Study on the Water and Heat Fluxes of a Very Humid Forest Ecosystem and Their Relationship with Environmental Factors in Jinyun Mountain, Chongqing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Site Information
2.2. EC Measurements and Meteorological Measurements
2.3. Data Processing, Screening, and Gap Filling of Fluxes
2.4. Energy Balance Closure
2.5. Stepwise Regression Analysis of the Impacts of Changes in Environmental Driving Factors and Flux Exchange on HHMF
3. Results
3.1. Energy Balance Closure at HHMF
3.2. Evapotranspiration Comparison of the Two EC Systems
3.3. Characteristics of Annual Evapotranspiration
3.4. Energy Fluxes of the Two−Layer EC System
3.5. Characteristics of Hourly Energy and Water Flux
3.6. Characteristics of Annual Environmental Factors in HHMF
3.7. Response Characteristics of FEs to Environmental Factors
3.8. Environmental Driving Forces of FEs under Circadian Alternation in HHMF
3.8.1. Driving Forces of H Change
3.8.2. Driving Forces of ETP Change
3.8.3. Driving Forces of ETN Change
3.9. Specific Analysis on Foggy Days
4. Discussion
4.1. Application of EC System in HHMF
4.2. Water Balance and Energy Exchange of HHMF
4.3. Specific Fog Case Analysis
4.4. Effects of Environmental Factors on FEs in HHMF
4.5. Limitation and Constraints
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC, 2019: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. Available online: https://www.ipcc.ch/srocc/ (accessed on 8 March 2022).
- Pörtner, H.O.; Roberts, D.C.; Tignor, M.; Poloczanska, E.S.; Mintenbeck, K.; Alegría, A.; Craig, M.; Langsdorf, S.; Löschke, S.; Möller, V.; et al. (Eds.) IPCC, 2022: Climate Change 2022: Impacts, Adaptation, and Vulnerability; Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Vitasse, Y.; Signarbieux, C.; Fu, Y.H. Global warming leads to more uniform spring phenology across elevations. Proc. Natl. Acad. Sci. USA 2018, 115, 1004–1008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cahill, A.E.; Aiello-Lammens, M.E.; Caitlin Fisher-Reid, M.; Hua, X.; Karanewsky, C.J.; Ryu, H.Y.; Sbeglia, G.C.; Spagnolo, F.; Waldron, J.B.; Warsi, O.; et al. How does climate change cause extinction? Proc. R. Soc. B Biol. Sci. 2013, 280, 20121890. [Google Scholar] [CrossRef] [PubMed]
- Grimm, N.B.; Chapin, F.S.; Bierwagen, B.; Gonzalez, P.; Groffman, P.M.; Luo, Y.; Melton, F.; Nadelhoffer, K.; Pairis, A.; Raymond, P.A.; et al. The impacts of climate change on ecosystem structure and function. Front. Ecol. Environ. 2013, 11, 474–482. [Google Scholar] [CrossRef] [Green Version]
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.; et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef] [Green Version]
- Haddeland, I.; Heinke, J.; Biemans, H.; Eisner, S.; Flörke, M.; Hanasaki, N.; Konzmann, M.; Ludwig, F.; Masaki, Y.; Schewe, J.; et al. Global water resources affected by human interventions and climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3251–3256. [Google Scholar] [CrossRef] [Green Version]
- Hock, R.; Rasul, C.; Adler, B.; Cáceres, S.; Gruber, Y.; Hirabayashi, M.; Jackson, A.; Kääb, S.; Kang, S.; Kutuzov, A.; et al. 2019: High Mountain Areas. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. Available online: https://www.ipcc.ch/site/assets/uploads/sites/3/2019/11/06_SROCC_Ch02_FINAL.pdf (accessed on 8 March 2022).
- Zhang, C.; Ren, Y.; Cao, L.; Wu, J.; Zhang, S.; Hu, C.; Zhujie, S. Characteristics of Dry-Wet Climate Change in China during the Past 60 Years and Its Trends Projection. Atmosphere 2022, 13, 275. [Google Scholar] [CrossRef]
- Lin, L.; Ge, E.; Chen, C.; Luo, M. Mild weather changes over China during 1971–2014: Climatology, trends, and interannual variability. Sci. Rep. 2019, 9, 2419. [Google Scholar] [CrossRef]
- Zhang, Y.-D.; Zhang, X.-H.; Liu, S.-R. Correlation analysis on normalized difference vegetation index (NDVI) of different vegetations and climatic factors in Southwest China. Ying Yong Sheng Tai Xue Bao J. Appl. Ecol. 2011, 22, 323–330. [Google Scholar]
- Shan, H.; Yang, Y.; Hanjia, W.; Qidong, Y. Spatio-temporal Characteristics of Sensible and Latent Heat Flux in Southwest China. J. Arid Meteorol. 2020, 38, 601–611. [Google Scholar]
- Zhu, X.J.; Yu, G.R.; Wang, Q.F.; Hu, Z.M.; Zheng, H.; Li, S.G.; Sun, X.M.; Zhang, Y.P.; Yan, J.H.; Wang, H.M.; et al. Spatial variability of water use efficiency in China’s terrestrial ecosystems. Glob. Planet. Chang. 2015, 129, 37–44. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y.; Wang, S.; Yuan, G.; Yang, Y.; Yu, G.; Sun, X. Evaluating the models of stomatal conductance response to humidity in a tropical rain forest of xishuangbanna, southwest China. Hydrol. Res. 2011, 42, 307–317. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y.; Wang, S.; Yuan, G.; Yang, Y.; Cao, M. Evapotranspiration of a tropical rain forest in Xishuangbanna, southwest China. Hydrol. Process. 2010, 24, 2405–2416. [Google Scholar] [CrossRef]
- Zhang, Y.; Tan, Z.; Song, Q.; Yu, G.; Sun, X. Respiration controls the unexpected seasonal pattern of carbon flux in an Asian tropical rain forest. Atmos. Environ. 2010, 44, 3886–3893. [Google Scholar] [CrossRef]
- Song, Q.H.; Braeckevelt, E.; Zhang, Y.P.; Sha, L.Q.; Zhou, W.J.; Liu, Y.T.; Wu, C.S.; Lu, Z.Y.; Klemm, O. Evapotranspiration from a primary subtropical evergreen forest in Southwest China. Ecohydrology 2017, 10, e1826. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, G.X.; Guo, J.Y.; Sun, X.Y. Quantifying evapotranspiration and its components in a coniferous subalpine forest in Southwest China. Hydrol. Process. 2012, 26, 3032–3040. [Google Scholar] [CrossRef]
- Song, Q.H.; Fei, X.H.; Zhang, Y.P.; Sha, L.Q.; Wu, C.S.; Lu, Z.Y.; Luo, K.; Zhou, W.J.; Liu, Y.T.; Gao, J.B. Snow damage strongly reduces the strength of the carbon sink in a primary subtropical evergreen broadleaved forest. Environ. Res. Lett. 2017, 12, 104014. [Google Scholar] [CrossRef] [Green Version]
- Santamouris, M. Analyzing the heat island magnitude and characteristics in one hundred Asian and Australian cities and regions. Sci. Total Environ. 2015, 512, 582–598. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- He, B.J.; Ding, L.; Prasad, D. Relationships among local-scale urban morphology, urban ventilation, urban heat island and outdoor thermal comfort under sea breeze influence. Sustain. Cities Soc. 2020, 60, 102289. [Google Scholar] [CrossRef]
- Rajagopalan, P.; Lim, K.C.; Jamei, E. Urban heat island and wind flow characteristics of a tropical city. Sol. Energy 2014, 107, 159–170. [Google Scholar] [CrossRef]
- Papanastasiou, D.K.; Kittas, C. Maximum urban heat island intensity in a medium-sized coastal Mediterranean city. Theor. Appl. Climatol. 2012, 107, 407–416. [Google Scholar] [CrossRef]
- Huang, L.P.; Miao, J.F.; Liu, Y.K. Spatial and temporal variation characteristics of urban heat island in Tianjin. Trans. Atmos. Sci. 2012, 35, 620–632. [Google Scholar]
- Yow, D.M. Urban heat islands: Observations, impacts, and adaptation. Geogr. Compass 2007, 1, 1227–1251. [Google Scholar] [CrossRef]
- Li, L.; Liang, Z.; Wang, H.; Li, C.; Wang, X.; Zhao, X. Urban heat island characteristics in Shenyang under different weather conditions. Trans. Atmos. Sci. 2011, 34, 8. (In Chinese) [Google Scholar]
- Mathez-Stiefel, S.L.; Peralvo, M.; Báez, S.; Rist, S.; Buytaert, W.; Cuesta, F.; Fadrique, B.; Feeley, K.J.; Groth, A.A.P.; Homeier, J.; et al. Research Priorities for the Conservation and Sustainable Governance of Andean Forest Landscapes. Mt. Res. Dev. 2017, 37, 323–339. [Google Scholar] [CrossRef] [Green Version]
- Bubb, P.; May, I.; Miles, L.; Sayer, J. Cloud Forest Agenda; UNEP: Nairobi, Kenya, 2004; pp. 1–36. [Google Scholar]
- Williams-Linera, G. El Bosque de Niebla del Centro de Veracruz: Ecología, Historia y Destino en Tiempos de Fragmentación y Cambio Climático; Instituto de Ecología: Xalapa, Mexico, 2007. [Google Scholar]
- Domínguez-Eusebio, C.A.; Alarcón, E.; Briones, O.L.; del Rosario Pineda-López, M.; Perroni, Y. Surface energy exchange: Urban and rural forest comparison in a tropical montane cloud forest. Urban For. Urban Green. 2019, 41, 201–210. [Google Scholar] [CrossRef]
- Groffman, P.M.; Cadenasso, M.L.; Cavender-Bares, J.; Childers, D.L.; Grimm, N.B.; Grove, J.M.; Hobbie, S.E.; Hutyra, L.R.; Darrel Jenerette, G.; McPhearson, T.; et al. Moving Towards a New Urban Systems Science. Ecosystems 2017, 20, 38–43. [Google Scholar] [CrossRef]
- Xu, S.; Zeng, B.; Su, X.; Lei, S.; Liu, J. Spatial distribution of vegetation and carbon density in Jinyun Mountain nature reserve based on RS/GIS. Shengtai Xuebao/Acta Ecol. Sin. 2012, 32, 2174–2184. [Google Scholar] [CrossRef] [Green Version]
- Yu, T. Investigation on vegetation status in Jinyun Mountain. Dajiang Wkly. Forum 2013, 7, 52. (In Chinese) [Google Scholar]
- Zhang, X.; Wang, Y.; Wang, Y.; Zhang, S.; Zhao, X. Effects of social position and competition on tree transpiration of a natural mixed forest in Chongqing, China. Trees-Struct. Funct. 2019, 33, 719–732. [Google Scholar] [CrossRef]
- Yu, L.; Wang, Y.; Wang, Y.; Sun, S.; Liu, L. Quantifying components of soil respiration and their response to abiotic factors in two typical subtropical forest stands, southwest China. PLoS ONE 2015, 10, e0117490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, N.; Wang, Y.; Wang, Y. Effect of subtropical forests on water quality in Southwestern China. Afr. J. Agric. Res. 2011, 6, 6354–6362. [Google Scholar] [CrossRef]
- Weide, S. The Classification and Ordination of the Forest Communities of the Jinyun Mountain, Sichuan Province. Chin. J. Plant Ecol. 1983, 7, 299–312. [Google Scholar]
- Shen, T.; Corlett, R.T.; Song, L.; Ma, W.Z.; Guo, X.L.; Song, Y.; Wu, Y. Vertical gradient in bryophyte diversity and species composition in tropical and subtropical forests in Yunnan, SW China. J. Veg. Sci. 2018, 29, 1075–1087. [Google Scholar] [CrossRef]
- Chi, J.; Waldo, S.; Pressley, S.; O’Keeffe, P.; Huggins, D.; Stöckle, C.; Pan, W.L.; Brooks, E.; Lamb, B. Assessing carbon and water dynamics of no-till and conventional tillage cropping systems in the inland Pacific Northwest US using the eddy covariance method. Agric. For. Meteorol. 2016, 218–219, 37–49. [Google Scholar] [CrossRef] [Green Version]
- Aguiar, R.G.; De Musis, C.R.; Aguiar, L.J.G.; Martínez-Espinosa, M.; Fischer, G.R. Energy balance closure in the Southwest Amazon forest site—A statistical approach. Theor. Appl. Climatol. 2019, 136, 1209–1219. [Google Scholar] [CrossRef]
- Heusinger, J.; Weber, S. Surface energy balance of an extensive green roof as quantified by full year eddy-covariance measurements. Sci. Total Environ. 2017, 577, 220–230. [Google Scholar] [CrossRef]
- Fortuniak, K.; Pawlak, W.; Bednorz, L.; Grygoruk, M.; Siedlecki, M.; Zieliński, M. Methane and carbon dioxide fluxes of a temperate mire in Central Europe. Agric. For. Meteorol. 2017, 232, 306–318. [Google Scholar] [CrossRef]
- Zhou, Y.; Xiao, X.; Wagle, P.; Bajgain, R.; Mahan, H.; Basara, J.B.; Dong, J.; Qin, Y.; Zhang, G.; Luo, Y.; et al. Examining the short-term impacts of diverse management practices on plant phenology and carbon fluxes of Old World bluestems pasture. Agric. For. Meteorol. 2017, 237–238, 60–70. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Chamecki, M.; Katul, G.G. Effects of Gentle Topography on Forest-Atmosphere Gas Exchanges and Implications for Eddy-Covariance Measurements. J. Geophys. Res. Atmos. 2020, 125, e2020JD032581. [Google Scholar] [CrossRef]
- Tang, A.C.I.; Stoy, P.C.; Hirata, R.; Musin, K.K.; Aeries, E.B.; Wenceslaus, J.; Melling, L. Eddy Covariance Measurements of Methane Flux at a Tropical Peat Forest in Sarawak, Malaysian Borneo. Geophys. Res. Lett. 2018, 45, 4390–4399. [Google Scholar] [CrossRef] [Green Version]
- Tie, Q.; Hu, H.; Tian, F.; Holbrook, N.M. Comparing different methods for determining forest evapotranspiration and its components at multiple temporal scales. Sci. Total Environ. 2018, 633, 12–29. [Google Scholar] [CrossRef] [PubMed]
- Anapalli, S.S.; Fisher, D.K.; Reddy, K.N.; Krutz, J.L.; Pinnamaneni, S.R.; Sui, R. Quantifying water and CO2 fluxes and water use efficiencies across irrigated C3 and C4 crops in a humid climate. Sci. Total Environ. 2019, 663, 338–350. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Sun, X.; Zhou, Y.; Xu, J.; Yuan, G.; Zhang, R. Correcting method of eddy covariance fluxes over non-flat surfaces and its application in ChinaFLUX. Sci. China Ser. D Earth Sci. 2005, 48, 42–50. [Google Scholar] [CrossRef]
- Bi, X.Y.; Wen, B.; Zhao, Z.K.; Huang, J.; Liu, C.X.; Huang, H.J.; Mao, W.K.; Wen, G.H. Evaluation of corrections on turbulent fluxes obtained by eddy covariance method in high winds. J. Trop. Meteorol. 2018, 24, 176–184. [Google Scholar] [CrossRef]
- Wilczak, J.M.; Oncley, S.P.; Stage, S.A. Sonic anemometer tilt correction algorithms. Bound.-Layer Meteorol. 2001, 99, 127–150. [Google Scholar] [CrossRef]
- Vickers, D.; Mahrt, L. Quality control and flux sampling problems for tower and aircraft data. J. Atmos. Ocean. Technol. 1997, 14, 512–526. [Google Scholar] [CrossRef]
- Moncrieff, J.; Clement, R.; Finnigan, J.; Meyers, T. Averaging, Detrending, and Filtering of Eddy Covariance Time Series. In Handbook of Micrometeorology; Springer: Dordrecht, The Netherlands, 2006; pp. 7–31. [Google Scholar] [CrossRef]
- Moncrieff, J.B.; Massheder, J.M.; de Bruin, H.; Elbers, J.; Friborg, T.; Heusinkveld, B.; Kabat, P.; Scott, S.; Soegaard, H.; Verhoef, A. A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide. J. Hydrol. 1997, 188–189, 589–611. [Google Scholar] [CrossRef]
- Mauder, M.; Foken, T. Impact of post-field data processing on eddy covariance flux estimates and energy balance closure. Meteorol. Z. 2006, 15, 597–609. [Google Scholar] [CrossRef]
- van Dijk, A.; Moene, A.F.; de Bruin, H.A.R. The Principles of Surface Flux Physics: Theory, Practice and Description of the Library; Meteorology and Air Quality Group, Wageningen University: Wageningen, The Netherlands, 2004. [Google Scholar]
- Webb, E.K.; Pearman, G.I.; Leuning, R. Correction of flux measurements for density effects due to heat and water vapour transfer. Q. J. R. Meteorol. Soc. 1980, 106, 85–100. [Google Scholar] [CrossRef]
- Mauder, M.; Foken, T. Documentation and Instruction Manual of the Eddy-Covariance Software Package TK3. Arbeitsergebnisse 2011, 46, 60. [Google Scholar]
- Mauder, M.; Cuntz, M.; Drüe, C.; Graf, A.; Rebmann, C.; Schmid, H.P.; Schmidt, M.; Steinbrecher, R. A strategy for quality and uncertainty assessment of long-term eddy-covariance measurements. Agric. For. Meteorol. 2013, 169, 122–135. [Google Scholar] [CrossRef]
- Kormann, R.; Meixner, F.X. An analytical footprint model for non-neutral stratification. Bound.-Layer Meteorol. 2001, 99, 207–224. [Google Scholar] [CrossRef]
- Kljun, N.; Calanca, P.; Rotach, M.W.; Schmid, H.P. A simple parameterisation for flux footprint predictions. Bound.-Layer Meteorol. 2004, 112, 503–523. [Google Scholar] [CrossRef]
- Kljun, N.; Calanca, P.; Rotach, M.W.; Schmid, H.P. A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP). Geosci. Model Dev. 2015, 8, 3695–3713. [Google Scholar] [CrossRef] [Green Version]
- Papale, D.; Reichstein, M.; Aubinet, M.; Canfora, E.; Bernhofer, C.; Kutsch, W.; Longdoz, B.; Rambal, S.; Valentini, R.; Vesala, T.; et al. Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: Algorithms and uncertainty estimation. Biogeosciences 2006, 3, 571–583. [Google Scholar] [CrossRef] [Green Version]
- Anemometer, S.; Measurements, T.F.; Analyser, I.G. Advances in Ecological Research Volumes 1–23. Adv. Ecol. Res. 2000, 24, 408–410. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X. Energy balance closures in diverse ecosystems of an endorheic river basin. Agric. For. Meteorol. 2019, 274, 118–131. [Google Scholar] [CrossRef]
- Tang, A.C.I.; Stoy, P.C.; Hirata, R.; Musin, K.K.; Aeries, E.B.; Wenceslaus, J.; Shimizu, M.; Melling, L. The exchange of water and energy between a tropical peat forest and the atmosphere: Seasonal trends and comparison against other tropical rainforests. Sci. Total Environ. 2019, 683, 166–174. [Google Scholar] [CrossRef]
- Pereira, A.R.; Angelocci, L.; Sentelhas, P. Agrometeorologia: Fundamentos e aplicações práticas. Agrometeorol. Fundam. E Apl. Práticas 2002, 11, 123. [Google Scholar]
- Wang, G.C.S.; Jain, C.L. Regression Analysis: Modeling & Forecasting; Institute of Business Forec: Great Neck, NY, USA, 2003; ISBN 0932126502. [Google Scholar]
- Dong, X.; Li, F.; Lin, Z.; Harrison, S.P.; Chen, Y.; Kug, J.S. Climate influence on the 2019 fires in Amazonia. Sci. Total Environ. 2021, 794, 148718. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Randerson, J.T.; Morton, D.C.; Defries, R.S.; Collatz, G.J.; Kasibhatla, P.S.; Giglio, L.; Jin, Y.; Marlier, M.E. Forecasting fire season severity in South America using sea surface temperature anomalies. Science 2011, 334, 787–792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, R.; Yu, D.; Liu, Y.; Liu, Y.; Qiao, J.; Wang, X.; Du, J. Impacts of changes in climate and landscape pattern on ecosystem services. Sci. Total Environ. 2017, 579, 718–728. [Google Scholar] [CrossRef] [PubMed]
- Desboulets, L.D.D. A review on variable selection in regression analysis. Econometrics 2018, 6, 45. [Google Scholar] [CrossRef] [Green Version]
- Saltelli, A.; Tarantola, S.; Campolongo, F.; Ratto, M. Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models; Wiley Online Library: Hoboken, NJ, USA, 2004; Volume 1. [Google Scholar]
- Liu, X.; Yang, S.; Xu, J.; Zhang, J.; Liu, J. Effects of soil heat storage and phase shift correction on energy balance closure of paddy fields. Atmosfera 2017, 30, 39–52. [Google Scholar] [CrossRef]
- Burba, G. Eddy Covariance Method-for Scientific, Industrial, Agricultural, and Regulatory Applications. 2013. Available online: https://books.google.co.uk/books?hl=zh-CN&lr=&id=8lPB-H4IR9EC&oi=fnd&pg=PA7&dq=Eddy+Covariance+Method-for+Scientific,+Industrial,+Agricultural,+and+Regulatory+Applications&ots=cHEsoAuGLa&sig=2jyjLAkIxK3OCkZ9YU4ih2bRqis#v=onepage&q=Eddy%20Covariance%20Method-for%20Scientific%2C%20Industrial%2C%20Agricultural%2C%20and%20Regulatory%20Applications&f=false (accessed on 8 March 2022).
- Foken, T.; Aubinet, M.; Leuning, R. The Eddy Covariance Method. Eddy Covariance 2012, 11, 1–19. [Google Scholar] [CrossRef]
- Twine, T.E.; Kustas, W.P.; Norman, J.M.; Cook, D.R.; Houser, P.R.; Meyers, T.P.; Prueger, J.H.; Starks, P.J.; Wesely, M.L. Correcting eddy-covariance flux underestimates over a grassland. Agric. For. Meteorol. 2000, 103, 279–300. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, T.; Kumagai, T.; Kobayashi, M.; Tamai, K.; Iida, S.; Kabeya, N.; Ikawa, R.; Tateishi, M.; Miyazawa, Y.; Shimizu, A. Estimation of annual forest evapotranspiration from a coniferous plantation watershed in Japan (2): Comparison of eddy covariance, water budget and sap-flow plus interception loss. J. Hydrol. 2015, 522, 250–264. [Google Scholar] [CrossRef]
- Chu, H.S.; Chang, S.C.; Klemm, O.; Lai, C.W.; Lin, Y.Z.; Wu, C.C.; Lin, J.Y.; Jiang, J.Y.; Chen, J.; Gottgens, J.F.; et al. Does canopy wetness matter? Evapotranspiration from a subtropical montane cloud forest in Taiwan. Hydrol. Process. 2014, 28, 1190–1214. [Google Scholar] [CrossRef]
- Leuning, R.; van Gorsel, E.; Massman, W.J.; Isaac, P.R. Reflections on the surface energy imbalance problem. Agric. For. Meteorol. 2012, 156, 65–74. [Google Scholar] [CrossRef]
- Stoy, P.C.; Katul, G.G.; Siqueira, M.B.S.; Juang, J.Y.; Novick, K.A.; Mccarthy, H.R.; Oishi, A.C.; Uebelherr, J.M.; Kim, H.S.; Oren, R. Separating the effects of climate and vegetation on evapotranspiration along a successional chronosequence in the southeastern US. Glob. Chang. Biol. 2006, 12, 2115–2135. [Google Scholar] [CrossRef] [Green Version]
- Wilson, K.; EnWilson, K. Energy balance closure at FLUXNET sites. Agric. For. Meteorol. 2002, 113, 223–243. [Google Scholar] [CrossRef] [Green Version]
- Waldo, S.; Chi, J.; Pressley, S.N.; O’Keeffe, P.; Pan, W.L.; Brooks, E.S.; Huggins, D.R.; Stöckle, C.O.; Lamb, B.K. Assessing carbon dynamics at high and low rainfall agricultural sites in the inland Pacific Northwest US using the eddy covariance method. Agric. For. Meteorol. 2016, 218–219, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Tian, F.; Hu, H.; Yang, P. A comparison of methods for determining field evapotranspiration: Photosynthesis system, sap flow, and eddy covariance. Hydrol. Earth Syst. Sci. 2014, 18, 1053–1072. [Google Scholar] [CrossRef] [Green Version]
- Anapalli, S.S.; Fisher, D.K.; Reddy, K.N.; Wagle, P.; Gowda, P.H.; Sui, R. Quantifying soybean evapotranspiration using an eddy covariance approach. Agric. Water Manag. 2018, 209, 228–239. [Google Scholar] [CrossRef]
- Song, T.; Sun, Y.; Wang, Y. Multilevel measurements of fluxes and turbulence over an urban landscape in Beijing. Tellus B Chem. Phys. Meteorol. 2013, 65, 20421. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, H.; Du, Q.; Xu, L. Multi-level CO2 fluxes over Beijing megacity with the eddy covariance method. Atmos. Ocean. Sci. Lett. 2021, 14, 100079. [Google Scholar] [CrossRef]
- Ye, X.; Wu, B.; Zhang, H. The turbulent structure and transport in fog layers observed over the Tianjin area. Atmos. Res. 2015, 153, 217–234. [Google Scholar] [CrossRef]
- Jing, L.; Yi, H.; Hai-yang, W.; Da-ming, W. Surface Runoff in Mountainous Cities and Its Relationship with Land Use Patterns. J. Southwest Univ. Natural Sci. 2015, 37, 8–15. (In Chinese) [Google Scholar]
- Tang, X.; Wang, Y.; Wang, Y.; Guo, P.; Hu, B.; Sun, S. Influence of hydrological processes on the runoff variation of base cations in Jinyun Mountain. Shengtai Xuebao/Acta Ecol. Sin. 2014, 34, 7047–7056. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Grace, J.; Zhao, W.; Dong, Y.; Zhang, X.; Zhou, L.; Fei, X.; Jin, Y.; Li, J.; Nizami, S.M.; et al. Water-use efficiency and its relationship with environmental and biological factors in a rubber plantation. J. Hydrol. 2018, 563, 273–282. [Google Scholar] [CrossRef]
- Baumberger, M.; Breuer, B.; Lai, Y.J.; Gabyshev, D.; Klemm, O. Bidirectional Turbulent Fluxes of Fog at a Subtropical Montane Cloud Forest Covering a Wide Size Range of Droplets. Bound.-Layer Meteorol. 2022, 182, 309–333. [Google Scholar] [CrossRef]
- Beiderwieden, E.; Wolff, V.; Hsia, Y.; Klemm, O. It goes both ways: Measurements of simultaneous evapotranspiration and fog droplet deposition at a montane cloud forest. Hydrol. Process. 2008, 22, 4181–4189. [Google Scholar] [CrossRef]
- El-Madany, T.S.; Walk, J.B.; Deventer, M.J.; Degefie, D.T.; Chang, S.; Juang, J.; Griessbaum, F.; Klemm, O. Canopy-atmosphere interactions under foggy condition—Size-resolved fog droplet fluxes and their implications. J. Geophys. Res. Biogeosci. 2016, 121, 796–808. [Google Scholar] [CrossRef] [Green Version]
- Wehr, R.; Saleska, S.R. Calculating canopy stomatal conductance from eddy covariance measurements, in light of the energy budget closure problem. Biogeosciences 2021, 18, 13–24. [Google Scholar] [CrossRef]
- Markwitz, C.; Siebicke, L. Low-cost eddy covariance: A case study of evapotranspiration over agroforestry in Germany. Atmos. Meas. Tech. 2019, 12, 4677–4696. [Google Scholar] [CrossRef] [Green Version]
- Engelmann, C.; Bernhofer, C. Exploring Eddy-Covariance Measurements Using a Spatial Approach: The Eddy Matrix. Bound.-Layer Meteorol. 2016, 161, 1–17. [Google Scholar] [CrossRef]
- Burba, G.G.; Mcdermitt, D.K.; Anderson, D.J.; Furtaw, M.D.; Eckles, R.D.; Mcdermitt, D.K.; Anderson, D.J.; Furtaw, M.D. Novel design of an enclosed CO2/H2O gas analyser for eddy covariance flux measurements. Tellus B Chem. Phys. Meteorol. 2017, 62, 743–748. [Google Scholar] [CrossRef]
- Saugier, B.; Granier, A.; Pontailler, J.Y.; Dufrene, E.; Baldocchi, D.D. Transpiration of a boreal pine forest measured by branch bag, sap flow and micrometeorological methods. Tree Physiol. 1997, 17, 511–519. [Google Scholar] [CrossRef]
- Liu, X.; Li, Y.; Chen, X.; Zhou, G.; Cheng, J.; Zhang, D.; Meng, Z.; Zhang, Q. Partitioning evapotranspiration in an intact forested watershed in southern China. Ecohydrology 2015, 8, 1037–1047. [Google Scholar] [CrossRef]
- Nelson, J.A.; Pérez-Priego, O.; Zhou, S.; Poyatos, R.; Zhang, Y.; Blanken, P.D.; Gimeno, T.E.; Wohlfahrt, G.; Desai, A.R.; Gioli, B.; et al. Ecosystem transpiration and evaporation: Insights from three water flux partitioning methods across FLUXNET sites. Glob. Chang. Biol. 2020, 26, 6916–6930. [Google Scholar] [CrossRef] [PubMed]
- Niu, S.; Lu, C.; Yu, H.; Zhao, L.; Lü, J. Fog research in China: An overview. Adv. Atmos. Sci. 2010, 27, 639–662. [Google Scholar] [CrossRef]
- Bergot, T. Large-eddy simulation study of the dissipation of radiation fog. Q. J. R. Meteorol. Soc. 2016, 142, 1029–1040. [Google Scholar] [CrossRef]
- Abdul-Wahab, S.A.; Al-Hinai, H.; Al-Najar, K.A.; Al-Kalbani, M.S. Fog water harvesting: Quality of fog water collected for domestic and agricultural use. Environ. Eng. Sci. 2007, 24, 446–456. [Google Scholar] [CrossRef]
- Qiao, N.; Zhang, L.; Huang, C.; Jiao, W.; Maggs-Kölling, G.; Marais, E.; Wang, L. Satellite Observed Positive Impacts of Fog on Vegetation. Geophys. Res. Lett. 2020, 47, e2020GL088428. [Google Scholar] [CrossRef]
- Wang, X.; Chen, J. Fog formation in cold season in Ji’nan, China: Case analyses with application of HYSPLIT model. Adv. Meteorol. 2014, 2014, 940956. [Google Scholar] [CrossRef]
- Ma, N.; Zhao, C.S.; Chen, J.; Xu, W.Y.; Yan, P.; Zhou, X.J. A novel method for distinguishing fog and haze based on PM2.5, visibility, and relative humidity. Sci. China Earth Sci. 2014, 57, 2156–2164. [Google Scholar] [CrossRef]
- Bittencourt, P.R.L.; Barros, F.; Eller, C.B.; Müller, C.S.; Oliveira, R.S. The fog regime in a tropical montane cloud forest in Brazil and its effects on water, light and microclimate. Agric. For. Meteorol. 2019, 265, 359–369. [Google Scholar] [CrossRef]
- Gu, R.-Y.; Lo, M.-H.; Liao, C.-Y.; Jang, Y.-S.; Juang, J.-Y.; Huang, C.-Y.; Chang, S.-C.; Hsieh, C.-I.; Chen, Y.-Y.; Chu, H.; et al. Early Peak of Latent Heat Fluxes Regulates Diurnal Temperature Range in Montane Cloud Forests. J. Hydrometeorol. 2021, 22, 2475–2487. [Google Scholar] [CrossRef]
- Regalado, C.M.; Ritter, A. Scaling Erica arborea transpiration from trees up to the stand using auxiliary micrometeorological information in a wax myrtle-tree heath cloud forest (La Gomera, Canary Islands). Tree Physiol. 2013, 33, 973–985. [Google Scholar] [CrossRef] [Green Version]
- Ritter, A.; Regalado, C.M.; Aschan, G. Fog water collection in a subtropical Elfin Laurel forest of the Garajonay National Park (Canary Islands): A combined approach using artificial fog catchers and a physically based impaction model. J. Hydrometeorol. 2008, 9, 920–935. [Google Scholar] [CrossRef]
- Baguskas, S.A.; Clemesha, R.E.S.; Loik, M.E. Coastal low cloudiness and fog enhance crop water use efficiency in a California agricultural system. Agric. For. Meteorol. 2018, 252, 109–120. [Google Scholar] [CrossRef]
- Baguskas, S.A.; Oliphant, A.; Clemesha, R.; Loik, M. Water and Light-Use Efficiency Are Enhanced Under Summer Coastal Fog in a California Agricultural System. J. Geophys. Res. Biogeosciences 2021, 126, 6193. [Google Scholar] [CrossRef]
- Liu, J.; Song, X.; Yuan, G.; Sun, X.; Liu, X.; Wang, Z.; Wang, S. Stable isotopes of summer monsoonal precipitation in southern China and the moisture sources evidence from δ18O signature. J. Geogr. Sci. 2008, 18, 155–165. [Google Scholar] [CrossRef]
- Anderson, J.; Keppel, G.; Thomson, S.M.; Randell, A.; Raituva, J.; Koroi, I.; Anisi, R.; Charlson, T.; Boehmer, H.J.; Kleindorfer, S. Changes in climate and vegetation with altitude on Mount Batilamu, Viti Levu, Fiji. J. Trop. Ecol. 2018, 34, 316–325. [Google Scholar] [CrossRef]
- He, Z.; Zhan, S.; Wang, W.; Hu, L.; Wu, S. Different patterns of changes in foliar carbon isotope composition along altitude. Pol. J. Ecol. 2017, 65, 227–235. [Google Scholar] [CrossRef]
- Liao, D.; Zhu, H.; Jiang, P. Study of urban heat island index methods for urban agglomerations (hilly terrain) in Chongqing. Theor. Appl. Climatol. 2021, 143, 279–289. [Google Scholar] [CrossRef]
- Yao, R.; Luo, Q.; Luo, Z.; Jiang, L.; Yang, Y. An integrated study of urban microclimates in Chongqing, China: Historical weather data, transverse measurement and numerical simulation. Sustain. Cities Soc. 2015, 14, 187–199. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.; Che, T.; Li, H.; Wang, T.; Ma, C.; Liu, B.; Wu, Y.; Song, Z. Water and carbon dioxide exchange of an alpine meadow ecosystem in the northeastern Tibetan Plateau is energy-limited. Agric. For. Meteorol. 2019, 275, 283–295. [Google Scholar] [CrossRef]
- Baldocchi, D.; Chu, H.; Reichstein, M. Inter-annual variability of net and gross ecosystem carbon fluxes: A review. Agric. For. Meteorol. 2018, 249, 520–533. [Google Scholar] [CrossRef] [Green Version]
- Mcguire, A.D.; Anderson, L.G.; Christensen, T.R.; Scott, D.; Laodong, G.; Hayes, D.J.; Martin, H.; Lorenson, T.D.; Macdonald, R.W.; Nigel, R. Sensitivity of the carbon cycle in the Arctic to climate change. Ecol. Monogr. 2009, 79, 523–555. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Li, L.; Lai, J.; Liu, C.; Zhuang, W. Reference evapotranspiration change and its sensitivity to climate variables in southwest China. Theor. Appl. Climatol. 2016, 125, 499–508. [Google Scholar] [CrossRef]
- Xie, H.; Zhu, X. Reference evapotranspiration trends and their sensitivity to climatic change on the Tibetan Plateau (1970–2009). Hydrol. Process. 2013, 27, 3685–3693. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, J.; Zhao, Y.; Li, H.; Zhai, J.; Yu, Z.; Zhang, S. Reference evapotranspiration trends from 1980 to 2012 and their attribution to meteorological drivers in the three-river source region, China. Int. J. Climatol. 2016, 36, 3759–3769. [Google Scholar] [CrossRef]
- Nouri, M.; Homaee, M.; Bannayan, M. Quantitative Trend, Sensitivity and Contribution Analyses of Reference Evapotranspiration in some Arid Environments under Climate Change. Water Resour. Manag. 2017, 31, 2207–2224. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, Y.; Paw U, K.T. Quantifying the impact of climate variables on reference evapotranspiration in Pearl River Basin, China. Hydrol. Sci. J. 2019, 64, 1944–1956. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, G.; Shen, H.; Xu, Y.J.; Bake, B. Attribute Analysis of Aridity Variability in North Xinjiang, China. Adv. Meteorol. 2016, 2016, 9610960. [Google Scholar] [CrossRef] [Green Version]
- Rim, C.-S. Estimating evapotranspiration from small watersheds using a water and energy balance approach. Hydrol. Process. 2008, 22, 703–714. [Google Scholar] [CrossRef]
- Tanaka, N.; Kuraji, K.; Tantasirin, C.; Takizawa, H.; Tangtham, N.; Suzuki, M. Relationships between rainfall, fog and throughfall at a hill evergreen forest site in northern Thailand. Hydrol. Process. 2011, 25, 384–391. [Google Scholar] [CrossRef]
- Wang, T.; Niu, S.; Lü, J.; Zhou, Y. Observational Study on the Supercooled Fog Droplet Spectrum Distribution and Icing Accumulation Mechanism in Lushan, Southeast China. Adv. Atmos. Sci. 2019, 36, 29–40. [Google Scholar] [CrossRef]
- Telišman Prtenjak, M.; Klaić, M.; Jeričević, A.; Cuxart, J. The interaction of the downslope winds and fog formation over the Zagreb area. Atmos. Res. 2018, 214, 213–227. [Google Scholar] [CrossRef]
- Lekouch, I.; Lekouch, K.; Muselli, M.; Mongruel, A.; Kabbachi, B.; Beysens, D. Rooftop dew, fog and rain collection in southwest Morocco and predictive dew modeling using neural networks. J. Hydrol. 2012, 448–449, 60–72. [Google Scholar] [CrossRef]
Environmental Factors | Daytime | Night | ||||
---|---|---|---|---|---|---|
H | ETP | ETN | H | ETP | ETN | |
Rn | 0.379 *** | 0.234 *** | ||||
Tair | 0.393 *** | 0.149 ** | 0.320 *** | 0.178 *** | ||
VPD | 0.238 *** | 0.560 *** | ||||
RH | −0.265 *** | 0.221 *** | 0.217 * | 0.294 *** | ||
WS | −0.168 *** | 0.083 * | 0.275 *** | 0.432 *** | ||
Tsoil | 0.217 *** | |||||
SM | 0.256 *** | |||||
R2 | 0.373 | 0.334 | 0.105 | 0.069 | 0.398 | 0.211 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Wang, Y.; Wang, Y.; Wang, J.; Wang, S.; Feng, Y. Study on the Water and Heat Fluxes of a Very Humid Forest Ecosystem and Their Relationship with Environmental Factors in Jinyun Mountain, Chongqing. Atmosphere 2022, 13, 832. https://doi.org/10.3390/atmos13050832
Wang K, Wang Y, Wang Y, Wang J, Wang S, Feng Y. Study on the Water and Heat Fluxes of a Very Humid Forest Ecosystem and Their Relationship with Environmental Factors in Jinyun Mountain, Chongqing. Atmosphere. 2022; 13(5):832. https://doi.org/10.3390/atmos13050832
Chicago/Turabian StyleWang, Kai, Yunqi Wang, Yujie Wang, Jieshuai Wang, Songnian Wang, and Yincheng Feng. 2022. "Study on the Water and Heat Fluxes of a Very Humid Forest Ecosystem and Their Relationship with Environmental Factors in Jinyun Mountain, Chongqing" Atmosphere 13, no. 5: 832. https://doi.org/10.3390/atmos13050832
APA StyleWang, K., Wang, Y., Wang, Y., Wang, J., Wang, S., & Feng, Y. (2022). Study on the Water and Heat Fluxes of a Very Humid Forest Ecosystem and Their Relationship with Environmental Factors in Jinyun Mountain, Chongqing. Atmosphere, 13(5), 832. https://doi.org/10.3390/atmos13050832