Multifunctional Graphene–Concrete Composites: Performance and Mechanisms
Abstract
1. Introduction
2. Experimental Program
2.1. Characterization of Materials
2.2. Sample Preparation
2.3. Characterization of Microstructure in Concrete
2.4. Mechanical Tests
2.5. Photothermal Experiment
2.6. Impermeability Test
3. Results and Discussion
3.1. Material Characterization
3.2. Microstructure of Concrete
3.3. Mechanical Property
3.4. Photothermal Property
3.5. Impermeability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seifert, W.; Lieboldt, M. Ressourcenverbrauch im globalen Stahlbetonbau und Potenziale der Carbonbetonbauweise: Globale Herausforderungen des Bauwesens. Beton-Und Stahlbetonbau 2020, 115, 469–478. [Google Scholar] [CrossRef]
- Li, W.; Lin, X.; Bao, D.W.; Xie, Y.M. A review of formwork systems for modern concrete construction. Structures 2022, 38, 52–63. [Google Scholar] [CrossRef]
- Sosoi, G.; Abid, C.; Barbuta, M.; Burlacu, A.; Balan, M.C.; Branoaea, M.; Vizitiu, R.S.; Rigollet, F. Experimental investigation on mechanical and thermal properties of concrete using waste materials as an aggregate substitution. Materials 2022, 15, 1728. [Google Scholar] [CrossRef] [PubMed]
- Leithy, M.; Gomaa, E.; Gheni, A.A.; ElGawady, M.A. Utilizing waste latex paint toward improving the performance of concrete. Constr. Build. Mater. 2023, 391, 131661. [Google Scholar] [CrossRef]
- Li, M.; Lu, Y.; Liu, Y.; Chu, J.; Zhang, T.; Wang, W. Influence of the Steel Slag Particle Size on the Mechanical Properties and Microstructure of Concrete. Sustainability 2024, 16, 2083. [Google Scholar] [CrossRef]
- Long, W.; Wang, Y. Effect of pine needle fibre reinforcement on the mechanical properties of concrete. Constr. Build. Mater. 2021, 278, 122333. [Google Scholar] [CrossRef]
- Lin, H.; Zhu, B.; Yuan, J.; He, H.; Li, R.; Yuan, J.; He, H.; Li, R.; Yu, J.; Shen, X.; et al. Study on the impact of HTPP fibers on the mechanical properties of ceramsite concrete. Case Stud. Constr. Mater. 2023, 19, e02471. [Google Scholar] [CrossRef]
- Nguyen, T.T.H.; Phan, D.H.; Mai, H.H.; Nguyen, D.L. Investigation on compressive characteristics of steel-slag concrete. Materials 2020, 13, 1928. [Google Scholar] [CrossRef]
- Radojičić, V.; Radulović, R.; Tarić, M.; Jović, S. The influence of the steel fibers on improvement of mechanical characteristic of concrete. Mech. Based Des. Struct. Mach. 2022, 50, 2929–2939. [Google Scholar] [CrossRef]
- Abbass, W.; Khan, M.I.; Mourad, S. Evaluation of mechanical properties of steel fiber reinforced concrete with different strengths of concrete. Constr. Build. Mater. 2018, 168, 556–569. [Google Scholar] [CrossRef]
- Zeybek, Ö.; Özkılıç, Y.O.; Karalar, M.; Çelik, A.İ.; Qaidi, S.; Ahmad, J.; Burduhos-Nergis, D.D.; Burduhos-Nergis, D.P. Influence of replacing cement with waste glass on mechanical properties of concrete. Materials 2022, 15, 7513. [Google Scholar] [CrossRef] [PubMed]
- Raatikainen, M.; Skön, J.P.; Leiviskä, K.; Kolehmainen, M. Intelligent analysis of energy consumption in school buildings. Appl. Energy 2016, 165, 416–429. [Google Scholar] [CrossRef]
- Chwieduk, D.A. Towards modern options of energy conservation in buildings. Renew. Energy 2017, 101, 1194–1202. [Google Scholar] [CrossRef]
- Long, J.; Lu, J.; Jiang, M.; Du, A.; Zhang, R.; Yongga, A. Study on solar energy utilization characteristics of a solar building integrated wall. Appl. Therm. Eng. 2020, 175, 115289. [Google Scholar] [CrossRef]
- Peng, J.; Yan, J.; Zhai, Z.; Markides, C.N.; Lee, E.S.; Eicker, U.; Zhao, X.; Kuhn, T.E.; Sengupta, M.; Taylor, R.A. Solar energy integration in buildings. Appl. Energy 2020, 264, 114740. [Google Scholar] [CrossRef]
- Yin, Y.; Chen, H.; Zhao, X.; Yu, W.; Su, H.; Chen, Y.; Lin, P. Solar-absorbing energy storage materials demonstrating superior solar-thermal conversion and solar-persistent luminescence conversion towards building thermal management and passive illumination. Energy Convers. Manag. 2022, 266, 115804. [Google Scholar] [CrossRef]
- Qiao, X.; Kong, X.; Fan, M. Phase change material applied in solar heating for buildings: A review. J. Energy Storage 2022, 55, 105826. [Google Scholar] [CrossRef]
- Al-Tamimi, A.S.; Qasem, N.A.A.; Bindiganavile, V. Thermal performance evaluation of hempcrete masonry walls for energy storage in cold weather. Appl. Therm. Eng. 2024, 248, 123304. [Google Scholar] [CrossRef]
- Guo, B.; Wang, C.; Ma, X.; Jiang, R.; Wang, B.; Yan, J.; Liu, H. Research on Impermeability of underwater non-dispersible concrete in saline soil. Materials 2022, 15, 7915. [Google Scholar] [CrossRef]
- Tan, B.; Qu, L.; Xia, Y.; Yang, X.; Su, B.; Wu, J.; Xiao, M. Experimental Study on Improving the Impermeability of Concrete under High-Pressure Water Environments Using a Polymer Coating. Appl. Sci. 2024, 14, 8507. [Google Scholar] [CrossRef]
- Yan, S.; Zhang, M. Study on anti-permeability of specified density concrete. IOP Conf. Ser. Mater. Sci. Eng. 2020, 758, 012072. [Google Scholar] [CrossRef]
- Chen, P.; Li, Y.; Zhang, J.; Zhang, Z.; Wang, D. Influence of interface agent and form on the bonding performance and impermeability of ordinary concrete repaired with alkali-activated slag cementitious material. J. Build. Eng. 2024, 94, 110043. [Google Scholar] [CrossRef]
- Khabisi, M.A.; Roudini, G.; Barahuie, F.; Sheybani, H.; Ibrar, M. Evaluation of phase change material-graphene nanocomposite for thermal regulation enhancement in buildings. Heliyon 2023, 9, e21699. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Sharma, V.; Kapoor, K. Graphene in construction: Enhancing concrete and mortar properties for a sustainable future. Innov. Infrastruct. Solut. 2024, 9, 428. [Google Scholar] [CrossRef]
- Shah, A.H.; Rasool, F.; Mir, S.B.; Alsaif, A.; Bhat, H.F.; Jan, I.; Thoker, Z.A.; Najar, K. Enhancing concrete properties with graphene and graphene-based additives: A comprehensive analysis of their effect on microstructure and macrostructure of concrete. Iranian Journal of Science and Technology. Trans. Civ. Eng. 2024, 48, 1817–1836. [Google Scholar]
- Ji, L.; Meduri, P.; Agubra, V.; Xiao, X.; Alcoutlabi, M. Graphene-based nanocomposites for energy storage. Adv. Energy Mater. 2016, 6, 1502159. [Google Scholar] [CrossRef]
- Li, Z.; Guo, T.; Chen, Y.; Wang, Y.; Niu, X.; Tang, D.; Hao, M.; Zhao, X.; Liu, J. Preparation and properties of composite graphene/carbon fiber pouring conductive asphalt concrete. Polymers 2023, 15, 1864. [Google Scholar] [CrossRef]
- Wang, S.; Wu, J.; Wang, Z.; You, S.; Wu, H.; Wang, L. Research on water evaporation efficiency of porous cement-based photothermal conversion materials. J. Sustain. Cem.-Based Mater. 2023, 12, 1073–1080. [Google Scholar] [CrossRef]
- Meng, S.; Ouyang, X.; Fu, J.; Niu, Y.; Ma, Y. The role of graphene/graphene oxide in cement hydration. Nanotechnol. Rev. 2021, 10, 768–778. [Google Scholar] [CrossRef]
- Xu, K.; Ren, S.; Song, J.; Liu, J.; Liu, Z.; Sun, J.; Ling, S. Colorful superhydrophobic concrete coating. Chem. Eng. J. 2021, 403, 126348. [Google Scholar] [CrossRef]
- He, K.; Ye, C.; Deng, Y.; Zhou, J.; Liao, B.; Gong, R.; Bi, Y.; Ji, W. Study on the microscale structure and anti-seepage properties of plastic concrete for cut-off walls modified with silica fume: Experiment and modelling. Constr. Build. Mater. 2020, 261, 120489. [Google Scholar] [CrossRef]
- Zhang, B.; Li, Q.; Ma, R.; Niu, X.; Yang, L.; Hu, Y.; Zhang, J. An experimental investigation on the impermeability and durability of concrete with a novel and multifunctional hydrophobic admixture addition. Struct. Concr. 2022, 23, 836–848. [Google Scholar] [CrossRef]
- Dimov, D.; Amit, I.; Gorrie, O.; Barnes, M.D.; Townsend, N.J.; Neves, A.I.S.; Withers, F.; Russo, S.; Craciun, M.F. Ultrahigh performance nanoengineered graphene–concrete composites for multifunctional applications. Adv. Funct. Mater. 2018, 28, 1705183. [Google Scholar] [CrossRef]
- Prasad, A.; Chaichi, A.; Mahigir, A.; Sahu, S.P.; Ganta, D.; Veronis, G.; Gartia, M.R. Ripple mediated surface enhanced Raman spectroscopy on graphene. Carbon 2020, 157, 525–536. [Google Scholar] [CrossRef]
- Khan, M.A.; Zhang, B.; Ahmad, M.; Niekurzak, M.; Khan, M.S.; Sabri, M.M.S.; Chen, W. Optimizing concrete sustainability with bagasse ash and stone dust and its impact on mechanical properties and durability. Sci. Rep. 2025, 15, 1385. [Google Scholar] [CrossRef]
- Hamed, N.; Serag, M.I.; El-Attar, M.M.; EI-Feky, M.S. High early strength concrete incorporating waste derived nanomaterials for sustainable construction. Sci. Rep. 2024, 14, 30602. [Google Scholar] [CrossRef]
- Huang, H.; Qian, C.; Zhao, F.; Qu, J.; Guo, J.; Danzinger, M. Improvement on microstructure of concrete by polycarboxylate superplasticizer (PCE) and its influence on durability of concrete. Constr. Build. Mater. 2016, 110, 293–299. [Google Scholar] [CrossRef]
- Song, Z.; Zou, S.; Zhou, W.; Huang, Y.; Shao, L.; Yuan, J.; Gou, X.; Jin, W.; Wang, Z.; Chen, X.; et al. Clinically applicable histopathological diagnosis system for gastric cancer detection using deep learning. Nat. Commun. 2020, 11, 4294. [Google Scholar] [CrossRef] [PubMed]
- Kabir, H.; Wu, J.; Dahal, S.; Joo, T.; Garg, N. Automated estimation of cementitious sorptivity via computer vision. Nat. Commun. 2024, 15, 9935. [Google Scholar] [CrossRef] [PubMed]
Components of Concrete | Chemical Composition |
---|---|
cement | calcium oxide, silicon dioxide, aluminum oxide, iron oxide |
coarse sand | silicon dioxide |
crushed stone | silicon dioxide, iron oxide |
graphene | carbon |
tap water | water |
Number | Peak Temperature of the Front Surface (°C) | |||
---|---|---|---|---|
First Test | Second Test | Third Test | Average Value | |
1-4 | 25.6 | 25.2 | 25.4 | 25.4 |
2-4 | 25.5 | 25.4 | 25.6 | 25.5 |
3-4 | 26.2 | 26.2 | 26.2 | 26.2 |
4-4 | 25.9 | 25.8 | 25.7 | 25.8 |
5-4 | 27.2 | 27.2 | 27.5 | 27.3 |
Number | Peak Temperature on the Upper Surface (°C) | |||
---|---|---|---|---|
First Test | Second Test | Third Test | Average Value | |
1-4 | 20.0 | 20.2 | 20.1 | 20.1 |
2-4 | 19.6 | 19.5 | 19.4 | 19.5 |
3-4 | 18.8 | 19.2 | 19.0 | 19.0 |
4-4 | 19.5 | 19.6 | 19.4 | 19.5 |
5-4 | 19.3 | 19.7 | 19.5 | 19.5 |
Number | The Difference Between Peak Temperature of the Rear Surface and Initial Temperature (°C) | |||
---|---|---|---|---|
First Test | Second Test | Third Test | Average Value | |
1-4 | 17.7 | 17.8 | 17.6 | 17.7 |
2-4 | 19.6 | 19.7 | 19.5 | 19.6 |
3-4 | 20.1 | 20.0 | 19.9 | 20.0 |
4-4 | 19.8 | 19.6 | 19.4 | 19.6 |
5-4 | 16.7 | 16.9 | 16.8 | 16.8 |
Number | K (cm) | S (cm2) | ||||||
---|---|---|---|---|---|---|---|---|
First Test | Second Test | Third Test | Average Value | First Test | Second Test | Third Test | Average Value | |
1-4 | 1.4 | 1.4 | 1.7 | 1.5 | 28.5 | 30.5 | 30.0 | 29.5 |
2-4 | 1.0 | 1.1 | 0.9 | 1.0 | 25.0 | 26.0 | 24.0 | 25.0 |
3-4 | 0.4 | 0.6 | 0.5 | 0.5 | 24.5 | 25.5 | 25.0 | 25.0 |
4-4 | 1.0 | 0.6 | 0.8 | 0.8 | 27.0 | 26.0 | 25.0 | 26.0 |
5-4 | 1.0 | 1.0 | 0.7 | 0.9 | 30.5 | 29.5 | 30.0 | 30.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shang, J.; Wang, M.; Wang, P.; Yang, M.; Zhang, D.; Cheng, X.; Wu, Y.; Du, W. Multifunctional Graphene–Concrete Composites: Performance and Mechanisms. Appl. Sci. 2025, 15, 8271. https://doi.org/10.3390/app15158271
Shang J, Wang M, Wang P, Yang M, Zhang D, Cheng X, Wu Y, Du W. Multifunctional Graphene–Concrete Composites: Performance and Mechanisms. Applied Sciences. 2025; 15(15):8271. https://doi.org/10.3390/app15158271
Chicago/Turabian StyleShang, Jun, Mingyang Wang, Pei Wang, Mengyao Yang, Dingyang Zhang, Xuelei Cheng, Yifan Wu, and Wangze Du. 2025. "Multifunctional Graphene–Concrete Composites: Performance and Mechanisms" Applied Sciences 15, no. 15: 8271. https://doi.org/10.3390/app15158271
APA StyleShang, J., Wang, M., Wang, P., Yang, M., Zhang, D., Cheng, X., Wu, Y., & Du, W. (2025). Multifunctional Graphene–Concrete Composites: Performance and Mechanisms. Applied Sciences, 15(15), 8271. https://doi.org/10.3390/app15158271