The Influence of Horizontal Thermal Advection on Near-Surface Energy Budget Closure over the Zoige Alpine Wetland, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Observation Site
2.2. Instrument and Data
2.3. Energy Closure Ratio and Components
2.4. Near-Surface Horizontal Thermal Advection
2.5. Flux Footprint and the Configuration of Surface Temperature
2.6. Advection: Mean Velocity, Temperature, and Moisture Gradient
3. Results
3.1. Diurnal Variation of Horizontal Thermal Advection in Zoige Wetland
3.2. Surface Energy Budget of Zoige Wetland in Summer
3.3. The Contribution of Horizontal Thermal Advection to Energy Budget Closure
4. Conclusions
- (1)
- Horizontal sensible heat advection is stronger than horizontal latent heat advection. The ensemble average of HA is 17.8 W·m−2 while that of LEA is 2.4 W·m−2 during the observation period.
- (2)
- The magnitude of the horizontal thermal advection is approximately equal to that of sensible heat flux at Zoige alpine wetland during strong wind conditions. The diurnal variation was unimodal with a mean of 20.2 W·m−2 and a maximum value of 55.0 W·m−2.
- (3)
- After considering the contribution of thermal advection, the energy closure ratio of the Zoige alpine wetland increased from 72.3% to 81.0% in the summer. It means approximately one-tenth of net radiation energy is transferred horizontally by thermal advection in Zoige alpine wetland during a cold advection.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, R. Modeling the effects of three-dimensional vegetation structure on surface radiation and energy balance in boreal forests. J. Geophys. Res. Earth Surf. 2003, 108, 8615. [Google Scholar] [CrossRef]
- Mauder, M.; Foken, T.; Cuxart, J. Surface-Energy-Balance Closure over Land: A Review. Bound.-Layer Meteorol. 2020, 177, 395–426. [Google Scholar] [CrossRef]
- Leuning, R.; Denmead, O.T.; Lang, A.R.G.; Ohtaki, E. Effects of heat and water vapor transport on eddy covariance measurement of CO2 fluxes. Bound.-Layer Meteorol. 1982, 23, 209–222. [Google Scholar] [CrossRef]
- Oncley, S.P.; Foken, T.; Vogt, R.; Kohsiek, W.; DeBruin, H.A.R.; Bernhofer, C.; Christen, A.; Van Gorsel, E.; Grantz, D.; Feigenwinter, C.; et al. The Energy Balance Experiment EBEX-2000. Part I: Overview and energy balance. Bound.-Layer Meteorol. 2007, 123, 1–28. [Google Scholar] [CrossRef]
- Hu, Y.; Gao, Y.; Wang, J.; Ji, G.; Shen, Z.; Cheng, L.; Chen, J.; Li, S. Some research results of Heihe Experiment (HEIFE). Plateau Meteorol. 1994, 13, 2–13. [Google Scholar]
- Irmak, S.; Payero, J.O.; Kilic, A.; Odhiambo, L.O.; Rudnick, D.; Sharma, V.; Billesbach, D. On the magnitude and dynamics of eddy covariance system residual energy (energy balance closure error) in subsurface drip-irrigated maize field during growing and non-growing (dormant) seasons. Irrig. Sci. 2014, 32, 471–483. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Q.; Wang, C.; Yang, F.; Zhao, J. Effects of Air Thermal Storage, Photosynthesis and Soil Vertical Water Movement on Surface Energy Balance on the Loess Plateau. Acta Phys. Sin. 2012, 61, 537–547. [Google Scholar]
- Mauder, M.; Jegede, O.O.O.; Okogbue, E.C.C.; Wimmer, F.; Foken, T. Surface energy balance measurements at a tropical site in West Africa during the transition from dry to wet season. Theor. Appl. Climatol. 2007, 89, 171–183. [Google Scholar] [CrossRef]
- Panin, G.N.; Bernhofer, C. Parametrization of turbulent fluxes over inhomogeneous landscapes. Izv. Atmos. Ocean. Phys. 2008, 44, 701–716. [Google Scholar] [CrossRef]
- Cuxart, J.; Conangla, L.; Jiménez, M.A. Evaluation of the surface energy budget equation with experimental data and the ECMWF model in the Ebro Valley. J. Geophys. Res. 2015, 120, 1008–1022. [Google Scholar] [CrossRef] [Green Version]
- Cuxart, J.; Wrenger, B.; Martínez-Villagrasa, D.; Reuder, J.; Jonassen, M.O.; Jiménez, M.A.; Lothon, M.; Lohou, F.; Hartogensis, O.; Dünnermann, J.; et al. Estimation of the advection effects induced by surface heterogeneities in the surface energy budget. Atmos. Chem. Phys. 2016, 16, 9489–9504. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Santos, V.; Cuxart, J.; Jimenez, M.A.; Martinez-Villagrasa, D.; Simo, G.; Picos, R.; Caselles, V. Study of Temperature Heterogeneities at Sub-Kilometric Scales and Influence on Surface–Atmosphere Energy Interactions. IEEE Trans. Geosci. Remote Sens. 2019, 57, 640–654. [Google Scholar] [CrossRef]
- Morrison, T.; Calaf, M.; Higgins, C.W.; Drake, S.A.; Perelet, A.; Pardyjak, E. The Impact of Surface Temperature Heterogeneity on Near-Surface Heat Transport. Bound.-Layer Meteorol. 2021, 180, 247–272. [Google Scholar] [CrossRef]
- Stull, R.B. An Introduction to Boundary Layer Meteorology; Kluwer Academic Publisher: Amsterdam, The Netherlands, 1988. [Google Scholar]
- Baldocchi, D. ‘Breathing’ of the terrestrial biosphere: Lessons learned from a global network of carbon dioxide flux measurement systems. Aust. J. Bot. 2008, 56, 1–26. [Google Scholar] [CrossRef]
- Anthoni, P.M.; Law, B.E.; Unsworth, M.H.; Vong, R.J. Variation of net radiation over heterogeneous surfaces: Measurements and simulation in a juniper–sagebrush ecosystem. Agric. For. Meteorol. 2000, 102, 275–286. [Google Scholar] [CrossRef]
- Finnigan, J.J.; Clement, R.; Malhi, Y.; Leuning, R.; Cleugh, H.A. A Re-Evaluation of Long-Term Flux Measurement Techniques Part I: Averaging and Coordinate Rotation. Bound.-Layer Meteorol. 2003, 107, 1–48. [Google Scholar] [CrossRef]
- Leuning, R.; van Gorsel, E.; Massman, W.J.; Isaac, P.R. Reflections on the surface energy imbalance problem. Agric. For. Meteorol. 2012, 156, 65–74. [Google Scholar] [CrossRef]
- Kochendorfer, J.; Paw, U.K.T. Field estimates of scalar advection across a canopy edge. Agric. For. Meteorol. 2011, 151, 585–594. [Google Scholar] [CrossRef]
- Harder, P.; Pomeroy, J.W.; Helgason, W. Local-Scale Advection of Sensible and Latent Heat During Snowmelt. Geophys. Res. Lett. 2017, 44, 9769–9777. [Google Scholar] [CrossRef]
- Gao, Z.; Liu, H.; Russell, E.S.; Huang, J.; Foken, T.; Oncley, S.P. Large eddies modulating flux convergence and divergence in a disturbed unstable atmospheric surface layer. J. Geophys. Res. Atmos. 2016, 121, 1475–1492. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.; Liu, H.; Katul, G.; Foken, T. Non-closure of the surface energy balance explained by phase difference between vertical velocity and scalars of large atmospheric eddies. Environ. Res. Lett. 2017, 12, 034025. [Google Scholar] [CrossRef]
- Zhou, Y.Z.; Li, D.; Liu, H.P.; Li, X. Diurnal Variations of the Flux Imbalance Over Homogeneous and Heterogeneous Landscapes. Bound.-Layer Meteorol. 2018, 168, 417–442. [Google Scholar] [CrossRef]
- Bai, J.; Hua, O.; Cui, B.; Wang, Q.; Chen, H. Changes in landscape pattern of alpine wetlands on the Zoige Plateau in the past four decades. Acta Ecol. Sinica. 2008, 28, 2245–2252. [Google Scholar] [CrossRef]
- Lu, X.; Wen, J.; Tian, H.; Yang, Y.; Yang, A. Analysis of the Turbulent Fluxes of Water & Heat Exchange between the Zoige Alpine Wetland and Atmosphere. Plateau Meteorol. 2020, 39, 719–728. [Google Scholar] [CrossRef]
- Guo, Y.; Schuepp, P.H. On surface energy balance over the northern wetlands: 1. The effects of small-scale temperature and wetness heterogeneity. J. Geophys. Res. Earth Surf. 1994, 99, 1601–1612. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, H.; Zhao, J. Modification of the land surface energy balance relationship by introducing vertical sensible heat advection and soil heat storage over the Loess Plateau. Sci. China Earth Sci. 2011, 55, 580–589. [Google Scholar] [CrossRef]
- Etling, D.; Brown, R.A. Roll vortices in the planetary boundary layer: A review. Bound.-Layer Meteorol. 1993, 65, 215–248. [Google Scholar] [CrossRef]
- Liebethal, C.; Huwe, B.; Foken, T. Sensitivity analysis for two ground heat flux calculation approaches. Agric. For. Meteorol. 2005, 132, 253–262. [Google Scholar] [CrossRef]
- Meyers, T.; Hollinger, S.E. An assessment of storage terms in the surface energy balance of maize and soybean. Agric. For. Meteorol. 2004, 125, 105–115. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, Q.; Zhao, H.; Wang, H.; Wang, C. Analysis of the Surface Energy Closure for a Site in the Gobi Desert in Northwest China. Acta Meteorol. Sin. 2012, 26, 250–259. [Google Scholar] [CrossRef]
- Paw, U.K.T.; Baldocchi, D.D.; Meyers, T.P.; Wilson, K.B. Correction Of Eddy-Covariance Measurements Incorporating Both Advective Effects And Density Fluxes. Bound.-Layer Meteorol. 2000, 97, 487–511. [Google Scholar] [CrossRef]
- Stannard, D.I.; Blanford, J.H.; Kustas, W.P.; Nichols, W.D.; Amer, S.A.; Schmugge, T.J.; Weltz, M.A. Interpretation of surface flux measurements in heterogeneous terrain during the Monsoon ‘90 experiment. Water Resour. Res. 1994, 30, 1227–1239. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, Y. Phase transition of surface energy exchange in China’s largest freshwater lake. Agric. For. Meteorol. 2017, 244–245, 98–110. [Google Scholar] [CrossRef]
- Kljun, N.; Calanca, P.; Rotach, M.W.; Schmid, H.P. A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP). Geosci. Model Dev. 2015, 8, 3695–3713. [Google Scholar] [CrossRef] [Green Version]
- Assouline, S.; Tyler, S.W.; Tanny, J.; Cohen, S.; Bou-Zeid, E.; Parlange, M.B.; Katul, G.G. Evaporation from three water bodies of different sizes and climates: Measurements and scaling analysis. Adv. Water Resour. 2008, 31, 160–172. [Google Scholar] [CrossRef]
- Blanken, P.; Rouse, W.R.; Culf, A.D.; Spence, C.; Boudreau, L.D.; Jasper, J.N.; Kochtubajda, B.; Schertzer, W.M.; Marsh, P.; Verseghy, D. Eddy covariance measurements of evaporation from Great Slave Lake, Northwest Territories, Canada. Water Resour. Res. 2000, 36, 1069–1077. [Google Scholar] [CrossRef]
- Granger, R.J.; Hedstrom, N. Modelling hourly rates of evaporation from small lakes. Hydrol. Earth Syst. Sci. 2011, 15, 267–277. [Google Scholar] [CrossRef] [Green Version]
- Lenters, J.D.; Kratz, T.K.; Bowser, C.J. Effects of climate variability on lake evaporation: Results from a long-term energy budget study of Sparkling Lake, northern Wiscons in (USA). J. Hydrol. 2005, 308, 168–195. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Q.; Dowler, G. Environmental Controls on the Surface Energy Budget over a Large Southern Inland Water in the United States: An Analysis of One-Year Eddy Covariance Flux Data. J. Hydrometeorol. 2012, 13, 1893–1910. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, X.; Wen, J.; Wang, D.; Liu, W.; Yang, Y.; Tian, H.; Wu, Y.; Jiang, Y. The Influence of Horizontal Thermal Advection on Near-Surface Energy Budget Closure over the Zoige Alpine Wetland, China. Remote Sens. 2023, 15, 220. https://doi.org/10.3390/rs15010220
Lu X, Wen J, Wang D, Liu W, Yang Y, Tian H, Wu Y, Jiang Y. The Influence of Horizontal Thermal Advection on Near-Surface Energy Budget Closure over the Zoige Alpine Wetland, China. Remote Sensing. 2023; 15(1):220. https://doi.org/10.3390/rs15010220
Chicago/Turabian StyleLu, Xuancheng, Jun Wen, Dongxiao Wang, Wenhui Liu, Yue Yang, Hui Tian, Yueyue Wu, and Yuqin Jiang. 2023. "The Influence of Horizontal Thermal Advection on Near-Surface Energy Budget Closure over the Zoige Alpine Wetland, China" Remote Sensing 15, no. 1: 220. https://doi.org/10.3390/rs15010220
APA StyleLu, X., Wen, J., Wang, D., Liu, W., Yang, Y., Tian, H., Wu, Y., & Jiang, Y. (2023). The Influence of Horizontal Thermal Advection on Near-Surface Energy Budget Closure over the Zoige Alpine Wetland, China. Remote Sensing, 15(1), 220. https://doi.org/10.3390/rs15010220