Characteristics and Driving Factors of Energy Balance over Different Underlying Surfaces in the Qinghai Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Data Acquisition
2.2. Data Preprocessing Methods
2.2.1. Data Processing and Gap Filling
2.2.2. Radiant Fluxes Calculation
2.2.3. Calculation of Surface Energy Balance and Closure Rate
2.2.4. Parameter Calculations
2.2.5. Data Analysis Methods
3. Results
3.1. Variations in Energy Fluxes
3.2. Seasonal Variations in Energy Partitioning
3.3. Energy Closure Condition
3.4. The Correlation between Climate Factors of Different Underlying Surfaces and Energy Fluxes
3.5. The Regulatory Pathway of Meteorological Factors on Energy Fluxes
4. Discussion
4.1. Differences in Energy Fluxes and Partitioning of Various Underlying Surfaces
4.2. Meteorological Factors Regulate the Energy Fluxes and Their Partitioning
4.3. Evaluation of Energy Balance Closure for Different Underlying Surfaces
5. Conclusions
- H, LE, and Rn exhibited unimodal variations. In alpine shrublands and alpine deserts, H showed greater fluctuations, with high values mainly concentrated at the beginning or end of the growing season, while high values of LE were concentrated in the mid-growing season. Swamp meadows and subalpine mountain meadows were dominated by LE in terms of energy consumption throughout the year. Seasonal characteristics of energy allocation were obvious, Rn was mainly converted to LE in the growing season, with values of LE/Rn of 95.05% and 72.61%, respectively, and Rn was mainly converted to H in the non-growing season, with values of H/Rn of 51.07% and 65.13%, respectively. In alpine shrublands and alpine deserts, energy consumption was dominated by H throughout the year. During the growing season in alpine shrublands, Rn was predominantly converted into LE, while in the non-growing season, it was mainly converted into H. In contrast, in the drier alpine deserts, energy was predominantly in the form of H during both the growing and non-growing seasons.
- Soil moisture decreased in the order of WYS, AR, HB, and NADORS, with a corresponding increase in β. During both the growing and non-growing seasons of swamp meadows and subalpine mountain meadows, the β was less than 1. Energy fluxes for the four types of underlying surfaces exhibited an approximate 30% closure discrepancy, with energy closure rates being higher during the growing season compared to the non-growing season.
- Meteorological factors collectively regulated energy fluxes and the β. During the growing season, Rn, RH, and Ms had the greatest impact on H, primarily through direct effects on the fluxes; RH, VPD, Rn, and Ms had the greatest impacts on LE, with RH, VPD, and Rn mainly regulating the fluxes through direct effects, while Ms primarily influenced the fluxes through indirect effects. The β was mainly influenced by Ms, VPD, and RH. Although the fluxes of each ecosystem were affected by the same meteorological factors, alpine deserts were particularly sensitive to moisture, showing significant relationships mainly with Ms, VPD, and RH. Swamp meadows were notably influenced by Ws, Ta, and Ts; alpine shrublands were influenced by Ta; while subalpine mountain meadows were influenced by Ta and Ts.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McGloin, R.; Šigut, L.; Havránková, K.; Dušek, J.; Pavelka, M.; Sedlák, P. Energy balance closure at a variety of ecosystems in Central Europe with contrasting topographies. Agric. For. Meteorol. 2018, 248, 418–431. [Google Scholar] [CrossRef]
- Ma, Y.M.; Hu, Z.Y.; Wang, B.B.; Ma, W.Q.; Cheng, X.L.; Han, C.B.; Li, M.S.; Zhong, L.; Gu, L.L.; Sun, F.L.; et al. The Review of the Observation Experiments on Land-Atmosphere Interaction Progress on the Qinghai-Xizang (Tibetan) Plateau. Plateau Meteorol. 2021, 40, 1241–1262. [Google Scholar]
- Gu, L.L.; Yao, J.M.; Hu, Z.Y.; Zhao, L. Comparison of the surface energy budget between regions of seasonally frozen ground and permafrost on the Tibetan Plateau. Atmos. Res. 2015, 153, 553–564. [Google Scholar] [CrossRef]
- Yang, K.; Wu, H.X.; Qin, J.; Lin, C.G.; Tang, W.J.; Chen, Y.Y. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review. Glob. Planet. Chang. 2014, 112, 79–91. [Google Scholar] [CrossRef]
- Wu, G.X.; Zhang, Y.S. Tibetan Plateau Forcing and the Timing of the Monsoon Onset over South Asia and the South China Sea. Mon. Weather. Rev. 1998, 126, 913–927. [Google Scholar] [CrossRef]
- Ma, Y.M.; Yao, T.D.; Wang, J.M. Experimental study of energy and water cycle in Qinghai Plateau-The progress introduction on the study of GAME/Tibet and CAMP/Tibet. Plateau Meteorol. 2006, 25, 344–351. [Google Scholar]
- Li, N.; Zhao, P.; Wang, J.F.; Deng, Y. The Long-Term Change of Latent Heat Flux over the Western Tibetan Plateau. Atmosphere 2020, 11, 262. [Google Scholar] [CrossRef]
- Liu, B.; Cui, Y.L.; Luo, Y.F.; Shi, Y.Z.; Liu, M.; Liu, F.P. Energy partitioning and evapotranspiration over a rotated paddy field in Southern China. Agric. For. Meteorol. 2019, 276–277, 107626. [Google Scholar] [CrossRef]
- Wilson, K.; Goldstein, A.; Falge, E.; Aubinet, M.; Baldocchi, D.; Berbigier, P.; Bernhofer, C.; Ceulemans, R.; Dolman, H.A.J.; Field, C.; et al. Energy balance closure at FLUXNET sites. Agric. For. Meteorol. 2002, 113, 223–243. [Google Scholar] [CrossRef]
- Sun, L.C.; Zhao, L.; Li, R.; Xiao, Y. Seasonal changes and major influencing factors of surface albedo in the permafrost regions of the Qinghai-Tibet Plateau Hinterland. Mt. Res. 2020, 38, 9–18. [Google Scholar] [CrossRef]
- Guo, H.N.; Wang, S.Y.; Ye, H.L.; He, X.B.; Ding, Y.J.; Hong, X.F.; Fu, H. Characteristics of surface energy budget of typical alpine swamp meadows in the source region Yangtze River and its influencing factors. J. Glaciol. Geocryol. 2023, 45, 1501–1515. [Google Scholar]
- Li, Z.G.; Lyu, S.H.; Ao, Y.H.; Wen, L.J.; Zhao, L.; Wang, S.Y. Long-term energy flux and radiation balance observations over Lake Ngoring, Qinghai Plateau. Atmos. Res. 2015, 155, 13–25. [Google Scholar] [CrossRef]
- Zhao, X.B. Characteristics of Surface Energy Balance and Parameterization of Turbulent Fluxes in the Gobi Region of the Western Qinghai Plateau. Ph.D. Thesis, Nanjing University of Information Science and Technology, Nanjing, China, 2021. [Google Scholar]
- Zhang, F.W.; Han, Y.; Li, H.Q.; Li, Y.N.; Cao, G.M.; Zhou, H.K. Turbulent heat exchange and partitioning and its environmental controls between the atmosphere and an alpine potentilla fruticosa shrublands over the Qinghai-Tibet Plateau. Chin. J. Agrometeorol. 2020, 41, 76–85. [Google Scholar] [CrossRef]
- Xin, Y.F.; Chen, F.; Zhao, P.; Barlage, M.; Blanken, P.; Chen, Y.L.; Chen, B.; Wang, Y.J. Surface energy balance closure at ten sites over the Tibetan plateau. Agric. For. Meteorol. 2018, 259, 317–328. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Li, X.Y.; Zhao, G.Q.; Huang, Y.M. Surface energy fluxes and controls of evapotranspiration in three alpine ecosystems of Qinghai Lake Watershed, NE Qinghai-Tibet Plateau. Ecohydrology 2015, 9, 267–279. [Google Scholar] [CrossRef]
- Liu, J.K.; Yao, J.M.; Gu, L.L.; Li, R.; Wu, X.D.; Wu, T.H.; Xie, C.W.; Zou, D.F.; Qiao, Y.P.; Hu, G.J.; et al. The surface energy budget process and preliminary analysis of its impact on the active layer in the permafrost region of the Qinghai-Tibet Plateau. J. Glaciol. Geocryol. 2022, 44, 1773–1783. [Google Scholar]
- Sun, G.H.; Hu, Z.Y.; Wang, J.M.; Ma, W.Q.; Gu, L.L.; Sun, F.L.; Xie, Z.P.; Yan, X.Q. The spatial heterogeneity of land surface conditions and its influence on surface fluxes over a typical underlying surface in the Tibetan Plateau. Theor. Appl. Climatol. 2019, 135, 221–235. [Google Scholar] [CrossRef]
- Hu, Y.Y.; Zhong, L.; Ma, Y.M.; Zou, M.J.; Huang, Z.Y.; Xu, K.P.; Feng, L. Model estimation and validation of the surface energy fluxes at typical underlying surfaces over the Qinghai-Plateau. Plateau Meteorol. 2018, 37, 1499–1510. [Google Scholar]
- Ma, N.; Zhang, Y.S.; Guo, Y.H.; Gao, Y.H.; Gao, H.F.; Zhang, H.B.; Wang, Y.F. Environmental and biophysical controls on the evapotranspiration over the highest alpine steppe. J. Hydrol. 2015, 529, 980–992. [Google Scholar] [CrossRef]
- Wang, S.Z.; Ma, Y.M.; Liu, Y.X. Simulation of sensible and latent heat fluxes on the Tibetan Plateau from 1981 to 2018. Atmos. Res. 2022, 271, 106129. [Google Scholar] [CrossRef]
- Liu, Z.G.; Zhao, B.S.; Yan, H.F.; Su, J.B. Energy Partitioning and Latent Heat Flux Driving Factors of the CAM Plant Pineapple (Ananas Comosus (L.) Merril) Grown in the South Subtropical China. Plants 2023, 13, 21. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.M.; Xiao, H.J.; Xin, Z.M.; Li, J.R.; Miri, A.; Cao, Q.Q. Characteristics of Energy Distribution in a Desert Ecosystem in Inner Mongolia, Northern China. Front. Environ. Sci. 2022, 10, 939782. [Google Scholar] [CrossRef]
- Wang, Y.; You, C.H.; Gao, Y.H.; Li, Y.Q.; Niu, Y.L.; Shao, C.L.; Wang, X.; Xin, X.P.; Yu, G.R.; Han, X.G.; et al. Seasonal variations and drivers of energy fluxes and partitioning along an aridity gradient in temperate grasslands of northern China. Agric. For. Meteorol. 2023, 342, 109736. [Google Scholar] [CrossRef]
- Ge, J.; Yu, Y.; Xie, J.; Zan, B.L. A study on responses of surface energy partitioning to climatic factors on two types of underlying surface over Qinghai-Xizang Plateau. Chin. J. Atmos. Sci. 2017, 41, 918–932. [Google Scholar] [CrossRef]
- Chen, J.H.; Wu, K.; Hu, Z.M.; Yang, H. Spatio-temporal variability of vegetation sensitivity on the Qinghai-Tibet Plateau during the growing season from 2000 to 2021. Acta Ecol. Sin. 2023, 43, 4054–4065. [Google Scholar] [CrossRef]
- Li, H.Q.; Zhu, J.B.; Zhang, F.W.; He, H.D.; Yang, Y.S.; Li, Y.N.; Cao, G.M.; Zhou, H.K. Growth stage-dependant variability in water vapor and CO2 exchanges over a humid alpine shrubland on the northeastern Qinghai-Tibetan Plateau. Agric. For. Meteorol. 2019, 268, 55–62. [Google Scholar] [CrossRef]
- Shen, M.G.; Wang, S.P.; Jiang, N.; Sun, J.P.; Cao, R.Y.; Ling, X.F.; Fang, B.; Zhang, L.; Zhang, L.H.; Xu, X.Y.; et al. Plant phenology changes and drivers on the Qinghai-Tibetan Plateau. Nat. Rev. Earth Environ. 2022, 3, 633–651. [Google Scholar] [CrossRef]
- Wang, S.Y.; Zhang, Y.; Meng, X.H.; Song, M.H.; Shang, L.Y.; Su, Y.Q.; Li, Z.G. Fill the gaps of eddy covariance fluxes using machine learning algorithms. Plateau Meteorol. 2020, 39, 1348–1360. [Google Scholar] [CrossRef]
- Falge, E.; Baldocchi, D.; Olson, R.; Anthoni, P.; Aubinet, M.; Bernhofer, C.; Burba, G.; Ceulemans, R.; Clement, R.; Dolman, H.; et al. Gap filling strategies for long term energy flux data sets. Agric. For. Meteorol. 2001, 107, 71–77. [Google Scholar] [CrossRef]
- Cui, W.H.; Chui, T. Temporal and spatial variations of energy balance closure across FLUXNET research sites. Agric. For. Meteorol. 2019, 271, 12–21. [Google Scholar] [CrossRef]
- Aubinet, M.; Grelle, A.; Ibrom, A.; Rannik, Ü.; Moncrieff, J.; Foken, T.; Kowalski, A.S.; Martin, P.; Berbigier, P.; Bernhofer, C.; et al. Estimates of the annual net carbon and water exchange of forests: The EUROFLUX methodology. In Advances in Ecological Research; Elsevier: Amsterdam, The Netherlands, 1999; Volume 30, pp. 113–175. ISBN 978-0-12-013930-8. [Google Scholar] [CrossRef]
- Stoy, P.; Mauder, M.; Foken, T.; Marcolla, B.; Boegh, E.; Ibrom, A.; Arain, M.; Arneth, A.; Aurela, M.; Bernhofer, C.; et al. A data-driven analysis of energy balance closure across FLUXNET research sites: The role of landscape-scale heterogeneity. Agric. For. Meteorol. 2013, 171–172, 137–152. [Google Scholar] [CrossRef]
- Zhao, L.L.; Xia, J.; Xu, C.Y.; Chen, Y.Q. Applicability of Six Potential Evapotranspiration Estimation Methods in Haihe Basin. Water Resour. Power 2015, 3, 1–6. [Google Scholar]
- Zhao, W.; Lin, W.J.; Wang, G.L. Study on the Distribution of the Real Evapotranspiration in Hetao Plain Based on Remote Sense. Remote Sens. Inf. 2009, 6, 28–31+42. [Google Scholar]
- Yang, K.; Wang, J.M. A temperature prediction correction method for calculating surface soil heat flux based on soil temperature and humidity data. Science in China. Ser. D Earth Sci. 2008, 38, 243–250. [Google Scholar]
- Feng, L.; Zhong, L.; Ma, Y.M.; Fu, Y.F.; Zou, M.J. Estimation of soil heat flux over the northern Qinghai-Xizang Plateau based on in-situ soil temperature and moisture data. Plateau Meteorol. 2016, 35, 297–308. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhao, L.; Li, R.; Yao, J.M. Seasonal variation characteristics of surface energy budget components in permafrost regions in the hinterland of Qinghai-Tibet Plateau. J. Glaciol. Geocryol. 2011, 33, 1033–1039. [Google Scholar]
- McCaughey, J.H. Energy balance storage terms in a mature mixed forest at Petawawa, Ontario ? A case study. Bound.-Layer Meteorol. 1985, 31, 89–101. [Google Scholar] [CrossRef]
- Moore, C.J. Frequency Response Corrections for Eddy Correlation Systems. Bound.-Layer Meteorol. 1986, 37, 17–35. [Google Scholar] [CrossRef]
- Wang, Y.B.; You, C.H.; Tan, X.R.; Chen, B.Y.; Xu, M.Z.; Chen, S.P. Seasonal and interannual variations in energy balance closure over arid and semi-arid grasslands in northern China. Chin. J. Plant Ecol. 2022, 46, 1448–1460. [Google Scholar] [CrossRef]
- Chen, J.Y.; Dong, G.; Chen, J.Q.; Jiang, S.C.; Qu, L.P.; Legesse, T.; Zhao, F.U.; Tong, Q.; Shao, C.L.; Han, X.G. Energy balance and partitioning over grasslands on the Mongolian Plateau. Ecol. Indic. 2022, 135, 108560. [Google Scholar] [CrossRef]
- Ren, X.Y.; Zhang, Q.; Yue, P.; Yang, J.H.; Wang, S. Environmental and Biophysical Effects of the Bowen Ratio over Typical Farmland Ecosystems in the Loess Plateau. Remote Sens. 2022, 14, 1897. [Google Scholar] [CrossRef]
- Jia, X.; Zha, T.S.; Gong, J.N.; Wu, B.; Zhang, Y.Q.; Qin, S.G.; Chen, G.P.; Feng, W.; Kellomki, S.; Peltola, H. Energy partitioning over a semi-arid shrubland in northern China. Hydrological Process 2016, 30, 972–985. [Google Scholar] [CrossRef]
- Li, S.G.; Eugster, W.; Asanuma, J.; Kotani, A.; Davaa, G.; Oyunbaatar, D.; Sugita, M. Energy partitioning and its biophysical controls above a grazing steppe in central Mongolia. Agric. Forest. Meteorol. 2006, 137, 89–106. [Google Scholar] [CrossRef]
- Ning, Z.Y.; Xu, X.L.; Yang, D.; Xu, C.H.; Li, X.Z.; Li, Z.W. Temporal variation of vapor pressure deficit and its influencing factors in southwest China. Res. Agric. Mod. 2022, 43, 172–179. [Google Scholar] [CrossRef]
- Chen, L.; Yang, X.G.; Wang, L.; Song, N.P.; Zheng, S.; Wu, M.Y. Characteristics of evapotranspiration components of different plant communities in desert steppe and its relationship with environmental factors. Acta Ecol. Sin. 2024, 44, 330–342. [Google Scholar] [CrossRef]
- Yue, P.; Zhang, Q.; Zhang, L.; Li, H.Y.; Yang, Y.; Zeng, J.; Wang, S. Long-term variations in energy partitioning and evapotranspiration in a semiarid grassland in the Loess Plateau of China. Agric. For. Meteorol. 2019, 278, 107671. [Google Scholar] [CrossRef]
- Shang, L.Y.; Zhang, Y.; Lyu, S.H.; Wang, S.Y. Energy exchange of an alpine grassland on the eastern Qinghai-Tibetan Plateau. Sci. Bull. 2015, 60, 435–446. [Google Scholar] [CrossRef]
- Wang, K.X.; Zhang, Y.S.; Qiang, Y.H.; Guo, Y.H. Evapotranspiration and energy partitioning of a typical alpine wetland in the central Tibetan Plateau. Atmos. Res. 2021, 267, 105931. [Google Scholar] [CrossRef]
- Chen, J.Q.; Tian, L.; Zhang, Y.J. Growing season carries stronger contributions to albedo dynamics on the Tibetan Plateau. PLoS ONE 2017, 12, e0180559. [Google Scholar] [CrossRef]
- Lee, X.H.; Goulden, M.; Hollinger, D.; Barr, A.; Black, A.; Bohrer, G.; Bracho, R.; Drake, B.; Goldstein, A.; Gu, L.H.; et al. Observed increase in local cooling effect of deforestation at higher latitudes. Nature 2011, 479, 384–387. [Google Scholar] [CrossRef]
- Chen, H.L.; Zhu, Y.T.; Zhu, G.F.; Zhang, Y.; He, L.Y.; Xu, C.; Zhang, K.; Wang, J.; Ayyamperumal, R.; Fan, H.; et al. Energy partitioning over an irrigated vineyard in arid northwest China: Variation characteristics, influence degree, and path of influencing factors. Agric. For. Meteorol. 2024, 350, 109972. [Google Scholar] [CrossRef]
- Liu, S.; Li, S.G.; Yu, G.R.; Asanuma, J.; Sugita, M.; Zhang, L.; Hu, Z.; Wei, Y. Seasonal and interannual variations in water vapor exchange and surface balance over a grazed steppe in central Mongolia. Agric. Water Manag. 2010, 97, 857–864. [Google Scholar] [CrossRef]
- Li, F.; Zhou, B.R.; Qi, D.L.; Zhou, W.F.; Xiao, H.B.; Xiao, R.X. Study of surface energy budget over alpine wetland in Longbao, Yushu Prefecture, Qinghai Province. J. Glaciol. Geocryol. 2015, 37, 916–923. [Google Scholar]
- Yan, C.H.; Wang, B.; Xiang, J.; Du, J.; Zhang, S.F.; Qiu, G. Seasonal and interannual variability of surface energy fluxes and evapotranspiration over a subalpine horizontal flow wetland in China. Agric. For. Meteorol. 2020, 288–289, 107996. [Google Scholar] [CrossRef]
- Li, G.P.; Duan, T.Y.; Wu, G.F. The Intersity of Surface Heat Source and Surface Heat Balance on the Western Qinghai-Xizang Plateau. Sci. Geogr. Sin. 2003, 23, 13–18. [Google Scholar] [CrossRef]
- Ren, X.Y.; Zhang, Q.; Yue, P.; Yang, J.H.; Yan, X.Y. Study on Energy Partitioning and its Environmental Factors of Four Types of Typical Underlying Surfaces in North China. Plateau Meteorol. 2021, 40, 109–122. [Google Scholar]
- Huang, S.Y. Characteristics and Influencing Factors of Surface Energy Balance in an Artemisia Ordosica Shrub Ecosystem in the Mu Us Desert. Master’s Thesis, Beijing Forestry University, Beijing, China, 2020. [Google Scholar]
- Wang, L.; Liu, H.Z.; Shao, Y.P.; Liu, Y.; Sun, J.H. Water and CO2 fluxes over semiarid alpine steppe and humid alpine meadow ecosystems on the Tibetan Plateau. Theor. Appl. Climatol. 2018, 131, 547–556. [Google Scholar] [CrossRef]
- Hu, Z.Y.; Wang, G.X.; Sun, X.Y.; Huang, K.W.; Song, C.L.; Li, Y.; Sun, S.Q.; Sun, J.Y.; Lin, S. Energy partitioning and controlling factors of evapotranspiration in an alpine meadow in the permafrost region of the Qinghai-Tibet Plateau. J. Plant Ecol. 2024, 17, rtae002. [Google Scholar] [CrossRef]
- Li, X.P.; Wang, L.; Chen, D.L.; Yang, K.; Wang, A.H. Seasonal evapotranspiration changes (1983–2006) of four large basins on the Tibetan Plateau. J. Geophys. Res. 2014, 119, 13079–13095. [Google Scholar] [CrossRef]
- Yin, Z.; Ouyang, H.; Xu, X.; Song, M.H.; Duan, D.; Zhang, X. Water and heat balance and water use of shrub grassland and crop fields in Lhasa River Valley. Acta Geogr. Sin. 2009, 64, 303–314. [Google Scholar]
- Zhang, F.W.; Li, H.Q.; Li, Y.N.; Zhang, L. Surface energy partitioning in alpine swamp meadow in the Qinghai Tibetan Plateau. Pratacul Tural Sci. 2008, 25, 14–22. [Google Scholar] [CrossRef]
- Li, H.D.; Guan, D.X.; Yuan, F.H.; Ren, Y.; Wang, A.Z.; Jin, C.J.; Wu, J.B. Diurnal and seasonal variations of energy balance over Horqin meadow. Chin. J. Appl. Ecol. 2014, 25, 69–76. [Google Scholar] [CrossRef]
- Zhou, C.L.; Wang, K.C. Biological and EnvironmentalControls on Evaporative Fractions at AmeriFlux Sites. J. Appl. Meteorol. Climatol. 2016, 55, 145–161. [Google Scholar] [CrossRef]
- Gu, S.; Tang, Y.H.; Cui, X.Y.; Kato, T.; Du, M.Y.; Li, Y.N.; Zhao, X.Q. Energy exchange between the atmosphere and a meadow ecosystem on the Qinghai-Tibetan Plateau. Agric. For. Meteorol. 2005, 129, 175–185. [Google Scholar] [CrossRef]
- Aires, L.M.; Pio, C.A.; Pereira, J.S. The effect of drought on energy and water vapour exchange above a mediterranean C3/C4 grassland in Southern Portugal. Agric. For. Meteorol. 2008, 148, 565–579. [Google Scholar] [CrossRef]
- Chen, X.; Pan, Z.H.; Huang, B.X.; Liang, J.; Wang, J.L.; Zhang, Z.Y.; Jiang, K.; Huang, N.; Han, G.L.; Long, B.J.; et al. Influence paradigms of soil moisture on land surface energy partitioning under different climatic conditions. Sci. Total Environ. 2024, 916, 170098. [Google Scholar] [CrossRef] [PubMed]
- Deng, M.S.; Meng, X.H.; Sheng, D.R.; Niu, H.L.; Wu, P.L.; Li, Z.G.; Zhao, L.; Chen, H.; Shang, L.Y.; Wang, S.Y.; et al. Observed surface heat fluxes partitioning during the local growing season over the Tibetan Plateau. Agric. For. Meteorol. 2024, 356, 110186. [Google Scholar] [CrossRef]
- Guo, X.X.; Wang, K.; Li, L.; Zhang, H.; Ma, L.; Yao, Z.S.; Zhang, W.; Hu, Z.H.; Zhen, X.H. Study on surface energy exchange and evapotranspiration in alpine meadows of the Zoige Plateau. Chin. J. Agrometeorol. 2021, 42, 642–656. [Google Scholar]
- Zhang, X.Y.; Wang, L.X.; Yuan, H.Y. Seasonal differences of energy fluxes among crop and grass ecosystems in semiarid region of southern Ningxia. Acta Ecol. Sin. 2005, 25, 2333–2340. [Google Scholar] [CrossRef]
- Mauder, M.; Foken, T.; Cuxart, J. Surface-Energy-Balance Closure over Land: A Review. Bound.-Layer Meteorol. 2020, 177, 395–426. [Google Scholar] [CrossRef]
- Foken, T. The Energy Balance Closure Problem: An Overview. Ecol. Appl. 2008, 18, 1351–1367. [Google Scholar] [CrossRef]
- Li, Z.Q.; Yu, G.R.; Wen, X.F.; Zhang, L.M.; Ren, C.Y.; Fu, Y.L. Evaluation of the energy balance closure of the China Flux Observation Network (China FLUX). Sci. China Ser. D Earth Sci. 2004, 34, 46–56. [Google Scholar]
- Stannard, D.I.; Blanford, J.H.; Kustas, W.P.; Nichols, W.D.; Amer, S.A.; Schmugge, T.J.; Weltz, M.A. Interpretation of surface flux measurements in heterogeneous terrain during the Monsoon ’90 experiment. Water Resour. Res. 1994, 30, 1227–1239. [Google Scholar] [CrossRef]
Site Number | Site Name | Underlying Surface | Meteorological Parameters | Eddy Covariance Data | Observation Equipment | Time of Data Acquisition (Year) |
---|---|---|---|---|---|---|
WYS | Wayanshan | swamp meadows | wind speed (Ws), wind direction (Wd), relative humidity (RH), soil moisture (Ms), soil temperature (Ts), air temperature (Ta), rainfall (Pre), downward shortwave radiation (SD), upward shortwave radiation (SU), downward longwave radiation (LD), upward longwave radiation (LU), soil heat fluxes (G) | sensible heat flux (H), latent heat flux (LE) | NR01; CR1000; EM50 | 2017 |
AR | Arou | subalpine mountain meadows | Ws, Wd, RH, Ms, Ts, Ta, Pre, SD, SU, LD, LU, G | H, LE | CSAT3, Li7500A | 2017 |
HB | Haibei | alpine shrublands | Ws, Wd, RH, Ms, Ts, Ta, Pre, Rn | H, LE | LI-7500, CSAT-3, CM11 | 2012 |
NADORS | Ngari | alpine deserts | Ws, Wd, RH, Ms, Ts, Ta, Pre, SD, SU, LD, LU | H, LE | LI-7500, CSAT-3, NR01 | 2013 |
Time | Station | Slope | Intercept | R² |
---|---|---|---|---|
Total | WYS | 0.88 | 43.01 | 0.72 |
AR | 0.73 | 18.18 | 0.93 | |
HB | 0.64 | 11.03 | 0.95 | |
NADORS | 0.52 | 10.01 | 0.90 | |
Growing season (May–October) | WYS | 0.90 | 56.04 | 0.71 |
AR | 0.78 | 23.19 | 0.94 | |
HB | 0.66 | 8.19 | 0.95 | |
NADORS | 0.53 | 19.67 | 0.89 | |
Non-growing season (November–April) | WYS | 0.61 | 19.9 | 0.83 |
AR | 0.62 | 13.31 | 0.93 | |
HB | 0.61 | 13.85 | 0.94 | |
NADORS | 0.48 | 3.38 | 0.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Zhang, L.; Gao, L.; Duan, Z. Characteristics and Driving Factors of Energy Balance over Different Underlying Surfaces in the Qinghai Plateau. Atmosphere 2024, 15, 1196. https://doi.org/10.3390/atmos15101196
Liu X, Zhang L, Gao L, Duan Z. Characteristics and Driving Factors of Energy Balance over Different Underlying Surfaces in the Qinghai Plateau. Atmosphere. 2024; 15(10):1196. https://doi.org/10.3390/atmos15101196
Chicago/Turabian StyleLiu, Xiaoyang, Lele Zhang, Liming Gao, and Ziyi Duan. 2024. "Characteristics and Driving Factors of Energy Balance over Different Underlying Surfaces in the Qinghai Plateau" Atmosphere 15, no. 10: 1196. https://doi.org/10.3390/atmos15101196
APA StyleLiu, X., Zhang, L., Gao, L., & Duan, Z. (2024). Characteristics and Driving Factors of Energy Balance over Different Underlying Surfaces in the Qinghai Plateau. Atmosphere, 15(10), 1196. https://doi.org/10.3390/atmos15101196