Effect of Synthesized C-S-H Nanoparticles on the Early Hydration and Microstructure of Cement
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of C-S-H Nanoparticles
2.3. Preparation of Paste and Mortar Samples
2.4. Characterization Methods
3. Results and Discussion
3.1. Effect of C-S-H Nanoparticles on Hydration Properties
3.2. Effect of C-S-H Nanoparticles on the Compressive Strength
3.3. Hydration Reaction Analysis by XRD
3.4. Thermal Gravimetric Analysis (TGA) Results
3.5. Pore Structure of Specimens Containing C-S-H Nanoparticles
4. Conclusions
- The chemical structure of the synthesized C–S–H nanoparticles, as determined by XPS analysis, was found to be similar to that of 11 Å tobermorite (Ca4.5(Si6O16)(OH)·5H2O).
- From the heat of hydration results, it was confirmed that the C–S–H nanoparticles effectively accelerate early hydration reactions. Isothermal calorimetry revealed that incorporating C–S–H nanoparticles shortened the induction period and increased the intensity of the second exothermic peak.
- C-S-H nanoparticles enhanced the early-age compressive strength of mortar specimens. However, the 28-day strength slightly decreased due to the formation of a dense hydration product layer in the early stage, which impeded Ca2+ diffusion into the un-hydrated cement core, thereby slowing mid-to-late hydration. These trends were consistent with the TG and MIP analyses.
- C-S-H nanoparticles significantly improved compressive strength by acting as nucleation sites and creating an alkaline environment that promotes the reaction between cement and GGBS.
- The use of C-S-H nanoparticles as early-strength promoters can support the broader adoption of GGBS in construction materials, thereby contributing to reduced environmental impact from both the cement and steel industries.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shetty, M.S. Concrete Technology: Theory and Practice, 7th ed.; S. Chand & Company Pty. Ltd.: New Delhi, India, 1982. [Google Scholar]
- Domone, P.; Illston, J. Construction Materials: Their Nature and Behaviour, 4h ed.; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Zhang, C.; Yu, B.; Chen, J.; Wei, Y. Green transition pathways for cement industry in China. Resour. Conserv. Recycl. 2021, 166, 105355. [Google Scholar] [CrossRef]
- Worrell, E.; Price, L.; Martin, N.; Hendriks, C.; Meida, L.O. Carbon Dioxide Emissions from the Global Cement Industry. Annu. Rev. Energy Environ. 2001, 26, 303–329. [Google Scholar] [CrossRef]
- Damineli, B.L.; Kemeid, F.M.; Aguiar, P.S.; John, V.M. Measuring the Eco-Efficiency of Cement Use. Cem. Concr. Compos. 2010, 32, 555–562. [Google Scholar] [CrossRef]
- Ige, O.E.; Von Kallon, D.V.; Desai, D. Carbon Emissions Mitigation Methods for Cement Industry Using a Systems Dynamics Model. Clean Technol. Environ. Policy 2024, 26, 579–597. [Google Scholar] [CrossRef]
- Zhang, J.L.; Wang, Z.M.; Yao, Y.H.; Tang, R.F.; Li, S.T.; Liu, X.; Sun, D.W. The Effect and Mechanism of C–S–H-PCE Nanocomposites on the Early Strength of Mortar under Different Water-to-Cement Ratio. J. Build. Eng. 2021, 44, 103360. [Google Scholar] [CrossRef]
- Gartner, E. Industrially Interesting Approaches to “Low-CO2” Cements. Cem. Concr. Res. 2004, 34, 1489–1498. [Google Scholar] [CrossRef]
- Scrivener, K.L.; John, V.M.; Gartner, E.M. Eco-Efficient Cements: Potential Economically Viable Solutions for a Low-CO2 Cement-Based Materials Industry. Cem. Concr. Res. 2018, 114, 2–26. [Google Scholar] [CrossRef]
- Mohammadi, A.M.; Ramezanianpour, A.A. Investigating the Environmental and Economic Impacts of Using Supplementary Cementitious Materials (SCMs) Using the Life Cycle Approach. J. Build. Eng. 2023, 79, 107934. [Google Scholar] [CrossRef]
- Nedunuri, S.S.S.A.; Sertse, S.G.; Muhammad, S. Microstructural Study of Portland Cement Partially Replaced with Fly Ash, Ground Granulated Blast Furnace Slag and Silica Fume as Determined by Pozzolanic Activity. Constr. Build. Mater. 2020, 238, 117561. [Google Scholar] [CrossRef]
- Mehta, P.K. Pozzolanic and Cementitious By-Products as Mineral Admixtures for Concrete—A Critical Review. ACI Symp. Publ. 1983, 79, 1–46. [Google Scholar]
- Ravina, D.; Mehta, P.K. Compressive Strength of Low Cement/High Fly Ash Concrete. Cem. Concr. Res. 1988, 18, 571–583. [Google Scholar] [CrossRef]
- Jain, S.; Pradhan, B. Effect of Cement Type on Hydration, Microstructure and Thermo-Gravimetric Behaviour of Chloride Admixed Self-Compacting Concrete. Constr. Build. Mater. 2019, 212, 304–316. [Google Scholar] [CrossRef]
- Xu, C.; Li, H.; Dong, B.; Yang, X. Chlorine Immobilization and Performances of Cement Paste/Mortar with C-S-Hs-PCE and Calcium Chloride. Constr. Build. Mater. 2020, 262, 120694. [Google Scholar] [CrossRef]
- Feng, S.; Jiang, H.; Zhou, Q.; Zhang, Y.; Zhao, P. Influence of Sulfates on Formation of Ettringite during Early C3A Hydration. Materials 2022, 15, 6934. [Google Scholar] [CrossRef] [PubMed]
- Mota, B.; Matschei, T.; Scrivener, K.L. Impact of NaOH and Na2SO4 on the Kinetics and Microstructural Development of White Cement Hydration. Cem. Concr. Res. 2018, 108, 172–185. [Google Scholar] [CrossRef]
- Song, Z.; Jiang, L.; Chu, H. Impact of Calcium Leaching on Chloride Diffusion Behavior of Cement Pastes Exposed to Ammonium Chloride Aqueous Solution. Constr. Build. Mater. 2017, 153, 211–215. [Google Scholar] [CrossRef]
- Nalet, C.; Nonat, A. Impacts of Hexitols on the Hydration of a Tricalcium Aluminate-Calcium Sulfate Mixture. Cem. Concr. Res. 2016, 89, 177–186. [Google Scholar] [CrossRef]
- Taylor, H.F.W. Cement Chemistry, 2nd ed.; Thomas Telford Publishing: London, UK, 1997. [Google Scholar]
- Scrivener, K.L.; Nonat, A. Hydration of cementitious materials, present and future. Cem. Concr. Res. 2011, 41, 651–665. [Google Scholar] [CrossRef]
- Thomas, J.J.; Jennings, H.M.; Chen, J.J. Influence of Nucleation Seeding on the Hydration Mechanisms of Tricalcium Silicate and Cement. J. Phys. Chem. C. 2009, 113, 4327–4334. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, H.; Wang, J.; He, H. Effects of Highly Crystalized Nano CSH Particles on Performances of Portland Cement Paste and Its Mechanism. Crystals 2020, 10, 816. [Google Scholar] [CrossRef]
- Verma, P.; Chowdhury, R.; Chakrabarti, A. Early Strength Development of Cement Composites Using Nano-Calcium Silicate Hydrate (CSH) Based Hardening Accelerator. Mater. Today Proc. 2023, 93, 91–98. [Google Scholar] [CrossRef]
- Kanchanason, V.; Plank, J. Role of pH on the Structure, Composition and Morphology of C-S-H–PCE Nanocomposites and Their Effect on Early Strength Development of Portland Cement. Cem. Concr. Res. 2017, 102, 90–98. [Google Scholar] [CrossRef]
- Sun, J.F.; Shi, H.; Qian, B.B.; Xu, Z.Q.; Li, W.F.; Shen, X.D. Effects of Synthetic C-S-H/PCE Nanocomposites on Early Cement Hydration. Constr. Build. Mater. 2017, 140, 282–292. [Google Scholar] [CrossRef]
- John, E.; Epping, J.D.; Stephan, D. The Influence of the Chemical and Physical Properties of C-S-H Seeds on Their Potential to Accelerate Cement Hydration. Constr. Build. Mater. 2019, 228, 116723. [Google Scholar] [CrossRef]
- Li, J.Q.; Zhang, W.X.; Xu, K.; Monteiro, P.J.M. Fibrillar Calcium Silicate Hydrate Seeds from Hydrated Tricalcium Silicate Lower Cement Demand. Cem. Concr. Res. 2020, 137, 106195. [Google Scholar] [CrossRef]
- Das, S.; Ray, S.; Sarkar, S. Early Strength Development in Concrete Using Preformed CSH Nano Crystals. Constr. Build. Mater. 2020, 233, 117214. [Google Scholar] [CrossRef]
- Pedrosa, H.C.; Reales, O.M.; Reis, V.D.; Paiva, M.D.; Fairbairn, E.M.R. Hydration of Portland Cement Accelerated by C-S-H Seeds at Different Temperatures. Cem. Concr. Res. 2020, 129, 105978. [Google Scholar] [CrossRef]
- Woo, S.; Choi, Y.C. Synthesis of Calcium Silicate Hydrate Nanoparticles and Their Effect on Cement Hydration and Compressive Strength. Constr. Build. Mater. 2023, 407, 133559. [Google Scholar] [CrossRef]
- Schönlein, M.; Plank, J. A TEM Study on the Very Early Crystallization of C-S-H in the Presence of Polycarboxylate Superplasticizers: Transformation from Initial C-S-H Globules to Nanofoils. Cem. Concr. Res. 2018, 106, 33–39. [Google Scholar] [CrossRef]
- Rajabipour, F.; Giannini, E.; Dunant, C.; Ideker, J.H.; Thomas, M.D.A. Alkali–Silica Reaction: Current Understanding of the Reaction Mechanisms and the Knowledge Gaps. Cem. Concr. Res. 2015, 76, 130–146. [Google Scholar] [CrossRef]
- Pan, J.; Wang, W.; Wang, J.; Bai, Y.; Wang, J. Influence of Coarse Aggregate Size on Deterioration of Concrete Affected by Alkali-Aggregate Reaction. Constr. Build. Mater. 2022, 329, 127228. [Google Scholar] [CrossRef]
- ISO 679; Cement—Test Methods—Determination of Strength. ISO: Geneva, Switzerland, 2009.
- Black, L.; Garbev, K.; Stemmermann, P.; Hallam, K.R.; Allen, G.C. Characterisation of Crystalline C-S-H Phases by X-ray Photoelectron Spectroscopy. Cem. Concr. Res. 2003, 33, 899–911. [Google Scholar] [CrossRef]
- Zhu, H.; Qin, Z.; Ma, Z.; Wang, F.; Hu, C. Novel C-F-S-H/PCE Nanocomposites with High-Efficiency Seeding Effect on the Hydration of Portland Cement. Cem. Concr. Compos. 2023, 140, 105077. [Google Scholar] [CrossRef]
- Xu, Z.; Gao, J.; Zhao, Y.; Li, S.; Guo, Z.; Luo, X.; Chen, G. Promoting Utilization Rate of Ground Granulated Blast Furnace Slag (GGBS): Incorporation of Nanosilica to Improve the Properties of Blended Cement Containing High Volume GGBS. J. Clean. Prod. 2022, 332, 130096. [Google Scholar] [CrossRef]
- Jennings, H.M. A Model for the Microstructure of Calcium Silicate Hydrate in Cement Paste. Cem. Concr. Res. 2000, 30, 101–116. [Google Scholar] [CrossRef]
- Hu, C.; Ruan, Y.; Yao, S.; Wang, F.; He, Y.; Gao, Y. Insight into the Evolution of the Elastic Properties of Calcium-Silicate-Hydrate (C–S–H) Gel. Cem. Concr. Compos 2019, 104, 103342. [Google Scholar] [CrossRef]
- Oner, A.; Akyuz, S. An Experimental Study on Optimum Usage of GGBS for the Compressive Strength of Concrete. Cem. Concr. Compos. 2007, 29, 505–514. [Google Scholar] [CrossRef]
- Barnett, S.J.; Soutsos, M.N.; Millard, S.G.; Bungey, J.H. Strength Development of Mortars Containing Ground Granulated Blast-Furnace Slag: Effect of Curing Temperature and Determination of Apparent Activation Energies. Cem. Concr. Res. 2006, 36, 434–440. [Google Scholar] [CrossRef]
- Soutsos, M.; Kanavaris, F. Applicability of the Modified Nurse-Saul (MNS) Maturity Function for Estimating the Effect of Temperature on the Compressive Strength of GGBS Concretes. Constr. Build. Mater. 2023, 381, 131250. [Google Scholar] [CrossRef]
- Li, B.; Hou, P.; Chen, H.; Zhao, P.; Du, P.; Wang, S.; Cheng, X. GGBS Hydration Acceleration Evidence in Supersulfated Cement by NanoSiO2. Cem. Concr. Compos. 2022, 132, 104609. [Google Scholar] [CrossRef]
- Xu, C.; Li, H.; Yang, X. Effect and Characterization of the Nucleation C-S-H Seed on the Reactivity of Granulated Blast Furnace Slag Powder. Constr. Build. Mater. 2020, 238, 117726. [Google Scholar] [CrossRef]
- Zhou, Z.; Sofi, M.; Liu, J.; Li, S.; Zhong, A.; Mendis, P. Nano-CSH Modified High Volume Fly Ash Concrete: Early-Age Properties and Environmental Impact Analysis. J. Clean. Prod. 2021, 286, 124924. [Google Scholar] [CrossRef]
- Liu, B.; Zhou, H.; Pan, G.; Meng, H.; Li, D. Novel In-Situ Controllably Grown CSH: Synthesis, Characterization and the Effect on Cement Hydration. Cem. Concr. Compos. 2023, 139, 105044. [Google Scholar] [CrossRef]
- Collier, N.C. Transition and Decomposition Temperatures of Cement Phases—A Collection of Thermal Analysis Data. Ceram. Silik. 2016, 60, 338–343. [Google Scholar] [CrossRef]
- Wang, R.; Yu, J.; Gu, S.; Han, X.; He, P.; Liu, Q.; Xue, L. Effect of Ion Chelator on Hydration Process of Portland Cement. Constr. Build. Mater. 2020, 259, 119727. [Google Scholar] [CrossRef]
- Escalante-Garcia, J.I.G. Nonevaporable Water from Neat OPC and Replacement Materials in Composite Cements Hydrated at Different Temperatures. Cem. Concr. Res. 2003, 33, 1883–1888. [Google Scholar] [CrossRef]
Chemical Oxide Compositions (wt%) | |||||||||
---|---|---|---|---|---|---|---|---|---|
CaO | SiO2 | Al2O3 | Fe2O3 | MgO | K2O | Na2O | SO3 | LOI | |
RC | 63.7 | 21.2 | 4.1 | 3.6 | 2.7 | 1.0 | - | 1.4 | 1.3 |
GGBS | 45.7 | 33.3 | 13.5 | 0.8 | 3.0 | 0.5 | 0.3 | 1.7 | 1.2 |
Specimens | W/B (-) | Binder (kg/m3) | C-S-H Nanoparticles (wt%) | Sand (kg/m3) | SP (wt%) in the C-S-H Nanoparticle Solution | |
---|---|---|---|---|---|---|
RC | GGBS | |||||
PCSH0 | 0.5 | 450 | - | - | 1350 | 2.4 |
PCSH1 | 1.0 | |||||
PCSH2 | 2.0 | |||||
PCSH3 | 3.0 | |||||
GCSH0 | 225 | 225 | - | |||
GCSH3 | 3.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, Y.; Woo, S.; Choi, Y.-C. Effect of Synthesized C-S-H Nanoparticles on the Early Hydration and Microstructure of Cement. Materials 2025, 18, 3396. https://doi.org/10.3390/ma18143396
Hwang Y, Woo S, Choi Y-C. Effect of Synthesized C-S-H Nanoparticles on the Early Hydration and Microstructure of Cement. Materials. 2025; 18(14):3396. https://doi.org/10.3390/ma18143396
Chicago/Turabian StyleHwang, Yoojung, Suji Woo, and Young-Cheol Choi. 2025. "Effect of Synthesized C-S-H Nanoparticles on the Early Hydration and Microstructure of Cement" Materials 18, no. 14: 3396. https://doi.org/10.3390/ma18143396
APA StyleHwang, Y., Woo, S., & Choi, Y.-C. (2025). Effect of Synthesized C-S-H Nanoparticles on the Early Hydration and Microstructure of Cement. Materials, 18(14), 3396. https://doi.org/10.3390/ma18143396