Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,302)

Search Parameters:
Keywords = health-related compounds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 1184 KiB  
Review
Which Approach to Choose to Counteract Musculoskeletal Aging? A Comprehensive Review on the Multiple Effects of Exercise
by Angela Falvino, Roberto Bonanni, Umberto Tarantino, Virginia Tancredi and Ida Cariati
Int. J. Mol. Sci. 2025, 26(15), 7573; https://doi.org/10.3390/ijms26157573 - 5 Aug 2025
Abstract
Aging is a complex physiological process that profoundly affects the functionality of the musculoskeletal system, contributing to an increase in the incidence of diseases such as osteoporosis, osteoarthritis, and sarcopenia. Cellular senescence plays a crucial role in these degenerative processes, promoting chronic inflammation [...] Read more.
Aging is a complex physiological process that profoundly affects the functionality of the musculoskeletal system, contributing to an increase in the incidence of diseases such as osteoporosis, osteoarthritis, and sarcopenia. Cellular senescence plays a crucial role in these degenerative processes, promoting chronic inflammation and tissue dysfunction through the senescence-associated secretory phenotype (SASP). Recently, senotherapeutics have shown promising results in improving musculoskeletal health. Natural compounds such as resveratrol, rapamycin, quercetin, curcumin, vitamin E, genistein, fisetin, and epicatechin act on key signaling pathways, offering protective effects against musculoskeletal decline. On the other hand, molecules such as dasatinib, navitoclax, UBX0101, panobinostat, and metformin have been shown to be effective in eliminating or modulating senescent cells. However, understanding the mechanisms of action, long-term safety, and bioavailability remain areas for further investigation. In this context, physical exercise emerges as an effective non-pharmacological countermeasure, capable of directly modulating cellular senescence and promoting tissue regeneration, representing an integrated strategy to combat age-related diseases. Therefore, we have provided an overview of the main anti-aging compounds and examined the potential of physical exercise as a strategy in the management of age-related musculoskeletal disorders. Further studies should focus on identifying synergistic combinations of pharmacological and non-pharmacological interventions to optimize the effectiveness of anti-aging strategies and promoting healthier musculoskeletal aging. Full article
(This article belongs to the Special Issue Molecular Biology of Senescence and Anti-Aging Strategies)
Show Figures

Figure 1

27 pages, 2559 KiB  
Review
Virgin Coconut Oil and Its Lauric Acid, Between Anticancer Activity and Modulation of Chemotherapy Toxicity: A Review
by Debalina Bose, Adetayo Olorunlana, Rania Abdel-Latif, Ademola C. Famurewa and Eman M. Othman
J. Xenobiot. 2025, 15(4), 126; https://doi.org/10.3390/jox15040126 - 5 Aug 2025
Viewed by 37
Abstract
Virgin coconut oil (VCO) has emerged as a functional food oil with considerable health benefits and wide applications in the food, pharmaceutical, and cosmetic industries due to its resident bioactive compounds, including lauric acid (LA). LA is the most abundant saturated medium-chain fatty [...] Read more.
Virgin coconut oil (VCO) has emerged as a functional food oil with considerable health benefits and wide applications in the food, pharmaceutical, and cosmetic industries due to its resident bioactive compounds, including lauric acid (LA). LA is the most abundant saturated medium-chain fatty acid in VCO and has been associated with several pharmacological activities. The literatures show the pharmacological effects of VCO and LA on chronic pathologies, infectious diseases, and metabolic disorders. A robust body of evidence shows that LA and other phenolic compounds are responsible for the VCO protection against toxicities and pharmacological efficacies. This review elucidates the anticancer mechanisms of VCO/LA and their modulation of the chemotherapy-induced side effect toxicity. VCO, LA, and their nanomaterial/encapsulated derivatives promote ROS generation, antiproliferation, apoptosis, cell cycle arrest, the inhibition of metastasis, and the modulation of cancer-related signaling pathways for cancer cell death in vivo and in vitro. VCO mitigates oxidative inflammation and apoptosis to block the underlying mechanisms of the side effect toxicity of chemotherapy. However, the possible beneficial effect of LA on the toxicity of chemotherapy is currently unknown. The available evidence emphasizes the anticancer effect and mechanism of VCO and LA, and the VCO potential to combat adverse side effects of chemotherapy. Thus, VCO and LA are potential adjuvant therapeutic agents in the management of various cancers. Nevertheless, future studies should be targeted at elucidating cancer-related molecular mechanisms to bridge the gap in knowledge. Full article
Show Figures

Figure 1

29 pages, 2132 KiB  
Review
Polyphenol-Based Therapeutic Strategies for Mitochondrial Dysfunction in Aging
by Tamara Maksimović, Carmen Gădău, Gabriela Antal, Mihaela Čoban, Oana Eșanu, Elisabeta Atyim, Alexandra Mioc and Codruța Șoica
Biomolecules 2025, 15(8), 1116; https://doi.org/10.3390/biom15081116 - 3 Aug 2025
Viewed by 317
Abstract
Aging, a progressive and time-dependent decline in physiological functions, is driven by interconnected hallmarks, among which mitochondrial dysfunction plays a central role. Mitochondria not only regulate energy production but also play key roles in other cellular processes, including ROS generation, apoptosis, and metabolic [...] Read more.
Aging, a progressive and time-dependent decline in physiological functions, is driven by interconnected hallmarks, among which mitochondrial dysfunction plays a central role. Mitochondria not only regulate energy production but also play key roles in other cellular processes, including ROS generation, apoptosis, and metabolic signaling—all of which decline with aging. Polyphenols are a diverse group of natural compounds found in fruits, vegetables, tea, and wine; they emerged as promising anti-aging agents due to their ability to modulate several hallmarks of aging, particularly mitochondrial dysfunction. This review explores how various polyphenolic classes influence mitochondrial function and mitigate aging-related decline. These natural compounds have been shown to reduce oxidative stress, increase energy production, and help maintain normal mitochondrial structure. Moreover, in vitro and in vivo studies suggest that polyphenols can delay signs of aging and improve physical and cognitive functions. Overall, polyphenols show great potential to promote healthy aging and even delay the decline in physiological functions by protecting and enhancing mitochondrial health. Full article
(This article belongs to the Special Issue Bioactive Compounds as Modifiers of Mitochondrial Function)
Show Figures

Figure 1

21 pages, 3431 KiB  
Article
Synthesis and Antibacterial Evaluation of an Indole Triazole Conjugate with In Silico Evidence of Allosteric Binding to Penicillin-Binding Protein 2a
by Vidyasrilekha Sanapalli, Bharat Kumar Reddy Sanapalli and Afzal Azam Mohammed
Pharmaceutics 2025, 17(8), 1013; https://doi.org/10.3390/pharmaceutics17081013 - 3 Aug 2025
Viewed by 312
Abstract
Background: Antibacterial resistance (ABR) poses a major challenge to global health, with methicillin-resistant Staphylococcus aureus (MRSA) being one of the prominent multidrug-resistant strains. MRSA has developed resistance through the expression of Penicillin-Binding Protein 2a (PBP2a), a key transpeptidase enzyme involved in bacterial [...] Read more.
Background: Antibacterial resistance (ABR) poses a major challenge to global health, with methicillin-resistant Staphylococcus aureus (MRSA) being one of the prominent multidrug-resistant strains. MRSA has developed resistance through the expression of Penicillin-Binding Protein 2a (PBP2a), a key transpeptidase enzyme involved in bacterial cell wall biosynthesis. Objectives: The objective was to design and characterize a novel small-molecule inhibitor targeting PBP2a as a strategy to combat MRSA. Methods: We synthesized a new indole triazole conjugate (ITC) using eco-friendly and click chemistry approaches. In vitro antibacterial tests were performed against a panel of strains to evaluate the ITC antibacterial potential. Further, a series of in silico evaluations like molecular docking, MD simulations, free energy landscape (FEL), and principal component analysis (PCA) using the crystal structure of PBP2a (PDB ID: 4CJN), in order to predict the mechanism of action, binding mode, structural stability, and energetic profile of the 4CJN-ITC complex. Results: The compound ITC exhibited noteworthy antibacterial activity, which effectively inhibited the selected strains. Binding score and energy calculations demonstrated high affinity of ITC for the allosteric site of PBP2a and significant interactions responsible for complex stability during MD simulations. Further, FEL and PCA provided insights into the conformational behavior of ITC. These results gave the structural clues for the inhibitory action of ITC on the PBP2a. Conclusions: The integrated in vitro and in silico studies corroborate the potential of ITC as a promising developmental lead targeting PBP2a in MRSA. This study demonstrates the potential usage of rational drug design approaches in addressing therapeutic needs related to ABR. Full article
Show Figures

Figure 1

22 pages, 5809 KiB  
Article
Multistrain Microbial Inoculant Enhances Yield and Medicinal Quality of Glycyrrhiza uralensis in Arid Saline–Alkali Soil and Modulate Root Nutrients and Microbial Diversity
by Jun Zhang, Xin Li, Peiyao Pei, Peiya Wang, Qi Guo, Hui Yang and Xian Xue
Agronomy 2025, 15(8), 1879; https://doi.org/10.3390/agronomy15081879 - 3 Aug 2025
Viewed by 181
Abstract
Glycyrrhiza uralensis (G. uralensis), a leguminous plant, is an important medicinal and economic plant in saline–alkaline soils of arid regions in China. Its main bioactive components include liquiritin, glycyrrhizic acid, and flavonoids, which play significant roles in maintaining human health and [...] Read more.
Glycyrrhiza uralensis (G. uralensis), a leguminous plant, is an important medicinal and economic plant in saline–alkaline soils of arid regions in China. Its main bioactive components include liquiritin, glycyrrhizic acid, and flavonoids, which play significant roles in maintaining human health and preventing and adjuvantly treating related diseases. However, the cultivation of G. uralensis is easily restricted by adverse soil conditions in these regions, characterized by high salinity, high alkalinity, and nutrient deficiency. This study investigated the impacts of four multistrain microbial inoculants (Pa, Pb, Pc, Pd) on the growth performance and bioactive compound accumulation of G. uralensis in moderately saline–sodic soil. The aim was to screen the most beneficial inoculant from these strains, which were isolated from the rhizosphere of plants in moderately saline–alkaline soils of the Hexi Corridor and possess native advantages with excellent adaptability to arid environments. The results showed that inoculant Pc, comprising Pseudomonas silesiensis, Arthrobacter sp. GCG3, and Rhizobium sp. DG1, exhibited superior performance: it induced a 0.86-unit reduction in lateral root number relative to the control, while promoting significant increases in single-plant dry weight (101.70%), single-plant liquiritin (177.93%), single-plant glycyrrhizic acid (106.10%), and single-plant total flavonoids (107.64%). Application of the composite microbial inoculant Pc induced no significant changes in the pH and soluble salt content of G. uralensis rhizospheric soils. However, it promoted root utilization of soil organic matter and nitrate, while significantly increasing the contents of available potassium and available phosphorus in the rhizosphere. High-throughput sequencing revealed that Pc reorganized the rhizospheric microbial communities of G. uralensis, inducing pronounced shifts in the relative abundances of rhizospheric bacteria and fungi, leading to significant enrichment of target bacterial genera (Arthrobacter, Pseudomonas, Rhizobium), concomitant suppression of pathogenic fungi, and proliferation of beneficial fungi (Mortierella, Cladosporium). Correlation analyses showed that these microbial shifts were linked to improved plant nutrition and secondary metabolite biosynthesis. This study highlights Pc as a sustainable strategy to enhance G. uralensis yield and medicinal quality in saline–alkali ecosystems by mediating microbe–plant–nutrient interactions. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

19 pages, 300 KiB  
Review
Sprouted Grains as a Source of Bioactive Compounds for Modulating Insulin Resistance
by Yan Sun, Caiyun Li and Aejin Lee
Appl. Sci. 2025, 15(15), 8574; https://doi.org/10.3390/app15158574 (registering DOI) - 1 Aug 2025
Viewed by 296
Abstract
Sprouted grains are gaining attention as a natural and sustainable source of bioactive compounds with potential benefits in managing insulin resistance (IR), a hallmark of obesity-related metabolic disorders. This review aims to synthesize current findings on the biochemical changes induced during grain germination [...] Read more.
Sprouted grains are gaining attention as a natural and sustainable source of bioactive compounds with potential benefits in managing insulin resistance (IR), a hallmark of obesity-related metabolic disorders. This review aims to synthesize current findings on the biochemical changes induced during grain germination and their relevance to metabolic health. We examined recent in vitro, animal, and human studies focusing on how germination enhances the nutritional and functional properties of grains, particularly through the synthesis of compounds such as γ-aminobutyric acid, polyphenols, flavonoids, and antioxidants, while reducing anti-nutritional factors. These bioactive compounds have been shown to modulate metabolic and inflammatory pathways by inhibiting carbohydrate-digesting enzymes, suppressing pro-inflammatory cytokines, improving redox balance, and influencing gut microbiota composition. Collectively, these effects contribute to improved insulin sensitivity and glycemic control. The findings suggest that sprouted grains serve not only as functional food ingredients but also as accessible dietary tools for preventing or alleviating IR. Their role in delivering multiple bioactive molecules through a simple, environmentally friendly process highlights their promise in developing future nutrition-based strategies for metabolic disease prevention. Full article
(This article belongs to the Special Issue New Insights into Bioactive Compounds)
30 pages, 1428 KiB  
Review
The Oral–Gut Microbiota Axis Across the Lifespan: New Insights on a Forgotten Interaction
by Domenico Azzolino, Margherita Carnevale-Schianca, Luigi Santacroce, Marica Colella, Alessia Felicetti, Leonardo Terranova, Roberto Carlos Castrejón-Pérez, Franklin Garcia-Godoy, Tiziano Lucchi and Pier Carmine Passarelli
Nutrients 2025, 17(15), 2538; https://doi.org/10.3390/nu17152538 - 1 Aug 2025
Viewed by 243
Abstract
The oral–gut microbiota axis is a relatively new field of research. Although most studies have focused separately on the oral and gut microbiota, emerging evidence has highlighted that the two microbiota are interconnected and may influence each other through various mechanisms shaping systemic [...] Read more.
The oral–gut microbiota axis is a relatively new field of research. Although most studies have focused separately on the oral and gut microbiota, emerging evidence has highlighted that the two microbiota are interconnected and may influence each other through various mechanisms shaping systemic health. The aim of this review is therefore to provide an overview of the interactions between oral and gut microbiota, and the influence of diet and related metabolites on this axis. Pathogenic oral bacteria, such as Porphyromonas gingivalis and Fusobacterium nucleatum, can migrate to the gut through the enteral route, particularly in individuals with weakened gastrointestinal defenses or conditions like gastroesophageal reflux disease, contributing to disorders like inflammatory bowel disease and colorectal cancer. Bile acids, altered by gut microbes, also play a significant role in modulating these microbiota interactions and inflammatory responses. Oral bacteria can also spread via the bloodstream, promoting systemic inflammation and worsening some conditions like cardiovascular disease. Translocation of microorganisms can also take place from the gut to the oral cavity through fecal–oral transmission, especially within poor sanitary conditions. Some metabolites including short-chain fatty acids, trimethylamine N-oxide, indole and its derivatives, bile acids, and lipopolysaccharides produced by both oral and gut microbes seem to play central roles in mediating oral–gut interactions. The complex interplay between oral and gut microbiota underscores their crucial role in maintaining systemic health and highlights the potential consequences of dysbiosis at both the oral and gastrointestinal level. Some dietary patterns and nutritional compounds including probiotics and prebiotics seem to exert beneficial effects both on oral and gut microbiota eubiosis. A better understanding of these microbial interactions could therefore pave the way for the prevention and management of systemic conditions, improving overall health outcomes. Full article
(This article belongs to the Special Issue Exploring the Lifespan Dynamics of Oral–Gut Microbiota Interactions)
Show Figures

Figure 1

23 pages, 1268 KiB  
Article
Combining Stable Isotope Labeling and Candidate Substrate–Product Pair Networks Reveals Lignan, Oligolignol, and Chicoric Acid Biosynthesis in Flax Seedlings (Linum usitatissimum L.)
by Benjamin Thiombiano, Ahlam Mentag, Manon Paniez, Romain Roulard, Paulo Marcelo, François Mesnard and Rebecca Dauwe
Plants 2025, 14(15), 2371; https://doi.org/10.3390/plants14152371 - 1 Aug 2025
Viewed by 203
Abstract
Functional foods like flax (Linum usitatissimum L.) are rich sources of specialized metabolites that contribute to their nutritional and health-promoting properties. Understanding the biosynthesis of these compounds is essential for improving their quality and potential applications. However, dissecting complex metabolic networks in [...] Read more.
Functional foods like flax (Linum usitatissimum L.) are rich sources of specialized metabolites that contribute to their nutritional and health-promoting properties. Understanding the biosynthesis of these compounds is essential for improving their quality and potential applications. However, dissecting complex metabolic networks in plants remains challenging due to the dynamic nature and interconnectedness of biosynthetic pathways. In this study, we present a synergistic approach combining stable isotopic labeling (SIL), Candidate Substrate–Product Pair (CSPP) networks, and a time-course study with high temporal resolution to reveal the biosynthetic fluxes shaping phenylpropanoid metabolism in young flax seedlings. By feeding the seedlings with 13C3-p-coumaric acid and isolating isotopically labeled metabolization products prior to the construction of CSPP networks, the biochemical validity of the connections in the network was supported by SIL, independent of spectral similarity or abundance correlation. This method, in combination with multistage mass spectrometry (MSn), allowed confident structural proposals of lignans, neolignans, and hydroxycinnamic acid conjugates, including the presence of newly identified chicoric acid and related tartaric acid esters in flax. High-resolution time-course analyses revealed successive waves of metabolite formation, providing insights into distinct biosynthetic fluxes toward lignans and early lignification intermediates. No evidence was found here for the involvement of chlorogenic or caftaric acid intermediates in chicoric acid biosynthesis in flax, as has been described in other species. Instead, our findings suggest that in flax seedlings, chicoric acid is synthesized through successive hydroxylation steps of p-coumaroyl tartaric acid esters. This work demonstrates the power of combining SIL and CSPP strategies to uncover novel metabolic routes and highlights the nutritional potential of flax sprouts rich in chicoric acid. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

19 pages, 1889 KiB  
Article
Infrared Thermographic Signal Analysis of Bioactive Edible Oils Using CNNs for Quality Assessment
by Danilo Pratticò and Filippo Laganà
Signals 2025, 6(3), 38; https://doi.org/10.3390/signals6030038 - 1 Aug 2025
Viewed by 190
Abstract
Nutrition plays a fundamental role in promoting health and preventing chronic diseases, with bioactive food components offering a therapeutic potential in biomedical applications. Among these, edible oils are recognised for their functional properties, which contribute to disease prevention and metabolic regulation. The proposed [...] Read more.
Nutrition plays a fundamental role in promoting health and preventing chronic diseases, with bioactive food components offering a therapeutic potential in biomedical applications. Among these, edible oils are recognised for their functional properties, which contribute to disease prevention and metabolic regulation. The proposed study aims to evaluate the quality of four bioactive oils (olive oil, sunflower oil, tomato seed oil, and pumpkin seed oil) by analysing their thermal behaviour through infrared (IR) imaging. The study designed a customised electronic system to acquire thermographic signals under controlled temperature and humidity conditions. The acquisition system was used to extract thermal data. Analysis of the acquired thermal signals revealed characteristic heat absorption profiles used to infer differences in oil properties related to stability and degradation potential. A hybrid deep learning model that integrates Convolutional Neural Networks (CNNs) with Long Short-Term Memory (LSTM) units was used to classify and differentiate the oils based on stability, thermal reactivity, and potential health benefits. A signal analysis showed that the AI-based method improves both the accuracy (achieving an F1-score of 93.66%) and the repeatability of quality assessments, providing a non-invasive and intelligent framework for the validation and traceability of nutritional compounds. Full article
Show Figures

Figure 1

32 pages, 10052 KiB  
Article
A Study on Large Electric Vehicle Fires in a Tunnel: Use of a Fire Dynamics Simulator (FDS)
by Roberto Dessì, Daniel Fruhwirt and Davide Papurello
Processes 2025, 13(8), 2435; https://doi.org/10.3390/pr13082435 - 31 Jul 2025
Viewed by 348
Abstract
Internal combustion engine vehicles damage the environment and public health by emitting toxic fumes, such as CO2 or CO and other trace compounds. The use of electric cars helps to reduce the emission of pollutants into the environment due to the use [...] Read more.
Internal combustion engine vehicles damage the environment and public health by emitting toxic fumes, such as CO2 or CO and other trace compounds. The use of electric cars helps to reduce the emission of pollutants into the environment due to the use of batteries with no direct and local emissions. However, accidents of battery electric vehicles pose new challenges, such as thermal runaway. Such accidents can be serious and, in some cases, may result in uncontrolled overheating that causes the battery pack to spontaneously ignite. In particular, the most dangerous vehicles are heavy goods vehicles (HGVs), as they release a large amount of energy that generate high temperatures, poor visibility, and respiratory damage. This study aims to determine the potential consequences of large BEV fires in road tunnels using computational fluid dynamics (CFD). Furthermore, a comparison between a BEV and an ICEV fire shows the differences related to the thermal and the toxic impact. Furthermore, the adoption of a longitudinal ventilation system in the tunnel helped to mitigate the BEV fire risk, keeping a safer environment for tunnel users and rescue services through adequate smoke control. Full article
Show Figures

Figure 1

42 pages, 28030 KiB  
Article
Can AI and Urban Design Optimization Mitigate Cardiovascular Risks Amid Rapid Urbanization? Unveiling the Impact of Environmental Stressors on Health Resilience
by Mehdi Makvandi, Zeinab Khodabakhshi, Yige Liu, Wenjing Li and Philip F. Yuan
Sustainability 2025, 17(15), 6973; https://doi.org/10.3390/su17156973 - 31 Jul 2025
Viewed by 331
Abstract
In rapidly urbanizing environments, environmental stressors—such as air pollution, noise, heat, and green space depletion—substantially exacerbate public health burdens, contributing to the global rise of non-communicable diseases, particularly hypertension, cardiovascular disorders, and mental health conditions. Despite expanding research on green spaces and health [...] Read more.
In rapidly urbanizing environments, environmental stressors—such as air pollution, noise, heat, and green space depletion—substantially exacerbate public health burdens, contributing to the global rise of non-communicable diseases, particularly hypertension, cardiovascular disorders, and mental health conditions. Despite expanding research on green spaces and health (+76.9%, 2019–2025) and optimization and algorithmic approaches (+63.7%), the compounded and synergistic impacts of these stressors remain inadequately explored or addressed within current urban planning frameworks. This study presents a Mixed Methods Systematic Review (MMSR) to investigate the potential of AI-driven urban design optimizations in mitigating these multi-scalar environmental health risks. Specifically, it explores the complex interactions between urbanization, traffic-related pollutants, green infrastructure, and architectural intelligence, identifying critical gaps in the integration of computational optimization with nature-based solutions (NBS). To empirically substantiate these theoretical insights, this study draws on longitudinal 24 h dynamic blood pressure (BP) monitoring (3–9 months), revealing that chronic exposure to environmental noise (mean 79.84 dB) increases cardiovascular risk by approximately 1.8-fold. BP data (average 132/76 mmHg), along with observed hypertensive spikes (systolic > 172 mmHg, diastolic ≤ 101 mmHg), underscore the inadequacy of current urban design strategies in mitigating health risks. Based on these findings, this paper advocates for the integration of AI-driven approaches to optimize urban environments, offering actionable recommendations for developing adaptive, human-centric, and health-responsive urban planning frameworks that enhance resilience and public health in the face of accelerating urbanization. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

24 pages, 384 KiB  
Review
Potential Metal Contamination in Foods of Animal Origin—Food Safety Aspects
by József Lehel, Dániel Pleva, Attila László Nagy, Miklós Süth and Tibor Kocsner
Appl. Sci. 2025, 15(15), 8468; https://doi.org/10.3390/app15158468 (registering DOI) - 30 Jul 2025
Viewed by 196
Abstract
This literature review provides an overview of the food safety and toxicological characteristics of various heavy metals and metalloids and the public health significance of their occurrence in food. Metals also occur as natural components of the environment, but they can enter food [...] Read more.
This literature review provides an overview of the food safety and toxicological characteristics of various heavy metals and metalloids and the public health significance of their occurrence in food. Metals also occur as natural components of the environment, but they can enter food of animal origin and the human body primarily due to anthropogenic (industrial, agricultural, transport-related) activities. The persistent heavy metals (e.g., Hg, Pb, Cd) found in the environment are not biodegradable, can accumulate, and can enter the bodies of higher animals and subsequently, humans, where they are metabolized into various compounds with differing toxicity. Thus, due to their environmental contamination, they can accumulate in living organisms and their presence in the food chain is of great concern for human health. Regulations of the European Community in force lay down maximum levels for a limited number of metals, and the types of regulated foodstuffs of animal origin are also narrower than in the past, e.g., wild game animals and eggs are not included. The regulation of game meat (including offal) deserves consideration, given that it is in close interaction with the environmental condition of a given area and serves as indicator of it. Full article
30 pages, 924 KiB  
Review
Wood-Based Panels and Volatile Organic Compounds (VOCs): An Overview on Production, Emission Sources and Analysis
by Fátima Daniela Gonçalves, Luísa Hora Carvalho, José António Rodrigues and Rui Miguel Ramos
Molecules 2025, 30(15), 3195; https://doi.org/10.3390/molecules30153195 - 30 Jul 2025
Viewed by 347
Abstract
The emission and presence of volatile organic compounds (VOCs) in the indoor air of houses and factories has been a growing topic of debate in the industry and related research fields. Given the extended times people in modern society spend indoors, monitoring VOCs [...] Read more.
The emission and presence of volatile organic compounds (VOCs) in the indoor air of houses and factories has been a growing topic of debate in the industry and related research fields. Given the extended times people in modern society spend indoors, monitoring VOCs is crucial due to the associated potential health hazards, with formaldehyde being particularly noteworthy. Wood and wood-based panels (WBPs) (the latter constituting a significant segment of the wood-transforming industry, being widely used in furniture, construction, and other applications) are known sources for the emission of VOCs to indoor air. In the case of the WBPs, the emission of VOCs depends on the type and species of wood, together with industrial processing and addition of additives. This review integrates perspectives on the production processes associated with WBPs, together with the evolving global regulations, and thoroughly examines VOC sources associated with WBPs, health risks from exposure, and current analytical methods utilized for VOC detection. It comprises an overview of the WBP industry, providing relevant definitions, descriptions of manufacturing processes and adhesive use, analysis of legal constraints, and explanations of VOC source identification and describing analysis techniques utilized for VOCs in WBPs. Full article
Show Figures

Figure 1

21 pages, 2028 KiB  
Article
Graphene Oxide-Supported QuEChERS Extraction Coupled with LC-MS/MS for Trace-Level Analysis of Wastewater Pharmaceuticals
by Weronika Rogowska and Piotr Kaczyński
Appl. Sci. 2025, 15(15), 8441; https://doi.org/10.3390/app15158441 - 30 Jul 2025
Viewed by 295
Abstract
Detecting pharmaceuticals in environmental matrices, particularly in wastewater, is crucial due to their potential environmental occurrence and unpredictable ecological and health-related consequences. These substances, often present in trace amounts, require highly sensitive and selective analytical methods for effective monitoring. A modified version of [...] Read more.
Detecting pharmaceuticals in environmental matrices, particularly in wastewater, is crucial due to their potential environmental occurrence and unpredictable ecological and health-related consequences. These substances, often present in trace amounts, require highly sensitive and selective analytical methods for effective monitoring. A modified version of the QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) method was evaluated to evaluate 18 pharmaceuticals and 2 metabolites in wastewater samples using liquid chromatography with tandem mass spectrometry (LC-MS/MS). The method’s performance was assessed using linearity, recovery, precision, limits of quantification (LOQ) and detection (LOD), and the matrix effect (ME). The final method was based on acetonitrile, Na2EDTA, citrate buffer, and graphene oxide (GO). Finally, the calibration curves prepared in acetonitrile and the matrix extract showed a correlation coefficient of 0.99. Most of the compounds had LOQ values lower than 0.5 μg⋅mL−1. Recoveries were achieved in the 70–98% range, with RSD lower than 13%. GO allowed the elimination of the ME, which occurred in the range of −11% to 15%. The results indicate that a low-cost and straightforward method is suitable for routinely monitoring pharmaceuticals in wastewater, which is crucial for minimizing the impact of pollutants on aquatic ecosystems. Full article
(This article belongs to the Section Green Sustainable Science and Technology)
Show Figures

Figure 1

16 pages, 2131 KiB  
Article
A Comparative Study on ZrO2- and MgO-Based Sulfonic Acid Materials for the Reactive Adsorption of o-Xylene
by Hongmei Wang, Xiaoxu Zhang, Ziqi Shen and Zichuan Ma
Molecules 2025, 30(15), 3171; https://doi.org/10.3390/molecules30153171 - 29 Jul 2025
Viewed by 223
Abstract
The recovery and abatement of volatile organic compounds (VOCs) have received increasing attention due to their significant environmental and health impacts. Supported sulfonic acid materials have shown great potential in converting aromatic VOCs into their non-volatile derivatives through reactive adsorption. However, the anchoring [...] Read more.
The recovery and abatement of volatile organic compounds (VOCs) have received increasing attention due to their significant environmental and health impacts. Supported sulfonic acid materials have shown great potential in converting aromatic VOCs into their non-volatile derivatives through reactive adsorption. However, the anchoring state of sulfonic acid groups, which is closely related to the properties of the support, greatly affects their performance. In this study, two supported sulfonic acid materials, SZO and SMO, were prepared by treating ZrO2 and MgO with chlorosulfonic acid, respectively, to investigate the influence of the support properties on the anchoring state of sulfonic acid groups and their reactive adsorption performance for o-xylene. The supports, adsorbents, and adsorption products were extensively characterized, and the reactivity of SZO and SMO towards o-xylene was systematically compared. The results showed that sulfonic acid groups are anchored on the ZrO2 surface through covalent bonding, forming positively charged sulfonic acid sites ([O1.5Zr-O]δ−-SO3Hδ+) with a loading of 3.6 mmol/g. As a result, SZO exhibited excellent removal efficiency (≥91.3%) and high breakthrough adsorption capacity (ranging from 38.59 to 82.07 mg/g) for o-xylene in the temperature range of 130 –150 °C. In contrast, sulfonic acid groups are anchored on the MgO surface via ion-paired bonding, leading to the formation of negatively charged sulfonic acid sites ([O0.5Mg]+:OSO3H), which prevents their participation in the electrophilic sulfonation reaction with o-xylene molecules. This work provides new insights into tuning and enhancing the performance of supported sulfonic acid materials for the resource-oriented treatment of aromatic VOCs. Full article
(This article belongs to the Special Issue Applied Chemistry in Asia)
Show Figures

Graphical abstract

Back to TopTop