Mechanical Strength and Hydration Characteristic of Multiple Common Waste-Blended Cement-Based Materials Cured by Electric-Induced Heating Curing Under Severely Cold Environments
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Mix Proportion and Preparation Process
2.3. Curing Procedure
2.4. Test Methods
2.4.1. Curing Temperature
2.4.2. Mechanical Strength
2.4.3. Electric Resistance
2.5. Microstructural Characterization
3. Results and Discussion
3.1. CFs Contents Determination
3.2. Curing Temperature Development
3.3. Compressive and Flexural Strengths
3.4. TG Analysis
3.5. FTIR Analysis
3.6. Pore Structure Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barna, L.A.; Seman, P.M.; Korhonen, C.J. Energy-Efficient Approach to Cold-Weather Concreting. J. Mater. Civ. Eng. 2011, 23, 1544–1551. [Google Scholar] [CrossRef]
- ACI 306R-16; ACI Committee 306 Cold Weather Concreting. American Concrete Institute: Farmington Hills, MI, USA; Elsevier Ltd.: Amsterdam, The Netherlands, 2010.
- ACI 306.1-90; Standard Specification for Cold Weather Concreting. American Concrete Institute: Farmington Hills, MI, USA, 2002; pp. 1–5.
- Won, J.; Lee, S.; Park, T.; Nam, K. Basic Applicability of an Insulated Gang Form for Concrete Building Construction in Cold Weather. Constr. Build. Mater. 2016, 125, 458–464. [Google Scholar] [CrossRef]
- Khan, J.; Santha Kumar, G. Influence of Binary Antifreeze Admixtures on Strength Performance of Concrete under Cold Weather Conditions. J. Build. Eng. 2021, 34, 102055. [Google Scholar] [CrossRef]
- Demirboğa, R.; Karagöl, F.; Polat, R.; Kaygusuz, M.A. The Effects of Urea on Strength Gaining of Fresh Concrete under the Cold Weather Conditions. Constr. Build. Mater. 2014, 64, 114–120. [Google Scholar] [CrossRef]
- Zhang, G.; Yang, Y.; Li, H. Calcium-Silicate-Hydrate Seeds as an Accelerator for Saving Energy in Cold Weather Concreting. Constr. Build. Mater. 2020, 264, 120191. [Google Scholar] [CrossRef]
- Çullu, M.; Arslan, M. The Effects of Antifreeze Use on Physical and Mechanical Properties of Concrete Produced in Cold Weather. Compos. Part B Eng. 2013, 50, 202–209. [Google Scholar] [CrossRef]
- Ouyang, M.; Tian, W.; Liu, Y.; Wang, W. Gradient Power Modified Ohmic Heating Curing to Prepare Hybrid Carbon Fibers/High Performance Concrete under Deep-Freeze Low Temperature. Constr. Build. Mater. 2022, 330, 127279. [Google Scholar] [CrossRef]
- Tian, W.; Wang, M.; Liu, Y.; Wang, W. Ohmic Heating Curing of High Content Fly Ash Blended Cement-Based Composites towards Sustainable Green Construction Materials Used in Severe Cold Region. J. Clean. Prod. 2020, 276, 123300. [Google Scholar] [CrossRef]
- Tian, W.; Liu, Y.; Liu, H.; Wang, W. Performance Evolution and Chloride Adsorption Efficiency of Seawater Mixed Cement-Based Materials Subjected to Ohmic Heating Curing under a Severely Cold Environment. J. Mater. Civ. Eng. 2023, 35, 04023459. [Google Scholar] [CrossRef]
- Tian, W.; Liu, Y.; Wang, W. Enhanced Ohmic Heating and Chloride Adsorption Efficiency of Conductive Seawater Cementitious Composite: Effect of Non-Conductive Nano-Silica. Compos. Part B Eng. 2022, 236, 109854. [Google Scholar] [CrossRef]
- Tian, W.; Liu, Y.; Qi, B.; Wang, W. Enhanced Effect of Carbon Nanofibers on Heating Efficiency of Conductive Cementitious Composites under Ohmic Heating Curing. Cem. Concr. Compos. 2021, 117, 103904. [Google Scholar] [CrossRef]
- Liu, Y.; Tian, W.; Ma, G. Electric Activation Curing Behaviour of Reinforced Concrete Beam under Severely-Cold Environment: Breakthrough of Rapid Concrete Manufacturing at Cold Region. Constr. Build. Mater. 2023, 384, 131443. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, M.; Wang, W. Electric Induced Curing of Graphene/Cement-Based Composites for Structural Strength Formation in Deep-Freeze Low Temperature. Mater. Des. 2018, 160, 783–793. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, M.; Wang, W. Ohmic Heating Curing of Electrically Conductive Carbon Nanofiber/Cement-Based Composites to Avoid Frost Damage under Severely Low Temperature. Compos. Part A Appl. Sci. Manuf. 2018, 115, 236–246. [Google Scholar] [CrossRef]
- Tian, W.; Zhang, Z.; Qiu, R.; Lu, J.X.; Li, R.; Liu, Y.; Wang, W. Electrical Performance of Conductive Cementitious Composites under Different Curing Regimes: Enhanced Conduction by Carbon Fibers towards Self-Sensing Function. Constr. Build. Mater. 2024, 421, 135771. [Google Scholar] [CrossRef]
- Tian, W.; Qi, B.; Liu, Y.; Liu, K.; Wang, W. Early Frost Resistance and Permeability Properties of Carbon Fiber/Cement-Based Composite Cured by Ohmic Heating under Ultra-Low Temperature. Constr. Build. Mater. 2021, 282, 122729. [Google Scholar] [CrossRef]
- Chaipanich, A.; Nochaiya, T. Thermal Analysis and Microstructure of Portland Cement-Fly Ash-Silica Fume Pastes. J. Therm. Anal. Calorim. 2010, 99, 487–493. [Google Scholar] [CrossRef]
- He, P.; Zhang, B.; Lu, J.; Sun, C. Reaction Mechanisms of Alkali-Activated Glass Powder-Ggbs-CAC Composites. Cem. Concr. Compos. 2021, 122, 104143. [Google Scholar] [CrossRef]
- Ambikakumari Sanalkumar, K.U.; Yang, E.H. Self-Cleaning Performance of Nano-TiO2 Modified Metakaolin-Based Geopolymers. Cem. Concr. Compos. 2021, 115, 103847. [Google Scholar] [CrossRef]
- Yoshitake, B.I.; Wong, H.; Ishida, T.; Nassif, A.Y. Thermal Stress of High Volume Fly-Ash (HVFA) Concrete Made with Limestone Aggregate. Constr. Build. Mater. 2014, 71, 216–225. [Google Scholar] [CrossRef]
- Yang, T.; Zhu, H.; Zhang, Z.; Gao, X.; Zhang, C.; Wu, Q. Effect of Fly Ash Microsphere on the Rheology and Microstructure of Alkali-Activated Fly Ash/Slag Pastes. Cem. Concr. Res. 2018, 109, 198–207. [Google Scholar] [CrossRef]
- Zhao, F.Q.; Ni, W.; Wang, H.J.; Liu, H.J. Activated Fly Ash/Slag Blended Cement. Resour. Conserv. Recycl. 2007, 52, 303–313. [Google Scholar] [CrossRef]
- Lv, W.; Sun, Z.; Su, Z. Study of Seawater Mixed One-Part Alkali Activated GGBFS-Fly Ash. Cem. Concr. Compos. 2020, 106, 103484. [Google Scholar] [CrossRef]
- Tafraoui, A.; Escadeillas, G.; Vidal, T. Durability of the Ultra High Performances Concrete Containing Metakaolin. Constr. Build. Mater. 2016, 112, 980–987. [Google Scholar] [CrossRef]
- Verma, M.; Alam, P. Experimental Study on Metakaolin and Nano Alumina Based Concrete. Mater. Today Proc. 2022, 74, 945–952. [Google Scholar] [CrossRef]
- Ruan, Y.; Han, B.; Yu, X.; Zhang, W.; Wang, D. Carbon Nanotubes Reinforced Reactive Powder Concrete. Compos. Part A Appl. Sci. Manuf. 2018, 112, 371–382. [Google Scholar] [CrossRef]
- Tian, W.; Liu, Y.; Wang, M.; Liu, H.; Yu, K.; Xia, Y.; Wang, W.; Li, R. Improved Chloride Binding Capacity in Sustainable Metakaolin Blended Seawater Cement Mortar: Effect of External Alternative Electric Field. J. Build. Eng. 2024, 98, 111454. [Google Scholar] [CrossRef]
- Tian, W.; Li, R.; Zhang, Z.; Wang, M.; Liu, Y.; Lu, J.X.; Jia, Y.; Wang, W. Curing Parameters Development and Long-Term Performance of Ohmic Heating Cured Conductive Cementitious Composites: A Comparative Study on Fiber Fraction. J. Build. Eng. 2024, 91, 109566. [Google Scholar] [CrossRef]
- Tian, W.; Liu, X.; Wang, X.; Zou, F.; Xu, Y.; Liu, Y.; Lu, J.X.; Xu, L.; Wang, W. Improving electrical-thermal-mechanical functional performance of intelligent conductive cementitious composites: Through fiber orientation by magnetic field. J. Build. Eng. 2025, 104, 112374. [Google Scholar] [CrossRef]
- Zhang, L.; Ouyang, M.; Tian, W.; Liu, Y.; Fu, Q.; Wang, W. Internal Structural Evolution of Conductive Cementitious Composites Subjected to Multi- Step Ohmic Heating Curing Strategy under Severely Cold Temperature. J. Build. Eng. 2023, 80, 108101. [Google Scholar] [CrossRef]
- Tian, W.; Liu, Y.; Wang, M.; Wang, W. Performance and Economic Analyses of Low-Energy Ohmic Heating Cured Sustainable Reactive Powder Concrete with Dolomite Powder as Fine Aggregates. J. Clean. Prod. 2021, 329, 129692. [Google Scholar] [CrossRef]
- Tian, W.; Liu, Y.; Wang, W. Multi-Structural Evolution of Conductive Reactive Powder Concrete Manufactured by Enhanced Ohmic Heating Curing. Cem. Concr. Compos. 2021, 123, 104199. [Google Scholar] [CrossRef]
- Wang, J.; Liu, E.; Li, L. Multiscale Investigations on Hydration Mechanisms in Seawater OPC Paste. Constr. Build. Mater. 2018, 191, 891–903. [Google Scholar] [CrossRef]
- Fang, Y.; Chang, J. Microstructure Changes of Waste Hydrated Cement Paste Induced by Accelerated Carbonation. Constr. Build. Mater. 2015, 76, 360–365. [Google Scholar] [CrossRef]
- Zhao, Y.; Gao, J.; Xu, Z.; Li, S.; Luo, X.; Chen, G. Long-Term Hydration and Microstructure Evolution of Blended Cement Containing Ground Granulated Blast Furnace Slag and Waste Clay Brick. Cem. Concr. Compos. 2021, 118, 103982. [Google Scholar] [CrossRef]
- Wang, L.; Chen, L.; Provis, J.L.; Tsang, D.C.W.; Poon, C.S. Accelerated Carbonation of Reactive MgO and Portland Cement Blends under Flowing CO2 Gas. Cem. Concr. Compos. 2020, 106, 103489. [Google Scholar] [CrossRef]
- Yazici, H.; Yiǧiter, H.; Karabulut, A.Ş.; Baradan, B. Utilization of Fly Ash and Ground Granulated Blast Furnace Slag as an Alternative Silica Source in Reactive Powder Concrete. Fuel 2008, 87, 2401–2407. [Google Scholar] [CrossRef]
- Qin, L.; Gao, X.; Chen, T. Influence of Mineral Admixtures on Carbonation Curing of Cement Paste. Constr. Build. Mater. 2019, 212, 653–662. [Google Scholar] [CrossRef]
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | |
---|---|---|---|---|---|
Cement | 20.58 | 5.03 | 3.38 | 63.32 | 2.01 |
MK | 54 | 44 | <0.5 | <0.1 | <0.05 |
FA | 48.41 | 17.88 | 3.96 | 8.45 | 0.89 |
GGBFS | 35.23 | 15.38 | 13.12 | 27.41 | 7.79 |
Water (g) | Cement (g) | Common Waste (g) | Silica Sand (g) | CFs Contents |
---|---|---|---|---|
60 | 160 | 40 | 300 | 0 vol% |
60 | 160 | 40 | 300 | 0.25 vol% |
60 | 160 | 40 | 300 | 0.5 vol% |
60 | 160 | 40 | 300 | 0.75 vol% |
60 | 160 | 40 | 300 | 1.0 vol% |
60 | 160 | 40 | 300 | 1.25 vol% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Li, R.; Li, S.; Wang, H.; Fu, Q. Mechanical Strength and Hydration Characteristic of Multiple Common Waste-Blended Cement-Based Materials Cured by Electric-Induced Heating Curing Under Severely Cold Environments. Materials 2025, 18, 3220. https://doi.org/10.3390/ma18143220
Zhang L, Li R, Li S, Wang H, Fu Q. Mechanical Strength and Hydration Characteristic of Multiple Common Waste-Blended Cement-Based Materials Cured by Electric-Induced Heating Curing Under Severely Cold Environments. Materials. 2025; 18(14):3220. https://doi.org/10.3390/ma18143220
Chicago/Turabian StyleZhang, Lei, Ruisen Li, Sheng Li, Han Wang, and Qiang Fu. 2025. "Mechanical Strength and Hydration Characteristic of Multiple Common Waste-Blended Cement-Based Materials Cured by Electric-Induced Heating Curing Under Severely Cold Environments" Materials 18, no. 14: 3220. https://doi.org/10.3390/ma18143220
APA StyleZhang, L., Li, R., Li, S., Wang, H., & Fu, Q. (2025). Mechanical Strength and Hydration Characteristic of Multiple Common Waste-Blended Cement-Based Materials Cured by Electric-Induced Heating Curing Under Severely Cold Environments. Materials, 18(14), 3220. https://doi.org/10.3390/ma18143220