, providing key insights for optimizing depressurization strategies (e.g., timed heat supplementation, anti-clogging measures) to enhance commercial viability of unconsolidated hydrate reservoirs. Full article
Show Figures

Figure 1

14 pages, 2462 KiB  
Article
Effects of Red Mud on Cement Mortar Based on Sodium Salt Type
by Suk-Pyo Kang, Sang-Jin Kim, Byoung-Ky Lee and Hye-Ju Kang
Materials 2025, 18(15), 3563; https://doi.org/10.3390/ma18153563 - 30 Jul 2025
Viewed by 232
Abstract
This study treated the NaOH component in red mud sludge, an industrial by-product generated at 300,000 tons annually in Korea, with sulfuric and nitric acids to produce NaSO4 and NaNO3, respectively. The effects of acid-treated liquid red mud (LRM) on [...] Read more.
This study treated the NaOH component in red mud sludge, an industrial by-product generated at 300,000 tons annually in Korea, with sulfuric and nitric acids to produce NaSO4 and NaNO3, respectively. The effects of acid-treated liquid red mud (LRM) on the hydration reactions and early strength development in cement mortar were investigated. Properties such as flow, setting time, hydration heat, and compressive strength were evaluated alongside hydration product analysis using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The neutralization of LRM stabilized the pH between 7 and 8. Mortars containing neutralized red mud (NRM) and sulfuric-treated red mud (SRM) exhibited shorter initial setting times and similar final setting times compared to untreated red mud (LM). After one day, XRD confirmed the presence of Ca(OH)2 in NRM and SRM but not in LM, while SEM revealed reduced pore sizes in NRM and SRM. Depending on dosage, the compressive strength of SRM increased by 35–60% compared to Plain mortar. These results demonstrate that LRM treated with nitric or sulfuric acid has significant potential as a setting accelerator for cement mortar. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

19 pages, 3828 KiB  
Communication
Multifunctional Graphene–Concrete Composites: Performance and Mechanisms
by Jun Shang, Mingyang Wang, Pei Wang, Mengyao Yang, Dingyang Zhang, Xuelei Cheng, Yifan Wu and Wangze Du
Appl. Sci. 2025, 15(15), 8271; https://doi.org/10.3390/app15158271 - 25 Jul 2025
Viewed by 268
Abstract
Concrete is a cornerstone material in the construction industry owing to its versatile performance; however, its inherent brittleness, low tensile strength, and poor permeability resistance limit its broader application. Graphene, with its exceptional thermal conductivity, stable lattice structure, and high specific surface area, [...] Read more.
Concrete is a cornerstone material in the construction industry owing to its versatile performance; however, its inherent brittleness, low tensile strength, and poor permeability resistance limit its broader application. Graphene, with its exceptional thermal conductivity, stable lattice structure, and high specific surface area, presents a transformative solution to these challenges. Despite its promise, comprehensive studies on the multifunctional properties and underlying mechanisms of graphene-enhanced concrete remain scarce. In this study, we developed a novel concrete composite incorporating cement, coarse sand, crushed stone, water, and graphene, systematically investigating the effects of the graphene dosage and curing duration on its performance. Our results demonstrate that graphene incorporation markedly improves the material’s density, brittleness, thermal conductivity, and permeability resistance. Notably, a comprehensive analysis of scanning electron microscopy (SEM) images and thermogravimetric (TG) data demonstrates that graphene-modified concrete exhibits a denser microstructure and the enhanced formation of hydration products compared to conventional concrete. In addition, the graphene-reinforced concrete exhibited a 44% increase in compressive strength, a 0.7% enhancement in the photothermal absorption capacity, a 0.4% decrease in maximum heat release, a 0.8% increase in heat-storage capacity, and a 200% reduction in the maximum penetration depth. These findings underscore the significant potential of graphene-reinforced concrete for advanced construction applications, offering superior mechanical strength, thermal regulation, and durability. Full article
Show Figures

Figure 1

15 pages, 2064 KiB  
Article
A Low-Sugar Flavored Beverage Improves Fluid Intake in Children During Exercise in the Heat
by Sajjad Rezaei, Rocio I. Guerrero, Parker Kooima, Isabela E. Kavoura, Sai Tejaswari Gopalakrishnan, Clarissa E. Long, Floris C. Wardenaar, Jason C. Siegler, Colleen X. Muñoz and Stavros A. Kavouras
Nutrients 2025, 17(15), 2418; https://doi.org/10.3390/nu17152418 - 24 Jul 2025
Viewed by 806
Abstract
Objectives: This study examined the impact of a low-sugar flavored beverage on total fluid intake and hydration biomarkers during intermittent exercise in a hot environment among healthy children. Methods: Twenty-one children (11 girls, 8–10 y) completed a randomized, crossover study with [...] Read more.
Objectives: This study examined the impact of a low-sugar flavored beverage on total fluid intake and hydration biomarkers during intermittent exercise in a hot environment among healthy children. Methods: Twenty-one children (11 girls, 8–10 y) completed a randomized, crossover study with two trials. Each trial involved three bouts of 10 min walking, 5 min rest, 10 min walking, and 35 min rest for a total of 3 h in a hot (29.9 ± 0.6 °C) and dry environment (26 ± 7% relative humidity). Walking intensity was 69 ± 7% of age-predicted maximum heart rate. Participants consumed either plain water (W) or a low-sugar flavored beverage (FB). Body weight, fluid intake, urine samples, and perceptual ratings were collected. Results: Total ad libitum fluid intake was significantly higher with the FB (946 ± 535 mL) than with W (531 ± 267 mL; p < 0.05). This difference was 128% higher for FB compared to W, with 19 out of the 21 children ingesting more fluids in FB versus W. Children rated the FB as more likable across all time points (p < 0.05). Net fluid balance was better with FB at 60, 70, 85, 135, and 145 min (p < 0.05), though not different at the 3 h mark. Urine volume was higher with FB (727 ± 291 mL) than with W (400 ± 293 mL; p < 0.05). Urine osmolality was significantly higher in the W trial at 120 and 180 min (p < 0.05). Conclusions: A flavored, low-sugar beverage enhanced ad libitum fluid intake and improved hydration markers compared to water during exercise in the heat, supporting its potential as a practical rehydration strategy for children. Full article
(This article belongs to the Section Pediatric Nutrition)
Show Figures

Figure 1

15 pages, 5562 KiB  
Article
Effect of Amino Trimethylene Phosphonic Acid and Tartaric Acid on Compressive Strength and Water Resistance of Magnesium Oxysulfate Cement
by Yutong Zhou, Zheng Zhou, Lvchao Qiu, Kuangda Lu, Dongmei Xu, Shiyuan Zhang, Shixuan Zhang, Shouwei Jian and Hongbo Tan
Materials 2025, 18(15), 3473; https://doi.org/10.3390/ma18153473 - 24 Jul 2025
Viewed by 155
Abstract
Organic acids could act as retarders in magnesium oxysulfide (MOS) systems, not only delaying setting and improving fluidity but also enhancing compressive strength and water resistance. These effects are generally attributed to both the presence of H+ ions and anion chelation. However, [...] Read more.
Organic acids could act as retarders in magnesium oxysulfide (MOS) systems, not only delaying setting and improving fluidity but also enhancing compressive strength and water resistance. These effects are generally attributed to both the presence of H+ ions and anion chelation. However, the enhancement efficiency of different organic acids in MOS systems varies significantly due to differences in their molecular structures. To determine the underlying mechanism, this study comparatively investigated the effects of amino trimethylene phosphonic acid (ATMP) and tartaric acid (TA) on the setting time, fluidity, compressive strength, and water resistance of the MOS system, with the two additives incorporated at mole ratios to MgO ranging from 0.002 to 0.006. The mechanism behind it was revealed by discussion on the hydration heat, hydrates, and pH value. Results showed that both ATMP and TA could effectively improve the fluidity, delay the setting process, and enhance the mechanical properties, including strength and water resistance. At a mole ratio of 0.006, the incorporation of ATMP increased the 28 d compressive strength and the softening coefficient by 214.12% and 37.29%, respectively, compared with the blank group. In contrast, under the same dosage, TA led to an increase of 55.13% in the 28 d strength and 22.03% in the softening coefficient. Furthermore, hydration heat, product analysis, and pH measurements indicated that both ATMP and TA inhibited hydration during the initial hours but promoted hydration at later stages. The potential reason could be divided into two aspects: (1) H+ ions from ATMP and TA suppressing the formation of Mg(OH)2; (2) anion chelation with Mg2+ in the liquid phase, leading to a supersaturated solution with higher saturation, which further hindered Mg(OH)2 formation and facilitated the later development of 5Mg(OH)2·MgSO4·7H2O (517 phase). By contrast, under the same mole dosage of H+ or anions, the enhancement in compressive strength as well as the water resistance is superior when using ATMP. This was owing to its stronger chelating ability of ATMP, which more effectively inhibited Mg(OH)2 formation and then promoted the formation of the 517 phase. These findings confirm that the chelating ability of anions exerts an important impact on the retarding effect as well as the enhancement of strength in MOS systems. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

16 pages, 2285 KiB  
Article
Evaluating the Heat of Hydration, Conductivity, and Microstructural Properties of Cement Composites with Recycled Concrete Powder
by Damir Barbir, Pero Dabić, Miće Jakić and Ivana Weber
Buildings 2025, 15(15), 2613; https://doi.org/10.3390/buildings15152613 - 23 Jul 2025
Viewed by 209
Abstract
This study investigates the effects of incorporating recycled concrete powder (RCP) as a supplementary cementitious material in Portland cement composites at replacement levels of 5–30% by weight. A comprehensive characterization using isothermal calorimetry, electrical conductivity measurements, thermogravimetric analysis, FT-IR spectroscopy, and scanning electron [...] Read more.
This study investigates the effects of incorporating recycled concrete powder (RCP) as a supplementary cementitious material in Portland cement composites at replacement levels of 5–30% by weight. A comprehensive characterization using isothermal calorimetry, electrical conductivity measurements, thermogravimetric analysis, FT-IR spectroscopy, and scanning electron microscopy revealed that RCP modified the hydration behavior and microstructural development. The results showed a linear 16.5% reduction in the total heat of hydration (from 145.38 to 121.44 J/g) at 30% RCP content, accompanied by a 26.5% decrease in peak electrical conductivity (19.16 to 14.08 mS/cm) and delayed reaction kinetics. Thermal analysis demonstrated an increased stability of hydration products, with portlandite decomposition temperatures rising by up to 10.8 °C. Microstructural observations confirmed the formation of denser but more amorphous C–S–H phases alongside increased interfacial porosity at higher RCP contents. The study provides quantitative evidence of RCP’s dual functionality as both an inert filler and a nucleation agent, identifying an optimal 20–25% replacement range that balances performance and sustainability. These findings advance the understanding of construction waste utilization in cementitious materials and provide practical solutions for developing more sustainable building composites while addressing circular economy objectives in the construction sector. Full article
(This article belongs to the Special Issue Advances and Applications of Recycled Concrete in Green Building)
Show Figures

Figure 1

26 pages, 4943 KiB  
Article
Ultrasonic Pulse Velocity for Real-Time Filament Quality Monitoring in 3D Concrete Printing Construction
by Luis de la Flor Juncal, Allan Scott, Don Clucas and Giuseppe Loporcaro
Buildings 2025, 15(14), 2566; https://doi.org/10.3390/buildings15142566 - 21 Jul 2025
Viewed by 296
Abstract
Three-dimensional (3D) concrete printing (3DCP) has gained significant attention over the last decade due to its many claimed benefits. The absence of effective real-time quality control mechanisms, however, can lead to inconsistencies in extrusion, compromising the integrity of 3D-printed structures. Although the importance [...] Read more.
Three-dimensional (3D) concrete printing (3DCP) has gained significant attention over the last decade due to its many claimed benefits. The absence of effective real-time quality control mechanisms, however, can lead to inconsistencies in extrusion, compromising the integrity of 3D-printed structures. Although the importance of quality control in 3DCP is broadly acknowledged, research lacks systematic methods. This research investigates the feasibility of using ultrasonic pulse velocity (UPV) as a practical, in situ, real-time monitoring tool for 3DCP. Two different groups of binders were investigated: limestone calcined clay (LC3) and zeolite-based mixes in binary and ternary blends. Filaments of 200 mm were extruded every 5 min, and UPV, pocket hand vane, flow table, and viscometer tests were performed to measure pulse velocity, shear strength, relative deformation, yield stress, and plastic viscosity, respectively, in the fresh state. Once the filaments presented printing defects (e.g., filament tearing, filament width reduction), the tests were concluded, and the open time was recorded. Isothermal calorimetry tests were conducted to obtain the initial heat release and reactivity of the supplementary cementitious materials (SCMs). Results showed a strong correlation (R2 = 0.93) between UPV and initial heat release, indicating that early hydration (ettringite formation) influenced UPV and determined printability across different mixes. No correlation was observed between the other tests and hydration kinetics. UPV demonstrated potential as a real-time monitoring tool, provided the mix-specific pulse velocity is established beforehand. Further research is needed to evaluate UPV performance during active printing when there is an active flow through the printer. Full article
Show Figures

Figure 1

17 pages, 4491 KiB  
Article
Effect of Synthesized C-S-H Nanoparticles on the Early Hydration and Microstructure of Cement
by Yoojung Hwang, Suji Woo and Young-Cheol Choi
Materials 2025, 18(14), 3396; https://doi.org/10.3390/ma18143396 - 20 Jul 2025
Viewed by 357
Abstract
Ground granulated blast-furnace slag (GGBS), a waste product generated during steel production, can be added as a substitute for cement in concrete to mitigate the environmental impact of the cement and steel industries. However, the use of GGBS is limited because it decreases [...] Read more.
Ground granulated blast-furnace slag (GGBS), a waste product generated during steel production, can be added as a substitute for cement in concrete to mitigate the environmental impact of the cement and steel industries. However, the use of GGBS is limited because it decreases the early strength development of cement or concrete. This study evaluated the performance of incorporating synthesized C-S-H nanoparticles to enhance the compressive strength, early hydration, and microstructure of cement composite. The synthesized C-S-H nanoparticles were produced at standard atmospheric pressure and room temperature. Heat of hydration, X-ray diffraction, and thermogravimetric analyses were conducted to investigate the hydration and mechanical properties of the cement containing the C-S-H nanoparticles. Further, mercury intrusion porosimetry was conducted to examine the pore structures. The experimental finding demonstrated that adding C-S-H nanoparticles accelerated the early hydration progress in the cement composites, thereby increasing their initial compressive strength. Full article
Show Figures

Figure 1

12 pages, 1033 KiB  
Article
Hydration-Dehydration Effects on Germination Tolerance to Water Stress of Eight Cistus Species
by Belén Luna
Plants 2025, 14(14), 2237; https://doi.org/10.3390/plants14142237 - 19 Jul 2025
Viewed by 308
Abstract
Seeds in soil are often exposed to cycles of hydration and dehydration, which can prime them by triggering physiological activation without leading to germination. While this phenomenon has been scarcely studied in wild species, it may play a critical role in enhancing drought [...] Read more.
Seeds in soil are often exposed to cycles of hydration and dehydration, which can prime them by triggering physiological activation without leading to germination. While this phenomenon has been scarcely studied in wild species, it may play a critical role in enhancing drought resilience and maintaining seed viability under the warmer conditions predicted by climate change. In this study, I investigated the effects of hydration–dehydration cycles on germination response under water stress in eight Cistus species typical of Mediterranean shrublands. First, seeds were exposed to a heat shock to break physical dormancy, simulating fire conditions. Subsequently, they underwent one of two hydration–dehydration treatments (24 or 48 h) and were germinated under a range of water potentials (0, –0.2, –0.4, –0.6, and –0.8 MPa). Six out of eight species showed enhanced germination responses following hydration–dehydration treatments, including higher final germination percentages, earlier germination onset (T0), or increased tolerance to water stress. These findings highlight the role of water availability as a key factor regulating germination in Cistus species and evidence a hydration memory mechanism that may contribute in different ways to post-fire regeneration in Mediterranean ecosystems. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

22 pages, 4534 KiB  
Article
Upcycled Cocoa Pod Husk: A Sustainable Source of Phenol and Polyphenol Ingredients for Skin Hydration, Whitening, and Anti-Aging
by Aknarin Anatachodwanit, Setinee Chanpirom, Thapakorn Tree-Udom, Sunsiri Kitthaweesinpoon, Sudarat Jiamphun, Ongon Aryuwat, Cholpisut Tantapakul, Maria Pilar Vinardell and Tawanun Sripisut
Life 2025, 15(7), 1126; https://doi.org/10.3390/life15071126 - 17 Jul 2025
Viewed by 701
Abstract
Theobroma cacao L. (cocoa) pod husk, a byproduct of the chocolate industry, has potential for commercial applications due to its bioactive compounds. This study aimed to determine the phytochemical composition, biological activity, and clinical efficacy of a standardized extract. This study compared 80% [...] Read more.
Theobroma cacao L. (cocoa) pod husk, a byproduct of the chocolate industry, has potential for commercial applications due to its bioactive compounds. This study aimed to determine the phytochemical composition, biological activity, and clinical efficacy of a standardized extract. This study compared 80% ethanol (CE) and 80% ethanol acidified (CEA) as extraction solvents. The result indicated that CEA yielded higher total phenolic content (170.98 ± 7.41 mg GAE/g extract) and total flavonoid content (3.91 ± 0.27 mg QE/g extract) than CE. Liquid chromatography–tandem mass spectrometry (LC/MS/MS) identified various phenolic and flavonoid compounds. CEA demonstrated stronger anti-oxidant (IC50 = 5.83 ± 0.11 μg/mL in the DPPH assay and 234.17 ± 4.01 mg AAE/g extract in the FRAP assay) compared to CE. Additionally, CEA exhibited anti-tyrosinase (IC50 = 9.51 ± 0.01 mg/mL), anti-glycation (IC50 = 62.32 ± 0.18 µg/mL), and anti-collagenase (IC50 = 0.43 ± 0.01 mg/mL), nitric oxide (NO) production inhibitory (IC50 = 62.68 μg/mL) activities, without causing toxicity to cells. A formulated lotion containing CEA (0.01–1.0% w/w) demonstrated stability over six heating–cooling cycles. A clinical study with 30 volunteers showed no skin irritation. The 1.0% w/w formulation (F4) improved skin hydration (+52.48%), reduced transepidermal water loss (−7.73%), and decreased melanin index (−9.10%) after 4 weeks of application. These findings suggest cocoa pod husk extract as a promising active ingredient for skin hydrating and lightening formulation. Nevertheless, further long-term studies are necessary to evaluate its efficacy in anti-aging treatments. Full article
(This article belongs to the Special Issue Bioactive Compounds for Medicine and Health)
Show Figures

Figure 1

26 pages, 4761 KiB  
Article
Effect of Use of Alkaline Waste Materials as a CO2 Sink on the Physical and Mechanical Performance of Eco-Blended Cement Mortars—Comparative Study
by Ana María Moreno de los Reyes, María Victoria Paredes, Ana Guerrero, Iñigo Vegas-Ramiro, Milica Vidak Vasić and Moisés Frías
Materials 2025, 18(14), 3238; https://doi.org/10.3390/ma18143238 - 9 Jul 2025
Viewed by 355
Abstract
This research paper provides new insights into the impact of accelerated mineralization of alkaline waste materials on the physical and mechanical behavior of low-carbon cement-based mortars. Standardized eco-cement mortars were prepared by replacing Portland cement with 7% and 20% proportions of three alkaline [...] Read more.
This research paper provides new insights into the impact of accelerated mineralization of alkaline waste materials on the physical and mechanical behavior of low-carbon cement-based mortars. Standardized eco-cement mortars were prepared by replacing Portland cement with 7% and 20% proportions of three alkaline waste materials (white ladle furnace slag, biomass ash, and fine concrete waste fraction) that had been previously carbonated in a static reactor at predefined humidity and CO2 concentration. The mortars’ physical (total/capillary water absorption, electrical resistivity) and mechanical properties (compressive strength up to 90 d of curing) were analyzed, and their microstructures were examined using mercury intrusion porosimetry and computed tomography. The results reveal that carbonated waste materials generate a greater heat of hydration and have a lower total and capillary water absorption capacity, while the electrical resistivity and compressive strength tests generally indicate that they behave similarly to mortars not containing carbonated minerals. Mercury intrusion porosimetry (microporosity) indicates an increase in total porosity, with no clear refinement versus non-carbonated materials, while computed tomography (macroporosity) reveals a refinement of the pore structure with a significant reduction in the number of larger pores (>0.09 mm3) and intermediate pores (0.001–0.09 mm3) when carbonated residues are incorporated that varies depending on waste material. The construction and demolition waste (CCDW-C) introduced the best physical and mechanical behavior. These studies confirm the possibility of recycling carbonated waste materials as low-carbon supplementary cementitious materials (SCMs). Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

12 pages, 3441 KiB  
Article
Mechanical Strength and Hydration Characteristic of Multiple Common Waste-Blended Cement-Based Materials Cured by Electric-Induced Heating Curing Under Severely Cold Environments
by Lei Zhang, Ruisen Li, Sheng Li, Han Wang and Qiang Fu
Materials 2025, 18(14), 3220; https://doi.org/10.3390/ma18143220 - 8 Jul 2025
Viewed by 305
Abstract
To address the challenges of concrete construction in polar regions, this study investigates the feasibility of fabricating cement-based materials under severely low temperatures using electric-induced heating curing methods. Cement mortars incorporating fly ash (FA-CM), ground granulated blast furnace slag (GGBS-CM), and metakaolin (MK-CM) [...] Read more.
To address the challenges of concrete construction in polar regions, this study investigates the feasibility of fabricating cement-based materials under severely low temperatures using electric-induced heating curing methods. Cement mortars incorporating fly ash (FA-CM), ground granulated blast furnace slag (GGBS-CM), and metakaolin (MK-CM) were cured at environmental temperatures of −20 °C, −40 °C, and −60 °C. The optimal carbon fiber (CF) contents were determined using the initial electric resistivity to ensure a consistent electric-induced heating curing process. The thermal profiles during curing were monitored, and mechanical strength development was systematically evaluated. Hydration characteristics were elucidated through thermogravimetric analysis (TG), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR) to identify phase compositions and reaction products. Results demonstrate that electric-induced heating effectively mitigates the adverse effect caused by the ultra-low temperature constraints, with distinct differences in the strength performance and hydration kinetics among supplementary cementitious materials. MK-CM exhibited superior early strength development with strength increasing rates above 10% compared to the Ref. specimen, which was attributed to the accelerated pozzolanic reactions. Microstructural analyses further verified the macroscopic strength test results that showed that electric-induced heating curing can effectively promote the performance development even under severely cold environments with a higher hydration degree and refined micro-pore structure. This work proposes a viable strategy for polar construction applications. Full article
Show Figures

Figure 1

Back to TopTop