Hydration-Dehydration Effects on Germination Tolerance to Water Stress of Eight Cistus Species
Abstract
1. Introduction
2. Results
3. Discussion
4. Material and Methods
4.1. Study Species and Germination Experiments
4.2. Data Analyses
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hilker, M.; Schwachtje, J.; Baier, M.; Balazadeh, S.; Bäurle, I.; Geiselhardt, S.; Hincha, D.K.; Kunze, R.; Mueller-Roeber, B.; Rillig, M.C.; et al. Priming and memory of stress responses in organisms lacking a nervous system. Biol. Rev. 2015, 91, 1118–1133. [Google Scholar] [CrossRef] [PubMed]
- Bruce, T.J.A.; Matthes, M.C.; Napier, J.A.; Pickett, J.A. Stressful “memories” of plants: Evidence and possible mechanisms. Plant Sci. 2007, 173, 603–608. [Google Scholar] [CrossRef]
- IPCC. Climate change 2022: Impacts, adaptation and vulnerability. In Working Group II. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2023; pp. 1–63. [Google Scholar]
- Thuiller, W.; Lavorel, S.; Araújo, M.B.; Sykes, M.T.; Prentice, I.C. Climate change threats to plant diversity in Europe. Proc. Natl. Acad. Sci. USA 2005, 102, 8245–8250. [Google Scholar] [CrossRef] [PubMed]
- Walck, J.L.; Hidayati, S.N.; Dixon, K.W.; Thompson, K.; Poschlod, P. Climate change and plant regeneration from seed. Glob. Change Biol. 2011, 17, 2145–2161. [Google Scholar] [CrossRef]
- Pacifici, M.; Foden, W.B.; Visconti, P.; Watson, J.E.; Butchart, S.H.; Kovacs, K.M.; Rondinini, C. Assessing species vulnerability to climate change. Nat. Clim. Change 2015, 5, 215–224. [Google Scholar] [CrossRef]
- Ruffault, J.; Martin-StPaul, N.K.; Duffet, C.; Goge, F.; Mouillot, F. Projecting future drought in Mediterranean forests: Bias correction of climate models matters! Theor. Appl. Climatol. 2014, 117, 113–122. [Google Scholar] [CrossRef]
- Baskin, C.C.; Baskin, J.M. Seeds. In Ecology, Biogeography and Evolution of Dormancy and Germination; Academic Press: San Diego, CA, USA, 2014. [Google Scholar]
- Espigares, T.; Peco, B. Mediterranean pasture dynamics: The role of germination. J. Veg. Sci. 1993, 4, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Céspedes, B.; Torres, I.; Luna, B.; Pérez, B.; Moreno, J.M. Soil seed bank, fire season, and temporal patterns of germination in a seeder-dominated Mediterranean shrubland. Plant Ecol. 2012, 213, 383–393. [Google Scholar] [CrossRef]
- Chamorro, D.; Luna, B.; Moreno, J.M. Germination responses to current and future temperatures of four seeder shrubs across a latitudinal gradient in western Iberia. Am. J. Bot. 2017, 104, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Luna, B.; Chamorro, D. Germination sensitivity to water stress of eight Cistaceae species from the Western Mediterranean. Seed Sci. Res. 2016, 26, 101–110. [Google Scholar] [CrossRef]
- Chamorro, D.; Luna, B.; Ourcival, J.-M.; Kavgaci, A.; Sirca, C.; Mouillot, F.; Arianoutsou, M.; Moreno, J.M. Germination sensitivity to water stress of four shrubby species across the Mediterranean Basin. Plant Biol. 2017, 19, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Bewley, J.D.; Bradford, K.; Hilhorst, H.; Nonogaki, H. (Eds.) Seeds. In Physiology of Development, Germination and Dormancy; Springer: New York, NY, USA, 2013. [Google Scholar]
- Batlla, D.; Benech-Arnold, R.L. The role of fluctuations in soil water content on the regulation of dormancy changes in buried seeds of Polygonum aviculare L. Seed Sci. Res. 2006, 16, 47–59. [Google Scholar] [CrossRef]
- Finch-Savage, W.E.; Leubner-Metzger, G. Seed dormancy and the control of germination. New Phytol. 2006, 171, 501–523. [Google Scholar] [CrossRef] [PubMed]
- Bewley, J.D.; Black, M. Seed Physiology of Development and Germination; Plenum Press: New York, NY, USA, 1994. [Google Scholar]
- González-Zertuche, L.; Vázquez-Yanes, C.; Gamboa, A.; Sánchez-Coronado, M.E.; Aguilera, P.; Orozco-Segovia, A. Natural priming of Wigandia urens seeds during burial: Effects on germination, growth and protein expression. Seed Sci. Res. 2001, 11, 27–34. [Google Scholar] [CrossRef]
- Lutts, S.; Benincasa, P.; Wojtyla, L.; Kubala, S.; Pace, R.; Lechowska, K.; Quinet, M.; Garnczarska, M. Seed priming: New comprehensive approaches for an old empirical technique. In New Challenges in Seed Biology-Basic and Translational Research Driving Seed Technology; INTECH: Houston, TX, USA, 2016; Volume 46. [Google Scholar]
- Srivastava, A.K.; Suresh Kumar, J.; Suprasanna, P. Seed ‘primeomics’: Plants memorize their germination under stress. Biol. Rev. 2021, 96, 1723–1743. [Google Scholar] [CrossRef] [PubMed]
- Pagano, A.; Macovei, A.; Balestrazzi, A. Molecular dynamics of seed priming at the crossroads between basic and applied research. Plant Cell Rep. 2023, 42, 657–688. [Google Scholar] [CrossRef] [PubMed]
- Bewley, J.D.; Black, M. Physiology and biochemistry of seeds in relation to germination. In Viability, Dormancy and Environmental Control; Springer-Verlag: Berlin/Heidelberg, Germany; New York, NY, USA, 1982; Volume 2. [Google Scholar]
- Long, R.L.; Kranner, I.; Panetta, F.D.; Birtic, S.; Adkins, S.W.; Steadman, K.J. Wet-dry cycling extends seed persistence by re-instating antioxidant capacity. Plant Soil 2011, 338, 511–519. [Google Scholar] [CrossRef]
- Chen, K.; Arora, R. Priming memory invokes seed stress-tolerance. Environ. Exp. Bot. 2013, 94, 33–45. [Google Scholar] [CrossRef]
- Paparella, S.; Araujo, S.S.; Rossi, G.; Wijayasinghe, M.; Carbonera, D.; Balestrazzi, A. Seed priming: State of the art and new perspectives. Plant Cell Rep. 2015, 34, 1281–1293. [Google Scholar] [CrossRef] [PubMed]
- Jisha, K.C.; Vijayakumari, K.; Puthur, J.T. Seed priming for abiotic stress tolerance: An overview. Acta Physiol. Plant. 2013, 35, 1381–1396. [Google Scholar] [CrossRef]
- Haj Sghaier, A.; Tarnawa, Á.; Khaeim, H.; Kovács, G.P.; Gyuricza, C.; Kende, Z. The effects of temperature and water on the seed termination and seedling development of rapeseed (Brassica napus L.). Plants 2022, 11, 2819. [Google Scholar] [CrossRef] [PubMed]
- Contreras-Quiroz, M.; Pando-Moreno, M.; Jurado, E.; Flores, J.; Bauk, K.; Gurvich, D.E. Is seed hydration memory dependent on climate? Testing this hypothesis with Mexican and Argentinian cacti species. J. Arid Environ. 2016, 130, 94–97. [Google Scholar] [CrossRef]
- Copete, M.A.; Herranz, J.M.; Herranz, R.; Copete, E.; Ferrandis, P. Effects of desiccation of seeds in nine species with morphophysiological dormancy on germination and embryo growth. J. Plant Ecol. 2021, 14, 132–146. [Google Scholar] [CrossRef]
- McDonald, M.B. Seed priming. In Seed Technology and its Biological Basis; Black, M., Bewley, J.D., Eds.; Sheffield Academic Press: Sheffield, UK, 2000; pp. 287–325. [Google Scholar]
- Frett, J.J.; Pill, W.G. Germination characteristics of osmotically primed and stored Impatiens seeds. Sci. Hortic. 1989, 40, 171–179. [Google Scholar] [CrossRef]
- Zhang, F.; Yu, J.; Johnston, C.R.; Wang, Y.; Zhu, K.; Lu, F.; Zou, J. Seed priming with polyethylene glycol induces physiological changes in sorghum (Sorghum bicolor L. Moench) seedlings under suboptimal soil moisture environments. PLoS ONE 2015, 10, e0140620. [Google Scholar] [CrossRef] [PubMed]
- Wiebe, H.J.A.; Muhyaddin, T. Improvement of emergence by osmotic seed treatments in soils of high salinity. Acta Hortic. 1987, 198, 91–100. [Google Scholar] [CrossRef]
- Ibrahim, E.A. Seed priming to alleviate salinity stress in germinating seeds. J. Plant Physiol. 2016, 192, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Valdes, V.M.; Bradford, K.J.; Mayberry, K.S. Alleviation of thermodormancy in coated lettuce seeds by seed priming. HortScience 1985, 20, 1112–1114. [Google Scholar] [CrossRef]
- Bradford, K.J. Manipulation of seed water relations via osmotic priming to improve germination under stress. HortScience 1986, 21, 1105–1112. [Google Scholar] [CrossRef]
- Pill, W.G.; Finch-Savage, W.E. Effects of combining priming and plant growth regulator treatments on the synchronisation of carrot seed germination. Ann. App. Biol. 1988, 113, 383–389. [Google Scholar] [CrossRef]
- Allen, H. Vegetation and ecosystem dynamics. In The Physical Geography of the Mediterranean; Woodward, J.C., Ed.; Oxford University Press: Oxford, UK, 2009; pp. 203–227. [Google Scholar]
- Thanos, C.A.; Georghiou, K.; Kadis, C.; Pantazi, C. Cistaceae: A plant family with hard seeds. Israel J. Bot. 1992, 41, 251–263. [Google Scholar] [CrossRef]
- Aronne, G.; Mazzoleni, S. The effects of heat exposure on seeds of Cistus incanus L. and Cistus monspeliensis L. G. Bot. Ital. 1989, 123, 283–289. [Google Scholar]
- Keeley, J.E.; Pausas, J.G.; Rundel, P.W.; Bradstock, R. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci. 2011, 16, 406–411. [Google Scholar] [CrossRef] [PubMed]
- Thanos, C.A.; Georghiou, K. Ecophysiology of fire-stimulated seed germination in Cistus incanus ssp. creticus (L.) Heywood and C. salvifolius L. Plant Cell Environ. 1988, 11, 841–849. [Google Scholar] [CrossRef]
- Baskin, J.M.; Baskin, C.C.; Li, X. Taxonomy, anatomy and evolution of physical dormancy in seeds. Plant Spec. Biol. 2000, 15, 139–152. [Google Scholar] [CrossRef]
- Luna, B.; Piñas-Bonilla, P.; Zavala, G.; Pérez, B. Effects of light and temperature on seed germination of eight Cistus species. Seed Sci. Res. 2022, 32, 86–93. [Google Scholar] [CrossRef]
- De Luis, M.; Verdú, M.; Raventós, J. Early to rise makes a plant healthy, wealthy, and wise. Ecology 2008, 89, 3061–3071. [Google Scholar] [CrossRef] [PubMed]
- Evans, C.E.; Etherington, J.R. The effect of soil-water potential on seed-germination of some British plants. New Phytol. 1990, 115, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Bao, G.; Zhang, P.; Wei, X.; Zhang, Y.; Liu, W. Comparison of the effect of temperature and water potential on the seed germination of five Pedicularis kansuensis populations from the Qinghai-Tibet plateau. Front. Plant Sci. 2022, 13, 1052954. [Google Scholar] [CrossRef] [PubMed]
- Lewandrowski, W.; Erickson, T.E.; Dalziell, E.L.; Stevens, J.C. Ecological niche and bet-hedging strategies for Triodia (R.Br.) seed germination. Ann. Bot. 2018, 121, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Kildisheva, O.A.; Erickson, T.E.; Madsen, M.D.; Dixon, K.W.; Merritt, D.J. Seed germination and dormancy traits of forbs and shrubs important for restoration of North American dryland ecosystems. Plant Biol. 2019, 21, 458–469. [Google Scholar] [CrossRef] [PubMed]
- Downs, M.P.; Cavers, P.B. Effects of wetting and drying on seed germination and seedling emergence of bull thistle, Cirsium vulgare (Savi) Ten. Can. J. Bot.-Rev. Can. Bot. 2000, 78, 1545–1551. [Google Scholar] [CrossRef]
- Ren, J.; Tao, L. Effect of hydration-dehydration cycles on germination of seven Calligonum species. J. Arid Environ. 2003, 55, 111–122. [Google Scholar] [CrossRef]
- Walck, J.L.; Baskin, J.M.; Baskin, C.C. A comparative study of the seed germination biology of a narrow endemic and two geographically-widespread species of Solidago (Asteraceae) 4. Role of soil moisture in regulating germination. Seed Sci. Res. 1997, 7, 303–309. [Google Scholar] [CrossRef]
- Kagaya, M.; Tani, T.; Kachi, N. Effect of hydration and dehydration cycles on seed germination of Aster kantoensis (Compositae). Can. J. Bot.-Rev. Can. Bot. 2005, 83, 329–334. [Google Scholar] [CrossRef]
- Berrie, A.M.M.; Drennan, D.S.H. Effect of hydration-dehydration on seed germination. New Phytol. 1971, 70, 135–145. [Google Scholar] [CrossRef]
- Wilson, T.B.; Witkowski, E.T.F. Water requirements for germination and early seedling establishment in four African savanna woody plant species. J. Arid Environ. 1998, 38, 541–550. [Google Scholar] [CrossRef]
- Hadas, A. Water movement to seeds in soils and seed water uptake. In The Physiology and Biochemistry of Seed Development, Dormancy and Germination; Khan, A.A., Ed.; Elsevier Biomedical Press: New York, NY, USA, 1982; pp. 507–527. [Google Scholar]
- Koller, D.; Hadas, A. Water relations in the germination of seeds. In Physiological Plant Ecology II: Water Relations and Carbon Assimilation; Lange, O.L., Nobel, P.S., Osmond, C.B., Ziegler, H., Eds.; Springer-Verlag: Berlin/Heidelberg, Germany, 1982; pp. 401–431. [Google Scholar]
- Luna, B.; Chamorro, D.; Pérez, B. Effect of heat on seed germination and viability in species of Cistaceae. Plant Ecol. Div. 2019, 12, 151–158. [Google Scholar] [CrossRef]
- Vázquez, A.; Moreno, J.M. Patterns of lightning-, and people-caused fires in peninsular Spain. Int. J. Wildland Fire 1998, 8, 103–115. [Google Scholar] [CrossRef]
- Vecín-Arias, D.; Castedo-Dorado, F.; Ordóñez, C.; Rodríguez-Pérez, J.R. Biophysical and lightning characteristics drive lightning-induced fire occurrence in the central plateau of the Iberian Peninsula. Agric. For. Meteorol. 2016, 225, 36–47. [Google Scholar] [CrossRef]
- Moreno, J.M.; Zuazua, E.; Pérez, B.; Luna, B.; Velasco, A.; de Dios, V.R. Rainfall patterns after fire differentially affect the recruitment of three Mediterranean shrubs. Biogeosciences 2011, 8, 3721–3732. [Google Scholar] [CrossRef]
- Donohue, K.; de Casas, R.R.; Burghardt, L.; Kovach, K.; Willis, C.G. Germination, postgermination adaptation, and species ecological ranges. Annu. Rev. Ecol. Evol. Syst. 2010, 41, 293–319. [Google Scholar] [CrossRef]
- Verdú, M.; Traveset, A. Early emergence enhances plant fitness: A phylogenetically controlled meta-analysis. Ecology 2005, 86, 1385–1394. [Google Scholar] [CrossRef]
- Traba, J.; Azcárate, F.M.; Peco, B. From what depth do seeds emerge? A soil seed bank experiment with Mediterranean grassland species. Seed Sci.Res. 2004, 14, 297–303. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper, No. 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109. [Google Scholar]
- Xiao, X.; Horton, R.; Sauer, T.J.; Heitman, J.L.; Ren, T. Cumulative soil water evaporation as a function of depth and time. Vadose Zone J. 2011, 10, 1016–1022. [Google Scholar] [CrossRef]
- Karssen, C.M. Seasonal patterns of dormancy in weed seeds. In The Physiology and Biochemistry of Seed Development, Dormancy and Germination; Khan, A.A., Ed.; Elsevier Biomedical Press: Amsterdam, The Netherlands, 1982; pp. 243–270. [Google Scholar]
- Hegarty, T.W. The physiology of seed hydration and dehydration, relation between water stress and the control of germination: A review. Plant Cell Environ. 1978, 1, 101–119. [Google Scholar] [CrossRef]
- Hudson, A.R.; Ayre, D.J.; Ooi, M.K.J. Physical dormancy in a changing climate. Seed Sci. Res. 2015, 25, 66–81. [Google Scholar] [CrossRef]
- Luna, B.; Piñas-Bonilla, P.; Zavala, G.; Pérez, B. Timing of fire during summer determines seed germination in Mediterranean Cistaceae. Fire Ecol. 2023, 19, 52. [Google Scholar] [CrossRef]
- Luna, B.; Pérez, B.; Torres, I.; Moreno, J.M. Effects of incubation temperature on seed germination of Mediterranean plants with different geographical distribution ranges. Folia Geobot. 2012, 47, 17–27. [Google Scholar] [CrossRef]
- Michel, B.E.; Kaufmann, M.R. Osmotic potential of polyethylene-glycol 6000. Plant Physiol. 1973, 51, 914–916. [Google Scholar] [CrossRef] [PubMed]
Water Stress | Priming | Water Stress x Priming | ||||||
---|---|---|---|---|---|---|---|---|
χ2 | p | χ2 | p | χ2 | p | |||
Cistus albidus | 651.960 | <0.001 | 5021.420 | <0.001 | 3015.860 | <0.001 | ||
C. clusii | 13.880 | 0.008 | 0.233 | 0.89 | 10.754 | 0.216 | ||
C. ladanifer | 12.279 | 0.015 | 6.744 | 0.034 | 10.209 | 0.251 | ||
C. laurifolius | 623.606 | <0.001 | 272.493 | <0.001 | 1318.145 | <0.001 | ||
C. monspeliensis | 85.021 | <0.001 | 1.027 | 0.598 | 16.276 | 0.039 | ||
C. populifolius | 351.412 | <0.001 | 241.520 | <0.001 | 1308.337 | <0.001 | ||
C. psilosepalus | 90.735 | <0.001 | 0.421 | 0.810 | 9.252 | 0.322 | ||
C. salviifolius | 57.059 | <0.001 | 3.709 | 0.157 | 9.886 | 0.273 |
Control | 24 h | 48 h | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cistus albidus | 0 | 11.00 | ± | 1.08 | 11.00 | ± | 1.08 | 15.00 | ± | 5.02 |
−0.2 | 16.00 | ± | 2.12 | 16.75 | ± | 3.33 | 15.00 | ± | 2.89 | |
−0.4 | 27.25 | ± | 6.02 | 19.50 | ± | 7.89 | 18.50 | ± | 6.55 | |
−0.6 | 19.67 | ± | 9.17 | 29.25 | ± | 7.82 | 19.00 | ± | 10.21 | |
−0.8 | 5.00 | ± | 2.52 | 9.50 | ± | 1.50 | ||||
C. clusii | 0 | 12.75 | ± | 1.38 | 9.50 | ± | 1.66 | 14.50 | ± | 5.19 |
−0.2 | 14.00 | ± | 5.37 | 21.67 | ± | 5.67 | 8.25 | ± | 2.10 | |
−0.4 | 12.50 | ± | 2.53 | 16.00 | ± | 4.74 | 12.00 | ± | 1.15 | |
−0.6 | 4.67 | ± | 1.20 | 15.25 | ± | 8.32 | 8.00 | ± | 2.00 | |
−0.8 | 8.50 | ± | 1.50 | 6.00 | ± | 2.52 | 9.33 | ± | 1.33 | |
C. ladanifer | 0 | 7.00 | ± | 0.00 | 2.00 | ± | 0.00 | 2.25 | ± | 0.25 |
−0.2 | 7.00 | ± | 0.00 | 3.75 | ± | 0.25 | 2.00 | ± | 0.00 | |
−0.4 | 5.75 | ± | 1.25 | 5.50 | ± | 0.87 | 2.50 | ± | 0.50 | |
−0.6 | 7.00 | ± | 0.00 | 4.75 | ± | 1.31 | 5.25 | ± | 1.03 | |
−0.8 | 4.75 | ± | 1.44 | 5.50 | ± | 0.87 | 4.00 | ± | 1.22 | |
C. laurifolius | 0 | 9.75 | ± | 1.70 | 3.75 | ± | 2.10 | 5.50 | ± | 3.52 |
−0.2 | 13.00 | ± | 8.43 | 4.00 | ± | 1.73 | 7.25 | ± | 1.93 | |
−0.4 | 6.67 | ± | 2.03 | 6.33 | ± | 1.20 | 11.00 | ± | 4.64 | |
−0.6 | 17.00 | ± | 10.69 | 1.00 | ± | 0.00 | 2.25 | ± | 0.25 | |
−0.8 | 3.67 | ± | 2.19 | 2.50 | ± | 0.50 | 4.50 | ± | 2.18 | |
C. monspeliensis | 0 | 7.25 | ± | 0.25 | 8.50 | ± | 0.50 | 7.75 | ± | 0.75 |
−0.2 | 9.00 | ± | 0.41 | 6.00 | ± | 1.35 | 7.25 | ± | 0.25 | |
−0.4 | 16.00 | ± | 5.82 | 6.25 | ± | 1.80 | 8.50 | ± | 0.65 | |
−0.6 | 9.00 | ± | 4.51 | 15.50 | ± | 7.53 | 7.50 | ± | 2.25 | |
−0.8 | 9.00 | ± | 1.15 | 10.50 | ± | 0.87 | 5.25 | ± | 2.02 | |
C. populifolius | 0 | 22.00 | ± | 7.02 | 19.00 | ± | 5.20 | 10.50 | ± | 3.75 |
−0.2 | 26.00 | ± | 5.16 | 16.75 | ± | 3.20 | 10.00 | ± | 0.00 | |
−0.4 | 18.50 | ± | 2.06 | 22.50 | ± | 3.71 | 34.00 | ± | 4.08 | |
−0.6 | 38.00 | ± | 0.00 | 30.00 | ± | 8.00 | 17.25 | ± | 6.92 | |
−0.8 | 10.00 | 21.00 | ± | 9.00 | ||||||
C. psilosepalus | 0 | 12.50 | ± | 1.50 | 10.00 | ± | 0.41 | 10.75 | ± | 3.09 |
−0.2 | 12.25 | ± | 1.65 | 9.00 | ± | 0.41 | 13.75 | ± | 2.29 | |
−0.4 | 12.25 | ± | 1.75 | 7.50 | ± | 2.25 | 16.50 | ± | 4.56 | |
−0.6 | 12.50 | ± | 0.87 | 9.50 | ± | 0.65 | 10.50 | ± | 1.44 | |
−0.8 | 10.50 | ± | 2.02 | 8.50 | ± | 2.72 | 13.25 | ± | 1.49 | |
C. salviifolius | 0 | 8.00 | ± | 1.68 | 10.25 | ± | 0.63 | 8.25 | ± | 0.25 |
−0.2 | 10.00 | ± | 0.00 | 9.25 | ± | 0.48 | 8.50 | ± | 0.29 | |
−0.4 | 10.00 | ± | 0.41 | 6.75 | ± | 1.03 | 8.50 | ± | 0.50 | |
−0.6 | 9.00 | ± | 0.00 | 6.25 | ± | 1.44 | 9.75 | ± | 0.25 | |
−0.8 | 11.33 | ± | 2.40 | 9.25 | ± | 0.75 | 7.00 | ± | 2.04 |
Water Stress | Priming | Water Stress x Priming | ||||||
---|---|---|---|---|---|---|---|---|
χ2 | p | χ2 | p | χ2 | p | |||
Cistus albidus | 11.495 | 0.022 | 0.455 | 0.796 | 3.625 | 0.822 | ||
C. clusii | 6.178 | 0.186 | 1.506 | 0.471 | 9.640 | 0.291 | ||
C. ladanifer | 14.280 | 0.006 | 37.579 | <0.001 | 24.786 | 0.002 | ||
C. laurifolius | 3.586 | 0.465 | 5.751 | 0.056 | 7.530 | 0.481 | ||
C. monspeliensis | 2.883 | 0.578 | 2.683 | 0.261 | 11.430 | 0.179 | ||
C. populifolius | 11.594 | 0.021 | 5.194 | 0.074 | 19.845 | 0.006 | ||
C. psilosepalus | 0.429 | 0.980 | 8.828 | 0.012 | 4.991 | 0.759 | ||
C. salviifolius | 1.891 | 0.756 | 4.517 | 0.105 | 15.843 | 0.045 |
Species | Latitude | Longitude | Altitude | Temperature | Precipitation |
---|---|---|---|---|---|
(N) | (W) | (m) | (°C) | (mm) | |
Cistus albidus | 39.82° | 4.24° | 508 | 14.6 | 451 |
C. clusii | 40.18° | 3.54° | 639 | 14.4 | 437 |
C. ladanifer | 39.88° | 4.24° | 550 | 14.6 | 451 |
C. laurifolius | 40.72° | 4.03° | 1246 | 10.3 | 1021 |
C. monspeliensis | 39.64° | 4.39° | 682 | 13.9 | 396 |
C. populifolius | 40.22° | 5.20° | 1552 | 8 | 1370 |
C. psilosepalus | 40.03° | 5.05° | 375 | 16.2 | 617 |
C. salviifolius | 39.82° | 4.24° | 508 | 14.6 | 451 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luna, B. Hydration-Dehydration Effects on Germination Tolerance to Water Stress of Eight Cistus Species. Plants 2025, 14, 2237. https://doi.org/10.3390/plants14142237
Luna B. Hydration-Dehydration Effects on Germination Tolerance to Water Stress of Eight Cistus Species. Plants. 2025; 14(14):2237. https://doi.org/10.3390/plants14142237
Chicago/Turabian StyleLuna, Belén. 2025. "Hydration-Dehydration Effects on Germination Tolerance to Water Stress of Eight Cistus Species" Plants 14, no. 14: 2237. https://doi.org/10.3390/plants14142237
APA StyleLuna, B. (2025). Hydration-Dehydration Effects on Germination Tolerance to Water Stress of Eight Cistus Species. Plants, 14(14), 2237. https://doi.org/10.3390/plants14142237