Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (699)

Search Parameters:
Keywords = hardwood

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1135 KiB  
Article
Evaluation of Fire Incidence in Spanish Forest Species
by Álvaro Enríquez-de-Salamanca
Fire 2025, 8(8), 312; https://doi.org/10.3390/fire8080312 - 6 Aug 2025
Abstract
Forest fires are recurrent in Spain and affect tree species in different ways. Fire incidence in the main Spanish forest species, both native and alien, is estimated in this study based on actual fire occurrences. Indices of presence, burned area, fire extent, frequency, [...] Read more.
Forest fires are recurrent in Spain and affect tree species in different ways. Fire incidence in the main Spanish forest species, both native and alien, is estimated in this study based on actual fire occurrences. Indices of presence, burned area, fire extent, frequency, and recurrence were calculated for each species, and with them, fire incidence indices were obtained. Significant fire incidence was detected in Pinus canariensis, P. pinaster, Eucalyptus globulus, Quercus robur, Betula spp., Castanea sativa, Pinus radiata, and Quercus pyrenaica. Most of the species with the highest fire incidence are not located in the areas with the highest climatic hazard. There is limited correlation between flammability and fire extension, and this is not significant when considering fire incidence. The relationship between fire incidence and conifers is valid in absolute terms, but only partially in relative terms. Similarly, there is no general relationship between relative fire incidence and species with a natural or reforested origin. Some native hardwood species have unexpectedly high incidence, probably due to collateral damage caused by fires in nearby pine and eucalyptus stands. The fire incidence index of forest species is useful for forest management and for protecting species that are suffering severely from fire effects. Full article
15 pages, 4075 KiB  
Article
Biological Characteristics and Domestication of a Wild Hericium coralloides
by Ji-Ling Song, Ya Xin, Zu-Fa Zhou, Xue-Ping Kang, Yang Zhang, Wei-Dong Yuan and Bin Yu
Horticulturae 2025, 11(8), 917; https://doi.org/10.3390/horticulturae11080917 - 5 Aug 2025
Viewed by 39
Abstract
Hericium coralloides is a highly valued gourmet and medicinal species with growing market demand across East Asia, though industrial production remains limited by cultivation challenges. This study investigated the molecular characteristics, biological traits, domestication potential, and cultivation protocols of Hericium coralloides strains collected [...] Read more.
Hericium coralloides is a highly valued gourmet and medicinal species with growing market demand across East Asia, though industrial production remains limited by cultivation challenges. This study investigated the molecular characteristics, biological traits, domestication potential, and cultivation protocols of Hericium coralloides strains collected from the Changbaishan Nature Reserve (Jiling, China). Optimal conditions for mycelial growth included mannose as the preferred carbon source, peptone as the nitrogen source, 30 °C incubation temperature, pH 5.5, and magnesium sulfate as the essential inorganic salt. The fruiting bodies had a protein content of 2.43% g/100 g (fresh sample meter). Total amino acids comprised 53.3% of the total amino acid profile, while essential amino acids accounted for 114.11% relative to non-essential amino acids, indicating high nutritional value. Under optimized domestication conditions—70% hardwood chips, 20% cottonseed hulls, 8% bran, 1% malic acid, and 1% gypsum—bags reached full colonization in 28 days, with a 15-day maturation phase and initial fruiting occurring after 12–14 days. The interval between flushes was 10–12 days. The average yield reached 318.65 ± 31.74 g per bag, with a biological conversion rate of 63.73%. These findings demonstrate that Hericium coralloides possesses significant potential for edible and commercial applications. This study provides a robust theoretical foundation and resource reference for its artificial cultivation, supporting its broader industrial and economic utilization. Full article
(This article belongs to the Special Issue Advances in Propagation and Cultivation of Mushroom)
Show Figures

Figure 1

21 pages, 3013 KiB  
Article
Determining Early Warning Thresholds to Detect Tree Mortality Risk in a Southeastern U.S. Bottomland Hardwood Wetland
by Maricar Aguilos, Jiayin Zhang, Miko Lorenzo Belgado, Ge Sun, Steve McNulty and John King
Forests 2025, 16(8), 1255; https://doi.org/10.3390/f16081255 - 1 Aug 2025
Viewed by 279
Abstract
Prolonged inundations are altering coastal forest ecosystems of the southeastern US, causing extensive tree die-offs and the development of ghost forests. This hydrological stressor also alters carbon fluxes, threatening the stability of coastal carbon sinks. This study was conducted to investigate the interactions [...] Read more.
Prolonged inundations are altering coastal forest ecosystems of the southeastern US, causing extensive tree die-offs and the development of ghost forests. This hydrological stressor also alters carbon fluxes, threatening the stability of coastal carbon sinks. This study was conducted to investigate the interactions between hydrological drivers and ecosystem responses by analyzing daily eddy covariance flux data from a wetland forest in North Carolina, USA, spanning 2009–2019. We analyzed temporal patterns of net ecosystem exchange (NEE), gross primary productivity (GPP), and ecosystem respiration (RE) under both flooded and non-flooded conditions and evaluated their relationships with observed tree mortality. Generalized Additive Modeling (GAM) revealed that groundwater table depth (GWT), leaf area index (LAI), NEE, and net radiation (Rn) were key predictors of mortality transitions (R2 = 0.98). Elevated GWT induces root anoxia; declining LAI reduces productivity; elevated NEE signals physiological breakdown; and higher Rn may amplify evapotranspiration stress. Receiver Operating Characteristic (ROC) analysis revealed critical early warning thresholds for tree mortality: GWT = 2.23 cm, LAI = 2.99, NEE = 1.27 g C m−2 d−1, and Rn = 167.54 W m−2. These values offer a basis for forecasting forest mortality risk and guiding early warning systems. Our findings highlight the dominant role of hydrological variability in ecosystem degradation and offer a threshold-based framework for early detection of mortality risks. This approach provides insights into managing coastal forest resilience amid accelerating sea level rise. Full article
(This article belongs to the Special Issue Water and Carbon Cycles and Their Coupling in Forest)
Show Figures

Figure 1

18 pages, 2100 KiB  
Article
Spatial Patterning and Growth of Naturally Regenerated Eastern White Pine in a Northern Hardwood Silviculture Experiment
by David A. Kromholz, Christopher R. Webster and Michael D. Hyslop
Forests 2025, 16(8), 1235; https://doi.org/10.3390/f16081235 - 26 Jul 2025
Viewed by 227
Abstract
In forests dominated by deciduous tree species, coniferous species are often disproportionately important because of their contrasting functional traits. Eastern white pine (Pinus strobus L.), once a widespread emergent canopy species, co-occurs with deciduous hardwoods in the northern Lake States, but is [...] Read more.
In forests dominated by deciduous tree species, coniferous species are often disproportionately important because of their contrasting functional traits. Eastern white pine (Pinus strobus L.), once a widespread emergent canopy species, co-occurs with deciduous hardwoods in the northern Lake States, but is often uncommon in contemporary hardwood stands. To gain insights into the potential utility of hardwood management strategies for simultaneously regenerating white pine, we leveraged a northern hardwood silvicultural experiment with scattered overstory pine. Seven growing seasons post-harvest, we conducted a complete census of white pine regeneration (height ≥ 30 cm) and mapped their locations and the locations of potential seed trees. Pine regeneration was sparse and strongly spatially aggregated, with most clusters falling within potential seed shadows of overstory pines. New recruits were found to have the highest density in a scarified portion of the study area leeward of potential seed trees. Low regeneration densities within treatment units, strong spatial aggregation, and the spatial arrangement of potential seed trees precluded generalizable inferences regarding the utility of specific treatment combinations. Nevertheless, our results underscore the critical importance of residual overstory pines as seed sources and highlight the challenges associated with realizing their potential in managed northern hardwoods. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

17 pages, 3023 KiB  
Article
Slip-Resistance Performance of Basketball Shoes Tread Patterns on Common Courts
by Pramod Yadav, Shubham Gupta, Dishant Sharma and Arnab Chanda
Appl. Mech. 2025, 6(3), 54; https://doi.org/10.3390/applmech6030054 - 24 Jul 2025
Viewed by 414
Abstract
Basketball requires intense movements like jumping and sudden changes in direction, increasing the risk of slips and falls due to poor shoe–court traction. Therefore, a significant demand is for good traction performance in basketball shoes, particularly in the heel region on different court [...] Read more.
Basketball requires intense movements like jumping and sudden changes in direction, increasing the risk of slips and falls due to poor shoe–court traction. Therefore, a significant demand is for good traction performance in basketball shoes, particularly in the heel region on different court surfaces, to prevent slipping. This study examined the traction performance of fifteen common basketball shoe designs that were considered and developed using thermoplastic polyurethane to assess the available coefficient of friction (ACOF) on popular floorings (hardwood, synthetic, and polyurethane) under dry and wet conditions using a robotic slip tester. Results indicate that the hardwood flooring provided better traction, followed by the synthetic flooring, while the polyurethane flooring showed reduced friction. The study also examined the traction with apparent contact areas. Shoes with herringbone and circular tread patterns demonstrated the highest traction on all flooring in dry conditions. This research is anticipated to help basketball shoemakers choose safer shoes for player safety and performance, providing a foundation for future research on shoe flooring interaction in basketball. Full article
Show Figures

Graphical abstract

19 pages, 1247 KiB  
Article
Niche Overlap in Forest Tree Species Precludes a Positive Diversity–Productivity Relationship
by Kliffi M. S. Blackstone, Gordon G. McNickle, Morgan V. Ritzi, Taylor M. Nelson, Brady S. Hardiman, Madeline S. Montague, Douglass F. Jacobs and John J. Couture
Plants 2025, 14(15), 2271; https://doi.org/10.3390/plants14152271 - 23 Jul 2025
Viewed by 253
Abstract
Niche complementarity is suggested to be a main driver of productivity overyielding in diverse environments due to enhanced resource use efficiency and reduced competition. Here, we combined multiple different approaches to demonstrate that niche overlap is the most likely cause to explain a [...] Read more.
Niche complementarity is suggested to be a main driver of productivity overyielding in diverse environments due to enhanced resource use efficiency and reduced competition. Here, we combined multiple different approaches to demonstrate that niche overlap is the most likely cause to explain a lack of overyielding of three tree species when grown in different species combinations. First, in an experimental planting we found no relationship between productivity and species diversity for leaf, wood, or root production (no slope was significantly different from zero), suggesting a lack of niche differences among species. Second, data extracted from the United States Department of Agriculture Forest Inventory and Analysis revealed that the species do not significantly co-occur in natural stands (p = 0.4065) as would be expected if coexistence was common across their entire range. Third, we compared trait differences among our species and found that they are not significantly different in multi-dimensional trait space (p = 0.1724). By combining multiple analytical approaches, we provide evidence of potential niche overlap that precludes coexistence and a positive diversity–productivity relationship between these three tree species. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

14 pages, 8367 KiB  
Article
Anatomical Barriers to Impregnation in Hybrid Poplar: A Comparative Study of Pit Characteristics in Normal and Tension Wood
by Andreas Buschalsky, Holger Militz and Tim Koddenberg
Forests 2025, 16(7), 1151; https://doi.org/10.3390/f16071151 - 12 Jul 2025
Viewed by 274
Abstract
Fast-growing hardwoods like poplar often lack natural durability in outdoor use and require homogeneous impregnation with protective agents, though achieving homogeneity remains a known challenge. Various anatomical structures influence fluid transport in wood. This study compares characteristics of pits in libriform fibres, between [...] Read more.
Fast-growing hardwoods like poplar often lack natural durability in outdoor use and require homogeneous impregnation with protective agents, though achieving homogeneity remains a known challenge. Various anatomical structures influence fluid transport in wood. This study compares characteristics of pits in libriform fibres, between ray–vessel interfaces, and between vessel-to-vessel connections in normal wood and tension wood of a hybrid poplar genotype (Populus × canadensis, ‘Gelrica’), including both impregnated (with an aqueous, dye-containing solution) and non-impregnated regions, to identify anatomical barriers to impregnation. Light and scanning electron microscopy revealed significant differences in pit morphology and frequency in libriform fibres between normal wood and tension wood. In non-impregnated regions, pits were often encrusted. Vessel–ray pits did not differ between normal wood and tension wood but showed distinct differences between impregnated and non-impregnated regions: in the latter, pits were occluded by tylose-forming layers. Intervessel pits differed in border and aperture size between earlywood and latewood in both normal wood and tension wood. Hence, fluid transport is strongly impeded by occluded vessel–ray pits and, to a lesser extent, by encrusted fibre pits. Full article
Show Figures

Figure 1

20 pages, 4664 KiB  
Article
Evaluation of the Selected Surface Properties of European Oak and Norway Maple Wood Sanded with Aluminum Oxide Sandpapers of Different Grits
by Agnieszka Laskowska, Anna Piwek, Karolina Lipska, Teresa Kłosińska, Katarzyna Rybak and Piotr Boruszewski
Coatings 2025, 15(7), 813; https://doi.org/10.3390/coatings15070813 - 11 Jul 2025
Viewed by 360
Abstract
The aim of the study was to determine the relationship between selected features of wood and the surface properties after sanding operations. Woods presenting different anatomical structures, i.e., ring-porous hardwood (European oak) and diffuse-porous hardwood (Norway maple), were used in the study. The [...] Read more.
The aim of the study was to determine the relationship between selected features of wood and the surface properties after sanding operations. Woods presenting different anatomical structures, i.e., ring-porous hardwood (European oak) and diffuse-porous hardwood (Norway maple), were used in the study. The wood surfaces were finished by sanding with aluminum oxide sandpapers of different grits: P60, P120, P180, and P240. It was shown that among the analyzed factors (wood species, anatomical section, measurement direction, and sandpaper grit size) and the interactions between them, the direction of measurement had the greatest influence (47%) on the Ra parameter values for oak wood. The sandpaper grit determined 22% of the Ra parameter variability. The measurement direction and the grit size of the sandpaper were identified as the most influential factors affecting the Rsm parameter values. Comparable patterns were observed in the case of Norway maple wood. Due to its diffuse-porous structure, the roughness of maple wood was less affected by the sandpaper grit compared to that of oak wood. Wood species had the greatest influence, increased from 41% to 71% when examining the contact angle at phase boundary wood-water after 3 s and 30 s. Sandpaper grit showed the greatest impact on the contact angles at the wood–diiodomethane phase boundary. This impact was practically at the same level after testing the contact angles after 3 s (27%) and after 30 s (28%). Wood species determined the color parameters, being responsible for 93% of the L* parameter, 50% of parameter a*, and 78% of parameter b*. The influence of sandpaper grit on the a* and b* parameter values was at a low level, i.e., 4%. SEM micrographs revealed the diverse structural characteristics of the wood following the sanding process. Full article
Show Figures

Figure 1

21 pages, 13213 KiB  
Article
Experimental Study on Mechanical Properties of European Oak and Norway Spruce Clear Wood
by Serena Gambarelli, Josipa Bošnjak, Rey Noé Fararoni Platas and Kexin Jin
Materials 2025, 18(14), 3257; https://doi.org/10.3390/ma18143257 - 10 Jul 2025
Viewed by 311
Abstract
The trends in the building industry related to sustainability and environmental footprint make timber structures more appealing than ever. Many challenges in understanding the behaviour of structural timber can be addressed by combining experimental and numerical methods. However, sophisticated numerical tools require a [...] Read more.
The trends in the building industry related to sustainability and environmental footprint make timber structures more appealing than ever. Many challenges in understanding the behaviour of structural timber can be addressed by combining experimental and numerical methods. However, sophisticated numerical tools require a complete description of the behaviour at the material level. Even though there are vast databases on the properties of different species, there are only limited studies on the mechanical response with complete stress–strain curves for all relevant directions. In order to bridge this gap, the present study investigates the mechanical response of European oak (hardwood) and Norway spruce (softwood). Uniaxial tensile and compressive tests were performed on small clear wood specimens. The behaviour was investigated for the direction parallel (longitudinal) and perpendicular to the grain (radial and tangential). Both species exhibit brittle tensile behaviour in all material directions, in contrast to the ductile performance under compression. The tensile strength lies at 70 MPa and 80 MPa for spruce and oak, respectively, whereas both species exhibit a compressive strength of approximately 50 MPa in the longitudinal direction. Due to the narrow range of the investigated density, growth-ring angle and growth-ring width, only a limited effect of these parameters was observed on the tensile behaviour in the longitudinal direction. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

23 pages, 3984 KiB  
Article
Stem Heating Enhances Growth but Reduces Earlywood Lumen Size in Two Pine Species and a Ring-Porous Oak
by J. Julio Camarero, Filipe Campelo, Jesús Revilla de Lucas, Michele Colangelo and Álvaro Rubio-Cuadrado
Forests 2025, 16(7), 1080; https://doi.org/10.3390/f16071080 - 28 Jun 2025
Viewed by 298
Abstract
Climate models forecast warmer winter conditions, which could lead to an earlier spring xylem phenology in trees. Localized stem heat experiments mimic this situation and have shown that stem warming leads to an earlier cambial resumption in evergreen conifers. However, there are still [...] Read more.
Climate models forecast warmer winter conditions, which could lead to an earlier spring xylem phenology in trees. Localized stem heat experiments mimic this situation and have shown that stem warming leads to an earlier cambial resumption in evergreen conifers. However, there are still few comprehensive studies comparing the responses to stem heating in coexisting conifers and hardwoods, particularly in drought-prone regions where temperatures are rising. We addressed this issue by comparing the responses (xylem phenology, wood anatomy, growth, and sapwood concentrations of non-structural carbohydrates—NSCs) of two pines (the Eurosiberian Pinus sylvestris L., and the Mediterranean Pinus pinaster Ait.) and a ring-porous oak (Quercus pyrenaica Willd.) to stem heating. We used the Vaganov-Shashkin growth model (VS model) to simulate growth phenology considering several emission scenarios and warming rates. Stem heating in winter advanced cambial phenology in P. pinaster and Q. pyrenaica and enhanced radial growth of the three species 1–2 years after the treatment, but reduced the transversal lumen area of earlywood conduits. P. sylvestris showed a rapid and high growth enhancement, whereas the oak responded with a 1-year delay. Heated P. pinaster and Q. pyrenaica trees showed lower sapwood starch concentrations than non-heated trees. These results partially agree with projections of the VS model, which forecasts earlier growth onset, particularly in P. pinaster, as climate warms. Climate-growth correlations show that growth may be enhanced by warm conditions in late winter but also reduced if this is followed by dry-warm growing seasons. Therefore, forecasted advancements of xylem onset in spring in response to warmer winters may not necessarily translate into enhanced growth if warming reduces the hydraulic conductivity and growing seasons become drier. Full article
(This article belongs to the Special Issue Drought Tolerance in ​Trees: Growth and Physiology)
Show Figures

Figure 1

21 pages, 4559 KiB  
Article
Predicting Forest Trail Degradation Susceptibility Using GIS-Based Explainable Machine Learning
by Hyeryeon Jo, Youngeun Kang and Seungwoo Son
Forests 2025, 16(7), 1074; https://doi.org/10.3390/f16071074 - 27 Jun 2025
Viewed by 451
Abstract
Effective trail management is essential for preventing environmental degradation and promoting sustainable recreational use. This study proposes a GIS-based, explainable machine learning framework for predicting forest trail degradation using exclusively environmental variables, eliminating the need for costly visitor monitoring data that remains unavailable [...] Read more.
Effective trail management is essential for preventing environmental degradation and promoting sustainable recreational use. This study proposes a GIS-based, explainable machine learning framework for predicting forest trail degradation using exclusively environmental variables, eliminating the need for costly visitor monitoring data that remains unavailable in most operational forest settings. Field surveys conducted in Geumjeongsan, South Korea, classified trail segments as degraded or non-degraded based on physical indicators such as erosion depth, trail width, and soil hardness. Environmental predictors—including elevation, slope, trail slope alignment (TSA), topographic wetness index (TWI), vegetation type, and soil texture—were derived from spatial analysis. Three machine learning algorithms (Binary Logistic Regression, Random Forest, and Gradient Boosting) were systematically compared using confusion matrix metrics and AUC-ROC (Area Under the Receiver Operating Characteristic Curve). Random Forest (RF) was selected for its strong performance (AUC-ROC = 0.812) and seamless integration with SHAP (SHapley Additive exPlanations) for transparent interpretation. Spatial block cross-validation achieved an AUC-ROC of 0.729, confirming robust spatial generalization. SHAP analysis revealed vegetation type as the most significant predictor, with hardwood forests showing higher degradation susceptibility than mixed forests. A susceptibility map generated from the RF model indicated that 40.7% of the study area faces high to very high degradation risk. This environmental-only approach enables proactive trail management across data-limited forest systems globally, providing actionable insights for sustainable trail maintenance without requiring visitor use data. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

34 pages, 2745 KiB  
Article
Prediction of Exotic Hardwood Carbon for Use in the New Zealand Emissions Trading Scheme
by Michael S. Watt, Mark O. Kimberley, Benjamin S. C. Steer and Micah N. Scholer
Forests 2025, 16(7), 1070; https://doi.org/10.3390/f16071070 - 27 Jun 2025
Viewed by 368
Abstract
New Zealand’s Emissions Trading Scheme (ETS) enables growers to earn payments by accumulating carbon units as their forests increase in carbon stock. For forests of less than 100 hectares, growers use predefined lookup tables (LUTs) to estimate carbon stock changes based on forest [...] Read more.
New Zealand’s Emissions Trading Scheme (ETS) enables growers to earn payments by accumulating carbon units as their forests increase in carbon stock. For forests of less than 100 hectares, growers use predefined lookup tables (LUTs) to estimate carbon stock changes based on forest age. Using a combination of growth models and productivity surfaces, underpinned by data from 1360 growth plots, the objective of this study was to provide draft updates for the Exotic Hardwoods LUTs. The updated LUTs were based on growth rates of three Eucalyptus species, E. fastigata, E. regnans, and E. nitens, which comprise a major proportion of the Exotic Hardwoods forest type in New Zealand. Carbon tables were first derived for each species. Then, a draft LUT was generated for New Zealand’s North Island, using a weighted average of the species-specific tables based on the relative importance of the species, while the E. nitens table was used for the South Island where this is the predominant Eucalyptus species. Carbon stock predictions at ages 30 and 50 years were 820 and 1340 tonnes CO2 ha−1 for the North Island, and slightly higher at 958 and 1609 tonnes CO2 ha−1 for the South Island. Regional variation was significant, with the highest predicted carbon in Southland (1691 tonnes CO2 ha−1 at age 50) and lowest in Hawke’s Bay/Southern North Island (1292 tonnes CO2 ha−1). Predictions closely matched the current Exotic Hardwood LUT to age 20 years but exceeded it by up to 45% at age 35. Growth and carbon sequestration rates were similar to other established Eucalyptus species and slightly higher than Acacia species, though further research is recommended. These findings suggest that the three Eucalyptus species studied here could serve as the default species for a revised Exotic Hardwoods LUT and that the current national tables could be regionalised. However, the government may consider factors other than the technical considerations outlined here when updating the LUTs. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

11 pages, 2573 KiB  
Article
Volvariella volvacea Processive Endoglucanase EG1 Treatment Improved the Physical Strength of Bleached Pulps and Reduced Vessel Picking in Eucalyptus Pulp
by Jiamin Yan, Yuemei Zhang and Shufang Wu
Polymers 2025, 17(12), 1714; https://doi.org/10.3390/polym17121714 - 19 Jun 2025
Viewed by 352
Abstract
Volvariella volvacea endoglucanase EG1 was used to treat bleached softwood kraft pulp (BSKP) and hardwood pulp (BHKP) to improve the refinability and physical strength, as well as to reduce vessel picking in Eucalyptus pulp. The results indicated that BSKP was treated with an [...] Read more.
Volvariella volvacea endoglucanase EG1 was used to treat bleached softwood kraft pulp (BSKP) and hardwood pulp (BHKP) to improve the refinability and physical strength, as well as to reduce vessel picking in Eucalyptus pulp. The results indicated that BSKP was treated with an enzyme dosage of 3 U/g for 2 h at 12,000 refining revolutions, which increased the tensile index from 71.4 N·m/g to 86.7 N·m/g. For BHKP, treatment with 10 U/g of EG1 for 2 h at 15,000 refining revolutions improved the tensile index from the control of 47.7 N·m/g to 56.9 N·m/g. Vessel-removed and vessel-enriched fractions of Eucalyptus pulp were obtained by screening and treated with EG1, respectively. It was found that EG1-assisted refining increased the physical strength and surface strength of both pulp fractions, and the latter improved even more, with increases of 22.4% and 160%, respectively. Full article
(This article belongs to the Special Issue Advances in Lignocellulose Research and Applications)
Show Figures

Graphical abstract

15 pages, 2316 KiB  
Article
Fuels Treatments and Tending Reduce Simulated Wildfire Impacts in Sequoia sempervirens Under Single-Tree and Group Selection
by Jade D. Wilder, Keith A. Shuttle, Jeffrey M. Kane and John-Pascal Berrill
Forests 2025, 16(6), 1000; https://doi.org/10.3390/f16061000 - 13 Jun 2025
Viewed by 477
Abstract
Selection forestry sustains timber production and stand structural complexity via partial harvesting. However, regeneration initiated by harvesting may function as fuel ladders, providing pathways for fire to reach the forest canopy. We sought potential mitigation approaches by simulating stand growth and potential wildfire [...] Read more.
Selection forestry sustains timber production and stand structural complexity via partial harvesting. However, regeneration initiated by harvesting may function as fuel ladders, providing pathways for fire to reach the forest canopy. We sought potential mitigation approaches by simulating stand growth and potential wildfire behavior over a century in stands dominated by coast redwood (Sequoia sempervirens (Lamb. ex. D. Don) Endl.) on California’s north coast. We used the fire and fuels extension to the forest vegetation simulator (FFE-FVS) to compare group selection (GS) to single-tree selection silviculture with either low-density (LD) or high-density (HD) retention on a 20-year harvest return interval. These three approaches were paired with six options involving vegetation management (i.e., hardwood control or pre-commercial thinning (PCT)) with and without fuels treatments (i.e., prescribed fire or pile burning), or no subsequent vegetation or fuel treatment applied after GS, HD, or LD silviculture. Fuel treatment involving prescribed fire reduced hazardous fuel loading but lowered stand density and hence productivity. Hardwood control followed by prescribed fire mitigated potential wildfire behavior and promoted dominance of merchantable conifers. PCT of small young trees regenerating after selection harvests, followed by piling and burning of these cut trees, sustained timber production while reducing potential wildfire behavior by approximately 40% relative to selection silviculture without vegetation/fuel management, which exhibited the worst potential wildfire behavior. Full article
(This article belongs to the Section Natural Hazards and Risk Management)
Show Figures

Figure 1

21 pages, 3275 KiB  
Article
Biochar as a Catalyst in Persulfate Activation: A Sustainable Approach to Remove Pesticides from Water
by Tajana Simetić, Tijana Marjanović Srebro, Tamara Apostolović, Jasmina Anojčić, Nina Đukanović, Sanja Mutić, Jelena Molnar Jazić and Jelena Beljin
Processes 2025, 13(6), 1856; https://doi.org/10.3390/pr13061856 - 12 Jun 2025
Viewed by 598
Abstract
This study explores biochar-based catalysts made from hardwood (HW) and wheat straw (WS) biomass for activating persulfate (PS) in the removal of lindane and β-endosulfan from water. The effects of pyrolysis temperature, solution pH, and PS concentration were investigated. The results indicated that [...] Read more.
This study explores biochar-based catalysts made from hardwood (HW) and wheat straw (WS) biomass for activating persulfate (PS) in the removal of lindane and β-endosulfan from water. The effects of pyrolysis temperature, solution pH, and PS concentration were investigated. The results indicated that both feedstock and pyrolysis temperature are key factors influencing biochar composition. Biochars pyrolyzed at 700 °C exhibited higher surface areas compared to those pyrolyzed at 400 °C, suggesting more effective interactions with the target pesticides. Changes in pH had a minimal impact on pesticide removal, while increasing the PS concentration from 0.5 to 3 mM accelerated degradation. However, further increases in PS concentration slowed the degradation of both pesticides. Under optimal conditions (pH of 7.0 ± 0.2 and PS concentration of 3 mM), the HW700/PS and WS700/PS systems achieved > 90% removal of pesticides within 4 h. Quenching experiments confirmed that non-radical species (1O2), generated through persulfate activation by biochar, were the key factor in lindane degradation in both systems, supporting the catalytic role of biochar rather than mere adsorption. In the HW700/PS system, SO4•−, HO, and 1O2 acted synergistically to enhance the degradation of β-endosulfan, whereas in the WS700/PS system, the degradation was mainly driven by SO4•− and 1O2. Notably, HW700 biochar maintained its activation efficiency during β-endosulfan degradation even after five cycles. This research offers new insights into the potential of biochar-activated PS as a green, cost-effective, and efficient method for water treatment, addressing pesticide-contaminated surface water and promoting agricultural waste recycling. Full article
(This article belongs to the Special Issue Application of Biochar in Environmental Research)
Show Figures

Figure 1

Back to TopTop