Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = heat balance of the underlying surface

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2370 KiB  
Article
Effects of Land Use Conversion from Upland Field to Paddy Field on Soil Temperature Dynamics and Heat Transfer Processes
by Jun Yi, Mengyi Xu, Qian Ren, Hailin Zhang, Muxing Liu, Yuanhang Fei, Shenglong Li, Hanjiang Nie, Qi Li, Xin Ni and Yongsheng Wang
Land 2025, 14(7), 1352; https://doi.org/10.3390/land14071352 - 26 Jun 2025
Viewed by 348
Abstract
Investigating soil temperature and the heat transfer process is essential for understanding water–heat changes and energy balance in farmland. The conversion from upland fields (UFs) to paddy fields (PFs) alters the land cover, irrigation regimes, and soil properties, leading to differences in soil [...] Read more.
Investigating soil temperature and the heat transfer process is essential for understanding water–heat changes and energy balance in farmland. The conversion from upland fields (UFs) to paddy fields (PFs) alters the land cover, irrigation regimes, and soil properties, leading to differences in soil temperature, thermal properties, and heat fluxes. Our study aimed to quantify the effects of converting UFs to PFs on soil temperature and heat transfer processes, and to elucidate its underlying mechanisms. A long-term cultivated UF and a newly developed PF (converted from a UF in May 2015) were selected for this study. Soil water content (SWC) and temperature were monitored hourly over two years (June 2017 to June 2019) in five soil horizons (i.e., 10, 20, 40, 60, and 90 cm) at both fields. The mean soil temperature differences between the UF and PF at each depth on the annual scale varied from −0.1 to 0.4 °C, while they fluctuated more significantly on the seasonal (−0.9~1.8 °C), monthly (−1.5~2.5 °C), daily (−5.6~4.9 °C), and hourly (−7.3~11.3 °C) scales. The SWC in the PF was significantly higher than that in the UF, primarily due to differences in tillage practices, which resulted in a narrower range of soil temperature variation in the PF. Additionally, the SWC and soil physicochemical properties significantly altered the soil’s thermal properties. Compared with the UF, the volumetric heat capacity (Cs) at the depths of 10, 20, 40, 60, and 90 cm in the PF changed by 8.6%, 19.0%, 5.5%, −4.3%, and −2.9%, respectively. Meanwhile, the thermal conductivity (λθ) increased by 1.5%, 18.3%, 19.0%, 9.0%, and 25.6%, respectively. Moreover, after conversion from the UF to the PF, the heat transfer direction changed from downward to upward in the 10–20 cm soil layer, resulting in a 42.9% reduction in the annual average soil heat flux (G). Furthermore, the differences in G between the UF and PF were most significant in the summer (101.9%) and most minor in the winter (12.2%), respectively. The conversion of the UF to the PF increased the Cs and λθ, ultimately reducing the range of soil temperature variation and changing the direction of heat transfer, which led to more heat release from the soil. This study reveals the effects of farmland use type conversion on regional land surface energy balance, providing theoretical underpinnings for optimizing agricultural ecosystem management. Full article
Show Figures

Figure 1

17 pages, 2158 KiB  
Article
Study on the Impact of Large-Scale Photovoltaic Systems on Key Surface Parameters in Desert Area Regions of Xinjiang, China
by Junxia Jiang, Huan Du, Huihui Yin and Hongbo Su
Energies 2025, 18(12), 3170; https://doi.org/10.3390/en18123170 - 17 Jun 2025
Viewed by 358
Abstract
This study evaluated the effects of photovoltaic (PV) arrays on critical surface parameters through analysis of observational data collected from a utility-scale PV power station located in Wujiaqu City, Xinjiang, in 2021. The results reveal that: (1) Installation of PV panels reduces surface [...] Read more.
This study evaluated the effects of photovoltaic (PV) arrays on critical surface parameters through analysis of observational data collected from a utility-scale PV power station located in Wujiaqu City, Xinjiang, in 2021. The results reveal that: (1) Installation of PV panels reduces surface albedo, which is significantly altered by dust storm conditions; (2) the installation of PV arrays increases the aerodynamic and thermal roughness length by increasing the frictional velocity across the mixed underlying surface; (3) the overall transport coefficients within the PV plant are higher than that of the reference site, with greater diurnal variation than nocturnal variation. The overall transport coefficient is highest in the unstable stratification conditions and lowest under stable stratification conditions; and (4) soil thermal property parameters exhibit seasonal variations. Significant changes in thermal conductivity and specific heat capacity were observed during spring thaw, high and fluctuating diffusivity in summer, and low and stable values in winter. The findings demonstrate that installing PV arrays in arid regions modifies surface energy balance and heat transfer characteristics. This provides a basis for optimizing PV station layouts and conducting climate impact assessments. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

18 pages, 2402 KiB  
Article
Factors Influencing Step Ablation in the Expansion Section of a Composite Nozzle in a Solid Rocket Motor
by Jiming Cheng, Chunyu Zhang, Hang Yan, Xiping Feng and Guoqiang Zhu
Aerospace 2025, 12(6), 499; https://doi.org/10.3390/aerospace12060499 - 31 May 2025
Viewed by 495
Abstract
During the operation of a solid rocket motor, the nozzle, which is a key component, is subjected to extreme conditions, including high temperatures, high-speed gas flow, and discrete-phase particles. For composite nozzles incorporating a carbon/carbon (C/C) throat liner and a carbon/phenolic expansion section, [...] Read more.
During the operation of a solid rocket motor, the nozzle, which is a key component, is subjected to extreme conditions, including high temperatures, high-speed gas flow, and discrete-phase particles. For composite nozzles incorporating a carbon/carbon (C/C) throat liner and a carbon/phenolic expansion section, thermochemical ablation and the formation of ablation steps during the ablation process significantly hinder nozzle performance and engine operational stability. In this study, the fluid and solid domains and the physicochemical interactions between them during nozzle operation were analyzed. An innovative thermochemical ablation model for composite nozzles was developed to account for wall recession. The coupled model covered multi-component gas flow, heterogeneous chemical reactions on the nozzle surface, structural heat transfer, variations in material parameters induced by carbon/phenolic pyrolysis, and the dynamic recession process of the nozzle profile due to ablation. The model achieved coupling between gas flow, heterogeneous reactions, and structural heat transfer through interfacial mass and energy balance relationships. Based on this model, the distribution of the nozzle’s thermochemical ablation rate was analyzed to investigate the mechanisms underlying ablation step formation. Furthermore, detailed calculations and analyses were performed to determine the effects of the gas pressure, temperature, H2O concentration, and aluminum concentration in the propellant on the ablation rate of the throat liner and the thickness of the ablation steps. This study provides a theoretical foundation for the thermal protection design and performance optimization of composite nozzles, improving the reliability and service life of solid rocket motor nozzles and advancing technological development. Full article
Show Figures

Figure 1

19 pages, 9441 KiB  
Article
Characteristics and Driving Factors of Energy Balance over Different Underlying Surfaces in the Qinghai Plateau
by Xiaoyang Liu, Lele Zhang, Liming Gao and Ziyi Duan
Atmosphere 2024, 15(10), 1196; https://doi.org/10.3390/atmos15101196 - 6 Oct 2024
Viewed by 1495
Abstract
The study of the surface energy balance characteristics of different ecosystems in the Qinghai Plateau is of great significance for a deeper understanding of land surface processes, the water cycle, and global climate change. This study aims to compare the seasonal variations in [...] Read more.
The study of the surface energy balance characteristics of different ecosystems in the Qinghai Plateau is of great significance for a deeper understanding of land surface processes, the water cycle, and global climate change. This study aims to compare the seasonal variations in energy balance and partitioning of four typical ecosystems on the Qinghai Plateau—swamp meadows, subalpine mountain meadows, alpine shrublands, and alpine deserts. Mantel analysis and path analysis were used to explore the regulatory mechanisms of meteorological elements on energy fluxes and the Bowen ratio (β). The results showed the following: (1) Net radiation (Rn), sensible heat flux (H), and latent heat flux (LE) all exhibited a single-peak pattern of change, and the energy partitioning was closely related to the hydrothermal conditions. Swamp meadows and subalpine mountain meadows were dominated by LE throughout the year and the growing season, while H dominated in the non-growing season. Meanwhile, alpine shrublands and alpine deserts were dominated by H throughout the year. (2) β reflected the characteristics of turbulent fluxes variations and the moisture level of the underlying surface. Swamp meadows and subalpine mountain meadows were relatively moist, with the value of β all being less than 1. Alpine shrublands and deserts were comparatively arid, with the values of β all exceeding 1. The energy closure rate ranged from 48% to 90%, with better energy closure conditions observed during the growing season compared to the non-growing season. (3) Meteorological factors collectively regulated the variations in energy fluxes and its partitioning, with H and LE being primarily influenced by Rn, relative humidity (RH), and soil moisture (Ms). β was significantly affected by RH, Ms, and the saturated vapor pressure deficit (VPD). The sensitivity of the ecosystems to changes in fluxes increased with decreasing moisture, especially in alpine deserts, with Ms, VPD and RH being the most affected. Swamp meadows were significantly associated with air temperature (Ta), soil temperature (Ts), and wind speed; subalpine mountain meadows with Ta and Ts; and alpine shrublands with Ta. These results provided a basis for further analyses of the energy balance characteristics and partitioning differences of different ecosystems on the Qinghai Plateau. Full article
(This article belongs to the Section Biosphere/Hydrosphere/Land–Atmosphere Interactions)
Show Figures

Figure 1

22 pages, 9842 KiB  
Article
Urbanization Effect on Regional Thermal Environment and Its Mechanisms in Arid Zone Cities: A Case Study of Urumqi
by Aerzuna Abulimiti, Yongqiang Liu, Jianping Tang, Ali Mamtimin, Junqiang Yao, Yong Zeng and Abuduwaili Abulikemu
Remote Sens. 2024, 16(16), 2939; https://doi.org/10.3390/rs16162939 - 10 Aug 2024
Cited by 3 | Viewed by 1918
Abstract
Urumqi is located in the arid region of northwestern China, known for being one of the most delicate ecological environments and an area susceptible to climate change. The urbanization of Urumqi has progressed rapidly, yet there is a lack of research on the [...] Read more.
Urumqi is located in the arid region of northwestern China, known for being one of the most delicate ecological environments and an area susceptible to climate change. The urbanization of Urumqi has progressed rapidly, yet there is a lack of research on the urbanization effect (UE) in Urumqi in terms of the regional climate. This study investigates the UE of Urumqi (urban built-up area) on the regional thermal environment and its mechanisms for the first time, based on the WRF (Weather Research and Forecasting) model (combined with the Urban Canopy Model, UCM) simulation data of 10 consecutive years (2012–2021). The results show that the UE on surface temperature (Ts) and air temperature at 2 m (T2m) is strong (weak) during the night (daytime) in all seasons, and the UE on these is largest (smallest) in spring (winter). In addition, the maximum UE on both Ts and T2m is present over southern Urumqi in winter, whereas the maximum UE is identified over the northern Urumqi in other seasons. The maximum UE on Ts occurred in northwestern Urumqi at 18 LST (Local Standard Time, i.e., UTC+6) in autumn (reaching 5.2 °C), and the maximum UE on T2m occurred in northern Urumqi at 4 LST in summer (reaching 2.6 °C). Urbanization showed a weak cooling effect during daytime in summer and winter, reflecting the unique characteristics of the UE in arid regions, which are different from those in humid regions. The maximum cooling of Ts occurred in northern Urumqi at 11 LST in summer (reaching −0.4 °C), while that of T2m occurred at 10 LST in northern and northwestern Urumqi in winter (reaching −0.25 °C), and the cooling effect lasted for a longer period of time in summer than in winter. The UE of Urumqi causes the increase of Ts mainly through the influence of net short-wave radiation and geothermal flux and causes the increase of T2m through the influence of sensible heat flux and net long-wave radiation. The UE on the land surface energy balance in Urumqi can be used to explain the seasonal variation and spatial differences of the UEs on the regional thermal environment and the underlying mechanism. Full article
Show Figures

Figure 1

23 pages, 11517 KiB  
Article
Monitoring Dissolved Oxygen Concentrations in the Coastal Waters of Zhejiang Using Landsat-8/9 Imagery
by Lehua Dong, Difeng Wang, Lili Song, Fang Gong, Siyang Chen, Jingjing Huang and Xianqiang He
Remote Sens. 2024, 16(11), 1951; https://doi.org/10.3390/rs16111951 - 29 May 2024
Cited by 6 | Viewed by 2350
Abstract
The Zhejiang coastal waters (ZCW), which exhibit various turbidity levels, including low, medium, and high turbidity levels, are vital for regional ecological balance and sustainable marine resource utilization. Dissolved oxygen (DO) significantly affects marine organism survival and ecosystem health, yet there is limited [...] Read more.
The Zhejiang coastal waters (ZCW), which exhibit various turbidity levels, including low, medium, and high turbidity levels, are vital for regional ecological balance and sustainable marine resource utilization. Dissolved oxygen (DO) significantly affects marine organism survival and ecosystem health, yet there is limited research on remote sensing monitoring of DO in the ZCW, and the underlying mechanisms are unclear. This study addresses this gap by utilizing high-resolution Landsat 8/9 imagery and sea surface temperature (SST) data to develop a multiple linear regression (MLR) model for DO estimation. Compared to previous studies that utilize remote sensing band reflectance data as inputs, the results show that the red and blue bands are more suitable for establishing DO inversion models for such water bodies. The model was applied to analyze variations in the DO concentrations in the ZCW from 2013 to 2023, with a focus on Hangzhou Bay (HZB), Xiangshan Bay (XSB), Sanmen Bay (SMB), and Yueqing Bay (YQB). The temporal and spatial distributions of DO concentrations and their relationships with environmental factors, such as chlorophyll-a (Chl-a) concentrations, total suspended matter (TSM) concentrations, and thermal effluents, are analyzed. The results reveal significant seasonal fluctuations in DO concentrations, which peak in winter (e.g., 9.02 mg/L in HZB) and decrease in summer (e.g., 6.83 mg/L in HZB). Changes in the aquatic environment, particularly in the thermal effluents from the Sanmen Nuclear Power Plant (SNPP), significantly decrease coastal dissolved oxygen (DO) concentrations near drainage outlets. Chl-a and TSM directly or indirectly affect DO concentrations, with notable correlations observed in XSB. This study offers a novel approach for monitoring and managing water quality in the ZCW, facilitating the early detection of potential hypoxia issues in critical zones, such as nuclear power plant heat discharge outlets. Full article
(This article belongs to the Special Issue Remote Sensing of the Sea Surface and the Upper Ocean II)
Show Figures

Graphical abstract

22 pages, 12108 KiB  
Review
A Systematic Review of the Potential Influence of Urbanization on the Regional Thunderstorm Process and Lightning Activity
by Tao Shi, Gaopeng Lu, Xiangcheng Wen, Lei Liu and Ping Qi
Atmosphere 2024, 15(3), 374; https://doi.org/10.3390/atmos15030374 - 19 Mar 2024
Cited by 2 | Viewed by 2326
Abstract
In the context of global climate change, lightning disasters have emerged as a serious environmental factor that restricts the sustainable development of megacities. This paper provides a review of the research on the impact of urbanization on thunderstorm processes and lightning activity, exploring [...] Read more.
In the context of global climate change, lightning disasters have emerged as a serious environmental factor that restricts the sustainable development of megacities. This paper provides a review of the research on the impact of urbanization on thunderstorm processes and lightning activity, exploring various aspects, such as aerosols, urban thermal effects, urban dynamic effects, and building morphology. Despite numerous significant achievements in the study of the impact of air pollutants on lightning activity, there is no consensus on whether aerosols serve to enhance or inhibit lightning activity. The temperature difference between the urban underlying surface and the natural underlying surface could sustain and promote the occurrence and development of convective systems, thus enhancing lightning activity. In terms of urban dynamics, the barrier effect has led to the maximum center of lightning appearing at the edge of a built-up area, which might be associated with factors, such as urban heat island (UHI) intensity, wind speed, synoptic background, and city size. Additionally, the size of a city and the height of the buildings was also an influencing factor on lightning activity. In summary, scholars have made progress in understanding the characteristics and drivers of urban lightning activity in recent years, but there are still some urgent problems that need to be solved: (1) How to analyze, comprehensively, the spatiotemporal patterns of urban lightning activity under different thunderstorm intensity backgrounds? (2) How to conduct analysis to investigate the influence of alterations in the boundary layer structure, water–heat energy balance, and water vapor circulation processes on urban lightning activity in the context of urbanization? (3) How to couple numerical models of different scales to enhance the understanding of the impact of complex underlying surfaces on urban lightning activity? Future studies could investigate the relationship between urbanization and thunderstorm/lightning activity using a combination of observational data, numerical modeling, and laboratory experiments, which holds promise for providing valuable theoretical insights and technical support to enhance the prediction, nowcasting, early warning, and risk assessment of thunderstorms and lightning in urban areas. Full article
Show Figures

Figure 1

17 pages, 11580 KiB  
Article
Heat Budget Analysis for the Extended Development of the 2014–2015 Warming Event
by Yinghao Qin, Huier Mo, Liying Wan, Yi Wang, Yang Liu, Qinglong Yu and Xiangyu Wu
Atmosphere 2023, 14(6), 954; https://doi.org/10.3390/atmos14060954 - 30 May 2023
Viewed by 2046
Abstract
In order to figure out the associated underlying dynamical processes of the 2014–2015 warming event, we used the ECCO (Estimating the Circulation and Climate of the Ocean) reanalysis from 1993 to 2016 and two combined scatterometers, QuikSCAT and ASCAT, to analysis hydrodynamic condition [...] Read more.
In order to figure out the associated underlying dynamical processes of the 2014–2015 warming event, we used the ECCO (Estimating the Circulation and Climate of the Ocean) reanalysis from 1993 to 2016 and two combined scatterometers, QuikSCAT and ASCAT, to analysis hydrodynamic condition and ocean heat budget balance process in the equatorial tropical pacific. The spatiotemporal characteristics of that warming event were revealed by comparing the results with a composite El Niño. The results showed that the significant differences between the 2014 and 2015 warming periods were the magnitudes and positions of the equatorial easterly wind anomalies during the summer months. The abruptly easterly wind anomalies of 2014 that spread across the entire equatorial Pacific triggered the upwelling of the equatorial Kelvin waves and pushed the eastern edge of the warm pool back westward. These combined effects caused abrupt decreases in the sea surface temperatures (SST) and upper ocean heat content (OHC) and damped the 2014 warming process into an El Niño. In addition, the ocean budget of the upper 300 m of the El Niño 3.4 region showed that different dynamical processes were responsible for different warming phases. For example, at the beginning of 2014 and 2015, the U advection and subsurface processes played dominant roles in the positive ocean heat content tendency. During the easterly wind anomalies period of 2014, the U advection process mainly caused a negative tendency and halted the development of the warming phase. In regard to the easterly wind anomalies of 2015, the U advection and subsurface processes were weaker negatively when compared with that in 2014. However, the V advection processes were consistently positive, taking a leading role in the positive trends observed in the middle of 2015. Full article
(This article belongs to the Special Issue Recent Advances in Researches of Ocean Climate Variability)
Show Figures

Figure 1

14 pages, 3683 KiB  
Technical Note
The Influence of Horizontal Thermal Advection on Near-Surface Energy Budget Closure over the Zoige Alpine Wetland, China
by Xuancheng Lu, Jun Wen, Dongxiao Wang, Wenhui Liu, Yue Yang, Hui Tian, Yueyue Wu and Yuqin Jiang
Remote Sens. 2023, 15(1), 220; https://doi.org/10.3390/rs15010220 - 30 Dec 2022
Viewed by 2318
Abstract
Near-surface energy budget closure has been a trending topic in land surface processes research, especially on the underlying surfaces of heterogeneous wetlands. In this investigation, the horizontal thermal advection caused by thermal inhomogeneity over the alpine wetland is calculated based on the eddy [...] Read more.
Near-surface energy budget closure has been a trending topic in land surface processes research, especially on the underlying surfaces of heterogeneous wetlands. In this investigation, the horizontal thermal advection caused by thermal inhomogeneity over the alpine wetland is calculated based on the eddy covariance data observed at the Flower Lake observation field and WRF modelling data over the Zoige alpine wetland, China. The contribution of horizontal thermal advection to the near-surface energy closure is analysed. The results show that the mean horizontal heat advection of the Zoige wetland is 20.2 W·m−2, and the maximum value reached 55.0 W·m−2 in the summer of 2017. After introducing thermal advection into the near-surface energy balance equation, the near-surface energy closure ratio increased from 72.3% to 81.0%. Full article
Show Figures

Figure 1

21 pages, 4175 KiB  
Article
Study on Surface Characteristic Parameters and Surface Energy Exchange in Eastern Edge of the Tibetan Plateau
by Na Chang, Maoshan Li, Ming Gong, Pei Xu, Yaoming Ma, Fanglin Sun and Yaoxian Yang
Atmosphere 2022, 13(11), 1749; https://doi.org/10.3390/atmos13111749 - 24 Oct 2022
Cited by 3 | Viewed by 2034
Abstract
Mount Emei is located on the eastern edge of the Tibetan Plateau, on the transition zone between the main body of the Tibetan Plateau and the Sichuan Basin in China. It is not only the necessary place for the eastward movement of the [...] Read more.
Mount Emei is located on the eastern edge of the Tibetan Plateau, on the transition zone between the main body of the Tibetan Plateau and the Sichuan Basin in China. It is not only the necessary place for the eastward movement of the plateau system but also the place where the southwest vortex begins to develop. Its special geographical location makes it particularly important to understand the turbulence characteristics and surface energy balance of this place. Based on the Atmospheric Boundary Layer (ABL) tower data, radiation observation data and surface flux data of Mount Emei station on the eastern edge of the Tibetan Plateau from December 2019 to February 2022, the components of surface equilibrium are estimated by the eddy correlation method and Thermal Diffusion Equation and Correction (TDEC) method, the characteristics of surface energy exchange in the Mount Emei area are analyzed, and the aerodynamic and thermodynamic parameters are estimated. The results show that the annual average value of zero-plane displacement d is 10.45 m, the annual average values of aerodynamic roughness Z0m and aerothermal roughness Z0h are 1.61 and 1.67 m, respectively, and the annual average values of momentum flux transport coefficient CD and sensible heat flux transport coefficient CH are 1.58×102 and 3.79×103, respectively. The dimensionless vertical wind fluctuation variance in the Mount Emei area under unstable conditions can better conform to the 1/3rd power law of the Monin–Obukhov similarity theory, while the dimensionless horizontal wind fluctuation variance under unstable lamination and the dimensionless 3D wind fluctuation variance under stable condition does not conform to this law. In the near-neutral case, the dimensionless velocity variance in the vertical direction in this area is 1.314. The daytime dominance of sensible and latent heat fluxes varied seasonally, with latent heat fluxes dominating in summer and sensible heat transport dominating in winter. he surface albedo of Mount Emei in four seasons is between 0.04 and 0.08. The surface albedo in summer and autumn is higher than that in Mount Emei. The influence of the underlying surface on surface reflectance is much greater than other factors, such as altitude, longitude and latitude. The non-closure phenomenon is significant in the Mount Emei area. The energy closure rates before and after considering canopy thermal storage are 46% and 48%, respectively. The possible reason for the energy non-closure in this area is that the influence of horizontal advection and vertical advection on the energy closure is not considered. Full article
(This article belongs to the Special Issue Land-Atmosphere Interaction on the Tibetan Plateau)
Show Figures

Figure 1

30 pages, 7133 KiB  
Article
Study on the Water and Heat Fluxes of a Very Humid Forest Ecosystem and Their Relationship with Environmental Factors in Jinyun Mountain, Chongqing
by Kai Wang, Yunqi Wang, Yujie Wang, Jieshuai Wang, Songnian Wang and Yincheng Feng
Atmosphere 2022, 13(5), 832; https://doi.org/10.3390/atmos13050832 - 19 May 2022
Cited by 4 | Viewed by 3672
Abstract
The high-humidity mountain forest ecosystem (HHMF) of Jinyun Mountain in Chongqing is a fragile ecosystem that is sensitive to climate change and human activities. Because it is shrouded in fog year-round, illumination in the area is seriously insufficient. However, the flux (energy, water) [...] Read more.
The high-humidity mountain forest ecosystem (HHMF) of Jinyun Mountain in Chongqing is a fragile ecosystem that is sensitive to climate change and human activities. Because it is shrouded in fog year-round, illumination in the area is seriously insufficient. However, the flux (energy, water) exchanges (FEs) in this ecosystem and their influencing factors are not clear. Using one-year data from flux towers with a double-layer (25 m and 35 m) eddy covariance (EC) observation system, we proved the applicability of the EC method on rough underlying surfaces, quantified the FEs of HHMFs, and found that part of the fog might also be observed by the EC method. The observation time was separated from day and night, and then the environmental control of the FEs was determined by stepwise regression analysis. Through the water balance, it was proven that the negative value of evapotranspiration (ETN), which represented the water vapor input from the atmosphere to the ecosystem, could not be ignored and provided a new idea for the possible causes of the evaporation paradox. The results showed that the annual average daily sensible heat flux (H) and latent heat flux (LE) ranged from −126.56 to 131.27 W m−2 and from −106.7 to 222.27 W m−2, respectively. The annual evapotranspiration (ET), positive evapotranspiration (ETP), and negative evapotranspiration (ETN) values were 389.31, 1387.76, and −998.45 mm, respectively. The energy closure rate of the EC method in the ecosystems was 84%. Fog was the ETN observed by the EC method and an important water source of the HHMF. Therefore, the study area was divided into subtropical mountain cloud forests (STMCFs). Stepwise regression analysis showed that the H and LE during the day were mainly determined by radiation (Rn) and temperature (Tair), indicating that the energy of the ecosystem was limited, and future climate warming may enhance the FEs of the ecosystem. Additionally, ETN was controlled by wind speed (WS) in the whole period, and WS was mainly affected by altitude and temperature differences within the city. Therefore, fog is more likely to occur in the mountains near heat island cities in tropical and subtropical regions. This study emphasizes that fog, as an important water source, is easily ignored in most EC methods and that there will be a large amount of fog in ecosystems affected by future climate warming, which can explain the evaporation paradox. Full article
(This article belongs to the Topic Climate Change and Environmental Sustainability)
Show Figures

Figure 1

18 pages, 2274 KiB  
Article
The Energy Model of Urban Heat Island
by Nina V. Dudorova and Boris D. Belan
Atmosphere 2022, 13(3), 457; https://doi.org/10.3390/atmos13030457 - 11 Mar 2022
Cited by 17 | Viewed by 4466
Abstract
Despite the fact that the presence of a heat island over a city was established quite a long time ago, now there is no versatile algorithm for the determination of the urban heat island intensity. The proposed models either take into account only [...] Read more.
Despite the fact that the presence of a heat island over a city was established quite a long time ago, now there is no versatile algorithm for the determination of the urban heat island intensity. The proposed models either take into account only one or several factors for the formation of an urban heat island or do not consider physical reasons for the difference in thermodynamic conditions between a city and countryside. In this regard, it is impossible to make a forecast and determine the optimal methods for reducing the urban heat island intensity for an arbitrarily chosen city in a wide range of its characteristics and climatic conditions. This paper studies the causes for the formation of an urban heat island in order to develop the quantitative model of this process through the determination of the difference in radiation fluxes of various nature between a city and countryside (background area). A new equation allowing the intensity of an urban heat island in different seasons and different times of day, as well as under various atmospheric conditions, to be calculated from meteorological parameters measured at a stationary observation station is proposed. The model has been tested through the comparison of the results of numerical simulation with direct measurements of the heat island in Tomsk with a mobile station. It is shown that the main contributors to the formation of the heat island in Tomsk are anthropogenic heat emissions (80–90% in winter, 40–50% in summer) and absorption of shortwave radiation by the urban underlying surface (5–15% in winter, 40–50% summer). The absorption of longwave radiation by the urban underlying surface, absorption by atmospheric water vapor and other constituents, and heat consumption for evaporation are insignificant. An increase in the turbulent heat flux is responsible for the outflow of 40–50% of absorbed energy in summer and 20–30% in winter. Full article
(This article belongs to the Special Issue Advancement of Urban Heat Island Studies)
Show Figures

Figure 1

20 pages, 1791 KiB  
Article
Blue-Sky Albedo Reduction and Associated Influencing Factors of Stable Land Cover Types in the Middle-High Latitudes of the Northern Hemisphere during 1982–2015
by Saisai Yuan, Yeqiao Wang, Hongyan Zhang, Jianjun Zhao, Xiaoyi Guo, Tao Xiong, Hui Li and Hang Zhao
Remote Sens. 2022, 14(4), 895; https://doi.org/10.3390/rs14040895 - 13 Feb 2022
Cited by 1 | Viewed by 3203
Abstract
Land surface albedo (LSA) directly affects the radiation balance and the surface heat budget. LSA is a key variable for local and global climate research. The complexity of LSA variations and the driving factors highlight the importance of continuous spatial and temporal monitoring. [...] Read more.
Land surface albedo (LSA) directly affects the radiation balance and the surface heat budget. LSA is a key variable for local and global climate research. The complexity of LSA variations and the driving factors highlight the importance of continuous spatial and temporal monitoring. Snow, vegetation and soil are the main underlying surface factors affecting LSA dynamics. In this study, we combined Global Land Surface Satellite (GLASS) products and ERA5 reanalysis products to analyze the spatiotemporal variation and drivers of annual mean blue-sky albedo for stable land cover types in the middle-high latitudes of the Northern Hemisphere (30~90°N) from 1982 to 2015. Snow cover (SC) exhibited a decreasing trend in 99.59% of all pixels (23.73% significant), with a rate of −0.0813. Soil moisture (SM) exhibited a decreasing trend in 85.66% of all pixels (22.27% significant), with a rate of −0.0002. The leaf area index (LAI) exhibited a greening trend in 74.38% of all pixels (25.23% significant), with a rate of 0.0014. Blue-sky albedo exhibited a decreasing trend in 98.97% of all pixels (65.12% significant), with a rate of −0.0008 (OLS slope). Approximately 98.16% of all pixels (57.01% significant) exhibited a positive correlation between blue-sky albedo and SC. Approximately 47.78% and 67.38% of all pixels (17.13% and 25.3% significant, respectively) exhibited a negative correlation between blue-sky albedo and SM and LAI, respectively. Approximately 10.31%, 20.81% and 68.88% of the pixel blue-sky albedo reduction was mainly controlled by SC, SM and LAI, respectively. The decrease in blue-sky albedo north of 40°N was mainly caused by the decrease in SC. The decrease in blue-sky albedo south of 40°N was mainly caused by SM reduction and vegetation greening. The decrease in blue-sky albedo in the western Tibetan Plateau was caused by vegetation greening, SM increase and SC reduction. The results have important scientific significance for the study of surface processes and global climate change. Full article
Show Figures

Figure 1

37 pages, 769 KiB  
Article
Impact of Urbanization on the Predictions of Urban Meteorology and Air Pollutants over Four Major North American Cities
by Shuzhan Ren, Craig A. Stroud, Stephane Belair, Sylvie Leroyer, Rodrigo Munoz-Alpizar, Michael D. Moran, Junhua Zhang, Ayodeji Akingunola and Paul A. Makar
Atmosphere 2020, 11(9), 969; https://doi.org/10.3390/atmos11090969 - 10 Sep 2020
Cited by 16 | Viewed by 3889
Abstract
The sensitivities of meteorological and chemical predictions to urban effects over four major North American cities are investigated using the high-resolution (2.5-km) Environment and Climate Change Canada’s air quality model with the Town Energy Balance (TEB) scheme. Comparisons between the model simulation results [...] Read more.
The sensitivities of meteorological and chemical predictions to urban effects over four major North American cities are investigated using the high-resolution (2.5-km) Environment and Climate Change Canada’s air quality model with the Town Energy Balance (TEB) scheme. Comparisons between the model simulation results with and without the TEB effect show that urbanization has great impacts on surface heat fluxes, vertical diffusivity, air temperature, humidity, atmospheric boundary layer height, land-lake circulation, air pollutants concentrations and Air Quality Health Index. The impacts have strong diurnal variabilities, and are very different in summer and winter. While the diurnal variations of the impacts share some similarities over each city, the magnitudes can be very different. The underlying mechanisms of the impacts are investigated. The TEB impacts on the predictions of meteorological and air pollutants over Toronto are evaluated against ground-based observations. The results show that the TEB scheme leads to a great improvement in biases and root-mean-square deviations in temperature and humidity predictions in downtown, uptown and suburban areas in the early morning and nighttime. The scheme also leads to a big improvement of predictions of NOx, PM2.5 and ground-level ozone in the downtown, uptown and industrial areas in the early morning and nighttime. Full article
(This article belongs to the Special Issue Extreme Climate Events and Air Quality)
Show Figures

Figure 1

22 pages, 19243 KiB  
Article
Simulating the Impact of Urban Surface Evapotranspiration on the Urban Heat Island Effect Using the Modified RS-PM Model: A Case Study of Xuzhou, China
by Yuchen Wang, Yu Zhang, Nan Ding, Kai Qin and Xiaoyan Yang
Remote Sens. 2020, 12(3), 578; https://doi.org/10.3390/rs12030578 - 10 Feb 2020
Cited by 24 | Viewed by 5156
Abstract
As an important energy absorption process in the Earth’s surface energy balance, evapotranspiration (ET) from vegetation and bare soil plays an important role in regulating the environmental temperatures. However, little research has been done to explore the cooling effect of ET on the [...] Read more.
As an important energy absorption process in the Earth’s surface energy balance, evapotranspiration (ET) from vegetation and bare soil plays an important role in regulating the environmental temperatures. However, little research has been done to explore the cooling effect of ET on the urban heat island (UHI) due to the lack of appropriate remote-sensing-based estimation models for complex urban surface. Here, we apply the modified remote sensing Penman–Monteith (RS-PM) model (also known as the urban RS-PM model), which has provided a new regional ET estimation method with the better accuracy for the urban complex underlying surface. Focusing on the city of Xuzhou in China, ET and land surface temperature (LST) were inversed by using 10 Landsat 8 images during 2014–2018. The impact of ET on LST was then analyzed and quantified through statistical and spatial analyses. The results indicate that: (1) The alleviating effect of ET on the UHI was stronger during the warmest months of the year (May–October) but not during the colder months (November–March); (2) ET had the most significant alleviating effect on the UHI effect in those regions with the highest ET intensities; and (3) in regions with high ET intensities and their surrounding areas (within a radius of 150 m), variation in ET was a key factor for UHI regulation; a 10 W·m−2 increase in ET equated to 0.56 K decrease in LST. These findings provide a new perspective for the improvement of urban thermal comfort, which can be applied to urban management, planning, and natural design. Full article
Show Figures

Graphical abstract

Back to TopTop