Heat Budget Analysis for the Extended Development of the 2014–2015 Warming Event
Abstract
:1. Introduction
2. Data and Methods
3. Results
3.1. Time-Evolving Characteristics of the Extended 2014–2015 Warming Event
3.2. Heat Budget of the Upper 300 m over the El Niño 3.4 Region
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ermakova, T.S.; Koval, A.V.; Smyshlyaev, S.P.; Didenko, K.A.; Aniskina, O.G.; Savenkova, E.N.; Vinokurova, E.V. Manifestations of different El Niño types in the dynamics of the extratropical stratosphere. Atmosphere 2022, 13, 2111. [Google Scholar] [CrossRef]
- Lee, T.; McPhaden, M.J. Increasing intensity of El Niño in the central equatorial Pacific. Geophys. Res. Lett. 2010, 37, L14603. [Google Scholar] [CrossRef]
- Kao, H.Y.; Yu, J.Y. Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Clim. 2009, 22, 615–632. [Google Scholar] [CrossRef]
- Yeh, S.W.; Kug, J.S.; Dewitte, B.; Kwon, M.H.; Kirtman, B.P.; Jin, F.F. El Niño in a changing climate. Nature 2009, 461, 511–514. [Google Scholar] [CrossRef]
- Kug, J.S.; Jin, F.F.; An, S.I. Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Clim. 2009, 22, 1499–1515. [Google Scholar] [CrossRef]
- Ashok, K.; Behera, S.K.; Rao, S.A.; Weng, H.; Yamagata, T. El Niño Modoki and its possible teleconnection. J. Geophys. Res. 2007, 112, C11007. [Google Scholar] [CrossRef]
- Larkin, N.K.; Harrison, D.E. On the definition of El Niño and associated seasonal average U.S. weather anomalies. Geophys. Res. Lett. 2005, 32, L13705. [Google Scholar] [CrossRef]
- Wang, D.X.; Qin, Y.H.; Xiao, X.J.; Zhang, Z.Q.; Wu, X.Y. El Niño and El Niño Modoki variability based on a new ocean reanalysis. Ocean Dyn. 2012, 62, 1311–1322. [Google Scholar] [CrossRef]
- Yin, H.; Wu, Z.; Fowler, H.J.; Blenkinsop, S.; He, H.; Li, Y. The combined impacts of ENSO and IOD on global seasonal droughts. Atmosphere 2022, 13, 1673. [Google Scholar] [CrossRef]
- Pacheco, J.; Solera, A.; Avilés, A.; Tonón, M.D. Influence of ENSO on droughts and vegetation in a high mountain equatorial climate basin. Atmosphere 2023, 13, 2123. [Google Scholar] [CrossRef]
- Lv, A.; Fan, L.; Zhang, W. Impact of ENSO events on droughts in China. Atmosphere 2022, 13, 1764. [Google Scholar] [CrossRef]
- Ashok, K.; Yamagata, T. The El Niño with a difference. Nature 2009, 461, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.M.; Webster, P.J.; Curry, J.A. Impact of shifting patterns of Pacific Ocean warming on north Atlantic tropical cyclones. Science 2009, 325, 77–80. [Google Scholar] [CrossRef]
- Chang, C.W.J.; Hsu, H.H.; Wu, C.R.; Sheu, W.J. Interannual mode of sea level in the South China Sea and the roles of El Niño and El Niño Modoki. Geophys. Res. Lett. 2008, 35, L03601. [Google Scholar] [CrossRef] [Green Version]
- Chu, P.C. Global upper ocean heat content and climate variability. Ocean Dynam. 2011, 61, 1189–1204. [Google Scholar] [CrossRef] [Green Version]
- Paek, H.; Yu, J.Y.; Qian, C. Why were the 2015/2016 and 1997/1998 extreme El Niños different? Geophys. Res. Lett. 2017, 44, 1848–1856. [Google Scholar] [CrossRef]
- Fedorov, A.V.; Hu, S.; Lengaigne, M.; Guilyardi, E. The impact of westerly wind bursts and ocean initial state on the development, and diversity of El Niño events. Clim. Dyn. 2014, 44, 1381–1401. [Google Scholar] [CrossRef]
- Hu, S.; Fedorov, A.V.; Lengaigne, M.; Guilyardi, E. The impact of westerly wind bursts on the diversity and predictability of El Niño events: An ocean energetics perspective. Geophys. Res. Lett. 2014, 41, 4654–4663. [Google Scholar] [CrossRef]
- Chen, D.; Lian, T.; Fu, C.; Cane, M.A.; Tang, Y.; Murtugudde, R.; Song, X.S.; Wu, Q.Y.; Zhou, L. Strong influence of westerly wind bursts on El Niño diversity. Nat. Geosci. 2015, 8, 339–345. [Google Scholar] [CrossRef]
- Bjerknes, J. 1969. Atmospheric teleconnections from the equatorial Pacific. Mon. Weather Rev. 1969, 97, 163–172. [Google Scholar] [CrossRef]
- Cane, M.A.; Zebiak, S.E. A theory for El Niño and the Southern Oscillation. Science 1985, 228, 1085–1087. [Google Scholar] [CrossRef] [Green Version]
- Suarez, M.J.; Schopf, P.S. A delayed oscillator for ENSO. J. Atmos. Sci. 1988, 45, 3283–3287. [Google Scholar] [CrossRef]
- Picaut, J.; Ioualalen, M.; Menkes, C.; Delcroix, T.; McPhaden, M.J. Mechanism of zonal displacements of the Pacific Warm Pool: Implications of ENSO. Science 1996, 274, 1486–1489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, F.F. An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual mdel. J. Atmos. Sci. 1997, 54, 811–829. [Google Scholar] [CrossRef]
- Jin, F.F. An equatorial ocean recharge paradigm for ENSO. Part II: A Stripped-down coupled model. J. Atmos. Sci. 1997, 54, 830–847. [Google Scholar] [CrossRef]
- Weisberg, R.H.; Wang, C. A western Pacific oscillator paradigm for the El Niño-Southern Oscillation. Geophys. Res. Lett. 1997, 24, 779–782. [Google Scholar] [CrossRef] [Green Version]
- Battisti, D.S.; Hirst, A.C. Interannual variability in a tropical atmosphere-ocean model: Influence of the basic state, ocean geometry and nonlinearity. J. Atmos. Sci. 1989, 46, 1687–1712. [Google Scholar] [CrossRef]
- Anderson, D.L.T.; Satachik, E.S.; Webster, P.B. The TOGA decade—Reviewing the progress of El Niño research and predictions. J. Geophys. Res. 1998, 103, 015602. [Google Scholar]
- McPhaden, M.J. Genesis and Evolution of the 1997-98 El Niño. Science 1999, 283, 950–954. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Cane, M.A.; Kaplan, A.; Zebiak, S.E.; Huang, D. Predictability of El Niño over the past 148 years. Nature 2004, 428, 733–736. [Google Scholar] [CrossRef]
- Qu, T.; Yu, J.Y. ENSO Indices from Sea Surface Salinity Observed by Aquarius and Argo. J. Oceanogr. 2014, 70, 367–375. [Google Scholar] [CrossRef] [Green Version]
- Jin, E.K.; Kinter, J.L.; Wang, B.; Park, C.K.; Kang, I.S.; Kirtman, B.P.; Kug, J.S.; Kumar, A.; Luo, J.J.; Schemm, J.; et al. Current status of ENSO prediction skill in coupled ocean-atmosphere models. Clim. Dyn. 2008, 31, 647–664. [Google Scholar] [CrossRef]
- Moore, A.M.; Kleeman, R. Stochastic forcing of ENSO by the intraseasonal oscillation. J. Clim. 1999, 12, 1199–1220. [Google Scholar] [CrossRef]
- Wu, X.; Han, G.; Zhang, S.; Liu, Z. A study of the impact of parameter optimization on enso predictability with an intermediate coupled model. Clim. Dyn. 2016, 46, 711–727. [Google Scholar] [CrossRef]
- Latif, M.; Barnett, T.P.; Cane, M.A.; Flügel, M.; Graham, N.E.; Von Storch, H.; Xu, J.S.; Zebiak, S.E. A review of ENSO prediction studies. Clim. Dyn. 1994, 9, 167–179. [Google Scholar] [CrossRef]
- Webster, P.J. The annual cycle and the predictability of the tropical coupled ocean-athomosphere system. Meteorol. Atmos. Phys. 1995, 56, 33–55. [Google Scholar] [CrossRef]
- Goddard, L.; Mason, S.J.; Zebiak, S.E.; Ropelewski, C.F.; Basher, R.; Cane, M.A. Current approaches to seasonal-to-interannual climate predictions. Int. J. Climatol. 2001, 21, 1111–1152. [Google Scholar] [CrossRef]
- Ludescher, J.; Gozolchiani, A.; Bogachev, M.I.; Bunde, A.; Havlin, S.; Schellnhuber, H.J. Improved El Niño forecasting by cooperativity detection. Proc. Natl. Acad. Sci. USA 2013, 110, 11742–11745. [Google Scholar] [CrossRef] [Green Version]
- Penland, C.; Sardeshmukh, P.D. The optimal growth of tropical sea surface temperature anomalies. J. Clim. 1995, 8, 1999–2024. [Google Scholar] [CrossRef]
- Mcphaden, M.J. Playing hide and seek with El Niño. Nat. Clim. Chang. 2015, 5, 791–795. [Google Scholar] [CrossRef]
- Chen, S.; Wu, R.; Chen, W.; Yu, B.; Cao, X. Genesis of westerly wind bursts over the equatorial western pacific during the onset of the strong 2015–2016 El Niño. Atmos. Sci. Lett. 2016, 17, 384–391. [Google Scholar] [CrossRef]
- Li, J.; Liu, B.; Li, J.; Mao, J. A comparative study on the dominant factors responsible for the weaker-than-expected El Niño event in 2014. Adv. Atmos. Sci. 2015, 32, 1381–1390. [Google Scholar] [CrossRef]
- Min, Q.; Su, J.; Zhang, R.; Rong, X. What hindered the El Niño pattern in 2014? Geophys. Res. Lett. 2015, 42, 6762–6770. [Google Scholar] [CrossRef] [Green Version]
- Hu, S.; Fedorov, A.V. Exceptionally strong easterly wind burst stalling El Niño of 2014. Proc. Natl. Acad. Sci. USA 2016, 113, 2005–2010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bond, N.A.; Cronin, M.F.; Freeland, H.; Mantua, N. Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys. Res. Lett. 2015, 42, 3414–3420. [Google Scholar] [CrossRef]
- Levine, A.F.Z.; McPhaden, M.J. How the July 2014 easterly wind burst gave the 2015–2016 El Niño a head start. Geophys. Res. Lett. 2016, 43, 6503–6510. [Google Scholar] [CrossRef]
- Hu, S.; Fedorov, A.V. The extreme El Niño of 2015–2016: The role of westerly and easterly wind bursts, and preconditioning by the failed 2014 event. Clim. Dyn. 2019, 52, 7339–7357. [Google Scholar] [CrossRef]
- Xue, Y.; Kumar, A. Evolution of the 2015/16 El Niño and historical perspective since 1979. Sci. China Earth Sci. 2017, 60, 1572–1588. [Google Scholar] [CrossRef] [Green Version]
- Hu, S.; Fedorov, A.V. The extreme El Niño of 2015–2016 and the end of global warming hiatus. Geophys. Res. Lett. 2017, 44, 3816–3824. [Google Scholar] [CrossRef]
- Santoso, A.; Mcphaden, M.J.; Cai, W. The defining characteristics of ENSO extremes and the strong 2015/2016 El Niño. Rev. Geophys. 2017, 55, 1079–1129. [Google Scholar] [CrossRef]
- Wyrtki, K. Water displacements in the Pacific and the genesis of El Niño cycles. J. Geophys. Res. 1985, 90, 7129–7132. [Google Scholar] [CrossRef] [Green Version]
- Cane, M.A.; Zebiak, S.E.; Dolan, S.C. Experimental forecasts of El Niño. Nature 1986, 321, 827–832. [Google Scholar] [CrossRef] [Green Version]
- Meinen, C.S.; McPhaden, M.J. Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Nina. J. Clim. 2000, 13, 3551–3559. [Google Scholar] [CrossRef]
- Mcphaden, M.J. A 21st century shift in the relationship between ENSO SST and warm water volume anomalies. Geophys. Res. Lett. 2012, 39, L09706. [Google Scholar] [CrossRef]
- Ji, M.; Behringer, D.W.; Leetmaa, A. An improved coupled model for ENSO prediction and implications for ocean initialization. Part II: The coupled model. Mon. Wea. Rev. 1998, 126, 1022–1034. [Google Scholar] [CrossRef]
- Clarke, A.J.; Van Gorder, S. Improving El Niño prediction using a space-time integration of Indo-Pacific winds and equatorial Pacific upper ocean heat content. Geophys. Res. Lett. 2003, 30, 1399. [Google Scholar] [CrossRef]
- Xue, Y.; Balmaseda, M.A.; Boyer, T.; Ferry, T.N.; Good, S.; Ishikawa, I.; Kumar, A.; Rienecker, M.; Rosati, T.; Yin, Y. A Comparative Analysis of Upper-Ocean Heat Content Variability from an Ensemble of Operational Ocean Reanalyses. J. Clim. 2012, 25, 6905–6929. [Google Scholar] [CrossRef]
- Gao, S.; Qu, T.; Nie, X. Mixed layer salinity budget in the tropical Pacific Ocean estimated by a global GCM. J. Geophys. Res. Oceans 2014, 119, 8255–8270. [Google Scholar] [CrossRef]
- Fukumori, I. A partitioned Kalman filter and smoother. Mon. Weather Rev. 2002, 130, 1370–1383. [Google Scholar] [CrossRef]
- Qu, T.; Gao, S.; Fukumori, I. What governs the sea surface salinity maximum in the North Atlantic? Geophys. Res. Lett. 2011, 38, L07602. [Google Scholar] [CrossRef]
- Kim, S.B.; Fukumori, I.; Lee, T. The closure of the ocean mixed layer temperature budget using level-coordinate model fields. J. Atmos. Ocean. Technol. 2006, 23, 840–853. [Google Scholar] [CrossRef]
- Kim, S.B.; Lee, T.; Fukumori, I. Mechanisms controlling the interannual variation of mixed layer temperature averaged over the Nino-3 region. J. Clim. 2007, 20, 3822–3843. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteor. Soc. 1996, 77, 437–472. [Google Scholar] [CrossRef]
- Reynolds, R.W.; Smith, T.M. Improved global sea-surface temperature analyses using optimum interpolation. J. Clim. 1994, 7, 929–948. [Google Scholar] [CrossRef]
- Barnier, B.; Siefridt, L.; Marchesiello, P. Thermal forcing for a global ocean circulation model using a three-year climatology of ECMWF analysis. J. Mar. Syst. 1995, 6, 363–380. [Google Scholar] [CrossRef]
- Large, W.G.; McWilliams, J.C.; Doney, S.C. Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys. 1994, 32, 363–403. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.; Fukumori, I.; Tang, B. Temperature advection: Internal versus external processes. J. Phys. Oceanogr. 2004, 34, 1936–1944. [Google Scholar] [CrossRef]
- Zhang, X.; Mcphaden, M.J. Surface layer heat balance in the eastern equatorial pacific ocean on interannual time scales: Influence of local versus remote wind forcing. J. Clim. 2010, 23, 4375–4394. [Google Scholar] [CrossRef] [Green Version]
- Gent, P.R.; McWilliams, J.C. Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr. 1990, 20, 150–155. [Google Scholar] [CrossRef]
- Zhu, J.S.; Kumar, A.; Huang, B.H.; Balmaseda, M.A.; Hu, Z.Z.; Marx, L.; Kinter, J.L. The role of off-equatorial surface temperature anomalies in the 2014 El Niño prediction. Sci. Rep. 2016, 6, 19677. [Google Scholar] [CrossRef] [Green Version]
- Rebert, J.P.; Donguy, J.R.; Eldin, G.; Wyrtki, K. Relations between sea level, thermocline depth, heat content, and dynamic height in the tropical pacific ocean. J. Geophys. Res. 1985, 90, 11719. [Google Scholar] [CrossRef] [Green Version]
- Wen, C.; Kumar, A.; Xue, Y.; Mcphaden, M.J. Changes in tropical pacific thermocline depth and their relationship to enso after 1999. J. Clim. 2014, 27, 7230–7249. [Google Scholar] [CrossRef]
- Xu, K.; Huang, R.X.; Wang, W.; Zhu, C.; Lu, R. Thermocline fluctuations in the equatorial pacific related to the two types of El Niño events. J. Clim. 2017, 30, 6611–6627. [Google Scholar] [CrossRef]
- Zhu, J.; Kumar, A.; Huang, B. The relationship between thermocline depth and SST anomalies in the eastern equatorial Pacific: Seasonality and decadal variations. Geophys. Res. Lett. 2015, 42, 4507–4515. [Google Scholar] [CrossRef]
Year | Month | All | U Advection | U Average | Sub Processes | Sub Average | V Advection | V Average |
---|---|---|---|---|---|---|---|---|
2014 | J | 0.48 | 0.04 | 0.06 | 0.36 | 0.00 | 0.07 | 0.08 |
F | 1.54 | 0.86 | −0.02 | 0.52 | −0.03 | 0.15 | 0.07 | |
M | 0.66 | 0.60 | 0.13 | −0.11 | 0.10 | 0.19 | 0.05 | |
A | −0.52 | −0.30 | 0.21 | −0.41 | 0.08 | 0.21 | 0.11 | |
M | −0.54 | −0.53 | 0.10 | −0.09 | −0.02 | 0.12 | 0.12 | |
J | −0.35 | −0.36 | 0.12 | 0.14 | 0.05 | −0.08 | 0.10 | |
J | 0.20 | −0.039 | 0.31 | 0.20 | 0.13 | 0.06 | 0.10 | |
A | 0.42 | 0.15 | 0.40 | −0.02 | 0.06 | 0.29 | 0.09 | |
S | 0.02 | 0.06 | 0.30 | −0.17 | −0.03 | 0.14 | 0.10 | |
O | 0.23 | 0.18 | 0.16 | 0.01 | −0.12 | 0.07 | 0.10 | |
N | 0.31 | 0.17 | 0.03 | 0.00 | −0.20 | 0.15 | 0.02 | |
D | −0.01 | −0.01 | −0.08 | −0.01 | −0.13 | 0.04 | −0.16 | |
2015 | J | 0.38 | 0.18 | −0.07 | 0.19 | −0.03 | 0.04 | −0.36 |
F | 0.88 | 0.56 | −0.15 | 0.25 | 0.02 | 0.11 | −0.35 | |
M | 0.58 | 0.56 | −0.36 | −0.01 | −0.01 | 0.07 | −0.25 | |
A | 0.07 | 0.05 | −0.44 | −0.21 | 0.00 | 0.26 | −0.19 | |
M | −0.10 | −0.34 | −0.32 | −0.16 | 0.03 | 0.44 | −0.10 | |
J | 0.26 | −0.19 | −0.30 | 0.01 | −0.03 | 0.49 | 0.02 | |
J | 0.89 | 0.27 | −0.41 | 0.16 | −0.13 | 0.52 | 0.10 | |
A | 0.40 | 0.32 | −0.40 | −0.09 | −0.11 | 0.27 | 0.08 | |
S | 0.03 | 0.24 | −0.21 | −0.10 | −0.00 | 0.02 | −0.01 | |
O | 0.14 | 0.22 | −0.07 | 0.01 | 0.09 | 0.04 | −0.05 | |
N | −0.54 | −0.05 | 0.05 | −0.21 | 0.15 | −0.14 | −0.03 | |
D | −0.48 | 0.24 | 0.16 | −0.12 | 0.09 | −0.45 | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, Y.; Mo, H.; Wan, L.; Wang, Y.; Liu, Y.; Yu, Q.; Wu, X. Heat Budget Analysis for the Extended Development of the 2014–2015 Warming Event. Atmosphere 2023, 14, 954. https://doi.org/10.3390/atmos14060954
Qin Y, Mo H, Wan L, Wang Y, Liu Y, Yu Q, Wu X. Heat Budget Analysis for the Extended Development of the 2014–2015 Warming Event. Atmosphere. 2023; 14(6):954. https://doi.org/10.3390/atmos14060954
Chicago/Turabian StyleQin, Yinghao, Huier Mo, Liying Wan, Yi Wang, Yang Liu, Qinglong Yu, and Xiangyu Wu. 2023. "Heat Budget Analysis for the Extended Development of the 2014–2015 Warming Event" Atmosphere 14, no. 6: 954. https://doi.org/10.3390/atmos14060954
APA StyleQin, Y., Mo, H., Wan, L., Wang, Y., Liu, Y., Yu, Q., & Wu, X. (2023). Heat Budget Analysis for the Extended Development of the 2014–2015 Warming Event. Atmosphere, 14(6), 954. https://doi.org/10.3390/atmos14060954