Evaluation of the Selected Surface Properties of European Oak and Norway Maple Wood Sanded with Aluminum Oxide Sandpapers of Different Grits
Abstract
1. Introduction
2. Materials and Methods
2.1. Wood Preparation
2.2. Microscopic Measurements
2.3. SEM Evaluation
2.4. Roughness Parameter Determination
2.5. Wettability Measurements
2.6. Wood Color Determination
2.7. Statistical Analysis
3. Results and Discussion
3.1. Anatomical Characteristics of Wood
3.2. Wood Roughness
3.3. Wood Wettability
3.4. Wood Color
4. Conclusions
- ▪
- Surface roughness was most significantly affected by the measurement direction and sandpaper grit size, which together accounted for nearly 70% of Ra variability. A higher sandpaper grit (finer grains) led to lower roughness values, although roughness was also influenced by the wood species, which reflects the underlying anatomical structure of the wood.
- ▪
- Wettability (contact angle with water) was mainly dependent on wood species, followed by anatomical section and grit size. A significant interaction between species and anatomical section was observed, particularly during the initial wetting phase (after 3 s).
- ▪
- Contact angles with diiodomethane, a nonpolar liquid, were primarily influenced by sandpaper grit size, with only minor contributions from wood species and anatomical orientation.
- ▪
- Surface free energy was found to be independent of sandpaper grit size but varied with wood species and anatomical section. This suggests that sanding has a limited effect on this property compared to intrinsic wood characteristics.
- ▪
- Wood color was predominantly influenced by species, especially the L* parameter (lightness), with a negligible effect from sanding grit. The observed variability in color due to sanding was minimal and likely within the margin of measurement error.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Maura, L.F.; Hernández, R.E. Evaluation of varnish coating performance for two surfacing methods on sugar maple wood. Wood Fiber Sci. 2005, 37, 355–366. [Google Scholar]
- De Maura, L.F.; Hernández, R.E. Effects of abrasive mineral, grit size and feed speed on the quality of sanded surfaces of sugar maple wood. Wood Sci. Technol. 2006, 40, 517–530. [Google Scholar] [CrossRef]
- Aguilera, A.; Zamora, R. Surface roughness in sapwood and heartwood of blackwood (Acacia melanoxylon R. Br.) machined in 90-0 direction. Eur. J. Wood Wood Prod. 2009, 67, 297–301. [Google Scholar] [CrossRef]
- Cool, J.; Hernández, R.E. Improving the sanding process of black spruce wood for surface quality and water-based coating adhesion. For. Prod. J. 2011, 61, 372–380. [Google Scholar] [CrossRef]
- Tan, P.L.; Sharif, S.; Sudin, I. Roughness models for sanded wood surfaces. Wood Sci. Technol. 2012, 46, 129–142. [Google Scholar] [CrossRef]
- Luo, B.; Liu, H.; Xu, M.; Xing, F. Analysis of sanding parameters, sanding force, normal force, power consumption, and surface roughness in sanding wood-based panels. Bioresources 2014, 9, 7494–7503. [Google Scholar] [CrossRef]
- Salca, E.A.; Krystofiak, T.; Lis, B. Evaluation of Selected Properties of Alder Wood as Functions of Sanding and Coating. Coatings 2017, 7, 176. [Google Scholar] [CrossRef]
- Adamčík, L.; Kminiak, R.; Schmidtová, J. Measurement of the roughness of the sanded surface of beech wood with the profile measurement software of the keyence vhx-7000 microscope. Acta Fac. Xylologiae Zvolen 2023, 65, 73–86. [Google Scholar]
- Bembenek, M. Researches on influence of wood sanding direction on wood gluing. J. Indian Acad. Wood Sci. 2022, 19, 103–109. [Google Scholar] [CrossRef]
- Ugulino, B.; Hernández, R.E. Analysis of sanding parameters on surface properties and coating performance of red oak wood. Wood Mater. Sci. Eng. 2018, 13, 64–72. [Google Scholar] [CrossRef]
- Garau, L. An objective method to measure and evaluate the quality of sanded wood surfaces. In Cost Action E 53: The Future of Quality Control for Wood and Wood Products; Ridley-Ellis, D.J., Moore, J.R., Eds.; Napier University: Edinburgh, UK, 2010; pp. 1–9. [Google Scholar]
- Richter, K.; Feist, W.C.; Knaebe, M.T. The effect of surface roughness on the performance of finishes. Part 1: Roughness characterization and stain performance. For. Prod. J. 1995, 45, 91–96. [Google Scholar]
- Sandak, J.; Negri, M. Wood surface roughness—What is it. In Proceedings of the 17th International Wood Machining Seminar, Rosenheim, Germany, 26–28 September 2005. [Google Scholar]
- Available online: https://www.wood-finishes-direct.com (accessed on 19 March 2025).
- Borkowski, J.A. Uses of Abrasives and Abrasive Tools, 1st ed.; Borkowski, J.A., Szymański, A.M., Eds.; Ellis Horwood Series in Mechanical Engineering; Prentice Hall: Hoboken, NJ, USA, 1992; p. 288. ISBN 978-0-13-932518-2. [Google Scholar]
- Laina, R.; Sans-Lobera, A.; Villasante, A.; Lopez-Espi, P.; Martinez-Rojas, J.A. Effect of the anatomical structure, wood properties and machining conditions on surface roughness of wood. Maderas Cienc. Tecnol. 2017, 19, 203–212. [Google Scholar] [CrossRef]
- Kilic, M.; Hiziroglu, S.; Burdurlu, E. Effect of machining on surface roughness of wood. Build. Environ. 2006, 41, 1074–1078. [Google Scholar] [CrossRef]
- De Moura, L.F.; Cool, J.; Hernández, R.E. Anatomical evaluation of wood surfaces produced by oblique cutting and face milling. IAWA J. 2010, 31, 77–88. [Google Scholar] [CrossRef]
- da Silva Siebra, M.B.; de Lima Fernandes, N.C.; Ribeiro, P.G.; Lobão, M.S. Molhabilidade de duas madeiras amazônicas tratadas com produtos de acabamento. Sci. Nat. 2020, 2, 68–71. [Google Scholar]
- Petrić, M.; Oven, P. Determination of Wettability of Wood and its Significance in Wood Science and Technology A Cristal Review. Rev. Adhes. Adhes. 2015, 3, 121–187. [Google Scholar] [CrossRef]
- Sinderski, L.G.Z. Ângulo de Contato e Rugosidade de Madeiras, uma breve revisão. Braz. J. Wood Sci. 2020, 11, 1. [Google Scholar] [CrossRef]
- Wenzel, R.N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28, 988–994. [Google Scholar] [CrossRef]
- Cordeiro, L.A.; De Miranda, B.; Carneiro, M.E.; Missio, A.L.; Klock, U.; De Cademartori, P.H.G. The effect of sanding on the wettability and surface quality of imbuia, red oak and pine wood veneers. Maderas. Cienc. Tecnol. 2023, 25, 1–10. [Google Scholar] [CrossRef]
- Garou, L.; Manseld-Williams, H.; Irle, M. The influence of wood anatomy on evaluating the roughness of sanded solid wood. J. Inst. Wood Sci. 2005, 17, 65–74. [Google Scholar]
- Magoss, E. General regularities of wood surface roughness. Acta Silv. Lignaria Hung. 2008, 4, 81–93. [Google Scholar] [CrossRef]
- Aguilera, A.; Muñoz, H. Rugosidad superficial y potencia de corte en elcepillado de acacia melanoxylon y sequoia sempervirens. Maderas. Cienc. Tecnol. 2011, 13, 19–28. [Google Scholar] [CrossRef]
- Chun-Won, K.; Kazuharu, H.; Eunsuk, J.; Haradhan, K. Relationship between wood anatomical features and surface roughness characteristics. Wood Res. 2023, 68, 455–464. [Google Scholar] [CrossRef]
- Jankowska, A. Understanding of surface roughness of wood based on analysis its structure and density. Ann. Wars. Univ. Life Sci.—SGGW For. Wood Technol. 2020, 111, 27–31. [Google Scholar] [CrossRef]
- Hiziroglu, S.; Anwar, U.M.K.; Hamdan, H.; Paridah, M.T. Evaluation of surface quality of some Malaysian species as function of outdoor exposure. J. Mater. Process. Technol. 2008, 199, 156–162. [Google Scholar] [CrossRef]
- Amorim, M.R.S.; Ribeiro, P.G.; Martins, S.A.; Del Menezzi, C.H.S.; De Souza, M.R. Surface wettability and roughness of 11 Amazonian tropical hardwoods. Floresta Ambiente 2013, 20, 99–109. [Google Scholar] [CrossRef]
- Alia-Syahirah, Y.; Paridah, M.T.; Hamdan, H.; Anwar, U.M.K.; Nordhalia, A.S.; Lee, S.H. Effects of anatomical characteristics and wood density on surface roughness and their relation to surface wettability of hardwood. J. Trop. For. Sci. 2019, 31, 269–277. [Google Scholar] [CrossRef]
- Reis, K.d.J.; Lima, M.R.N.; Santos, J.A.; Santos, L.S.R.; Vieira, I.L.S.M.; Junior, C.A.A.; Andrade, A.C.; de Almeida Andrade, A.C. Surface quality of massaranduba wood after sanding with different grit sizes. Res. Soc. Dev. 2025, 14, e6214348468. [Google Scholar] [CrossRef]
- Firoozmand, M. The Impact of Sanding Grit Size on Color Consistency of Different Wood Species Used in Canadian Furniture Manufacturing—A Visual Inspection; WOOD 493. A Report Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science in Wood Products Processing; The Faculty of Forestry, University of British Columbia: Vancouver, BC, Canada, 2013; Available online: http://hdl.handle.net/2429/45491 (accessed on 18 May 2025).
- Saarinen, K.; Muinonen, K. Light scattering by wood fibers. Appl. Opt. 2001, 40, 5064–5077. [Google Scholar] [CrossRef]
- Isherwood, Z.J.; Huynh-Thu, Q.; Arnison, M.; Monaghan, D.; Toscani, M.; Perry, S.; Honson, V.; Kim, J. Surface properties and the perception of color. J. Vis. 2021, 21, 7. [Google Scholar] [CrossRef]
- Hauptmann, M.; Müller, U.; Obersriebnig, M.; Gindl-Altmutter, W.; Beck, A.; Hansmann, C. The optical appearance of wood related to nanoscale surface roughness. BioResources 2013, 8, 4038–4045. [Google Scholar] [CrossRef]
- De Paula, M.; Mesquita, R.; Costa, M.; Gonçalez, J.; Ananias, R.; Janin, G. Effect of applying finishing products and sanding on the surface of marupa wood. Maderas Cienc. Tecnol. 2020, 22, 45–54. [Google Scholar] [CrossRef]
- Bekhta, P.; Krystofiak, T.; Lis, B.; Bekhta, N. The Impact of Sanding and Thermal Compression of Wood, Varnish Type and Artificial Aging in Indoor Conditions on the Varnished Surface Color. Forests 2022, 13, 300. [Google Scholar] [CrossRef]
- ISO 13061-1; Physical and Mechanical Properties of Wood—Test Methods for Small Clear Wood Specimens—Part 1: Determination of Moisture Content for Physical and Mechanical Tests. International Organization for Standardization: Geneva, Switzerland, 2014.
- ISO 13061-2; Physical and Mechanical Properties of Wood—Test Methods for Small Clear Wood Specimens—Part 2: Determination of Density for Physical and Mechanical Tests. International Organization for Standardization: Geneva, Switzerland, 2014.
- ISO 21920-2; Geometrical Product Specifications (GPS)—Surface Texture: ProfilePart 2: Terms, Definitions and Surface Texture Parameters. International Organization for Standardization: Geneva, Switzerland, 2021.
- Owens, D.K.; Wendt, R.C. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747. [Google Scholar] [CrossRef]
- Gindl, M.; Sinn, G.; Gindl, W.; Reiterer, A.; Tschegg, S. A comparison of different methods to calculate the surface free energy of wood using contact angle measurements. Colloids Surf. Physicochem. Eng. Asp. 2001, 181, 279–287. [Google Scholar] [CrossRef]
- Wagenführ, R. Holzatlas, 6th ed.; Neu Bearbeitete und Erweiteste Auflage; Fachbuchverlag: Leipzig, Germany, 2007. [Google Scholar]
- Sulaiman, O.; Hashim, R.; Subari, K.; Liang, C.K. Effect of sanding on surface roughness of rubberwood. J. Mater. Process. Technol. 2009, 209, 3949–3955. [Google Scholar] [CrossRef]
- Laskowska, A.; Sobczak, J.W. Surface chemical composition and roughness as factors affecting the wettability of thermo-mechanically modified oak (Quercus robur L.). Holzforschung 2018, 72, 993–1000. [Google Scholar] [CrossRef]
- Liptákova, E.; Kúdela, J. Analysis of the wood–wetting process. Holzforschung 1994, 48, 139–144. [Google Scholar] [CrossRef]
- Liptákova, E.; Kúdela, J.; Bastl, Z.; Spirovová, I. Influence of mechanical surface treatment of wood on the wetting process. Holzforschung 1995, 49, 369–375. [Google Scholar] [CrossRef]
- Mohan, T.; Kargl, R.; Doliška, A.; Vesel, A.; Köstler, S.; Ribitsch, V.; Stana-Kleinschek, K. Wettability and surface composition of partly and fully regenerated cellulose thin films from trimethylsilyl cellulose. J. Colloid Interface Sci. 2011, 358, 604–610. [Google Scholar] [CrossRef]
- Shen, Q.; Nylund, J.; Rosenholm, J.B. Estimation of the surface energy and acid-base properties of wood by means of wetting method. Holzforschung 1998, 52, 521–529. [Google Scholar] [CrossRef]
- Li, W.; Wang, C.; Zhang, Y.; Jia, C.; Gao, C.; Jin, J. The Influence of Hot Compression on the Surface Characteristics of Poplar Veneer. BioResources 2014, 9, 2808–2823. [Google Scholar] [CrossRef]
- Ho, Y.; Maloney, L.T.; Landy, M.S. The effect of viewpoint on perceived visual roughness. J. Vis. 2007, 7, 1. [Google Scholar] [CrossRef] [PubMed]
- Wan, T.; Stylios, G. Effects of coating process on the surface roughness of coated fabrics. J. Text. Inst. 2017, 108, 712–719. [Google Scholar] [CrossRef]
- Abrahão, C.P. Estimation for Some Properties of the Wood of Eucalyptus urophylla by Spectrometry. Ph.D. Thesis, Federal University of Viçosa, Viçosa, Brazil, 2005; p. 182. [Google Scholar]
- Kucera, L.; Katuscak, S. Das Phenomen Holzfarbe. In Proceedings of the Holz-Farbe-Gestaltung, 24 Fortsbildungkurse der Schweizerishen Arbeits-gemeinschaft für Holzforschung (SAH) in Weinfelden, Zürich, Switzerland, 4–5 November 1992; pp. 43–52. [Google Scholar]
- Masuda, M. Why human loves wood grain figure? In Extraction of vision-physical characteristics deeply related to impression. In Proceedings of the ICWSF Conference, Ljubljana, Slovenia, 5–7 September 2001; pp. 11–23. [Google Scholar]
Liquid | Property | ||
---|---|---|---|
Surface Tension (mJ × m−2) | Dispersive (mJ × m−2) | Polar (mJ × m−2) | |
Water (H2O) | 72.80 | 21.90 | 51.00 |
Diiodomethane (CH2I2) | 50.80 | 50.80 | 0.00 |
Wood | Diameter of Anatomical Characteristic (µm) | ||||||
---|---|---|---|---|---|---|---|
Vessels | Axial Parenchyma | Fibers | |||||
Direction | |||||||
Radial | Tangential | Radial | Tangential | Radial | Tangential | ||
Oak | (VEW) | 320.00 (52.85) | 273.64 (50.39) | 16.04 (2.88) | 11.19 (2.53) | 7.73 (1.76) | 5.37 (1.15) |
(VLW) | 36.49 (8.02) | 26.05 (5.43) | |||||
Maple | 56.74 (10.53) | 51.89 (6.93) | 11.48 (1.50) | 12.46 (1.69) | 4.32 (0.85) | 5.76 (1.17) |
Roughness Parameters | Factor | Fisher’s F-Test | Significance Level | FI (%) |
---|---|---|---|---|
F | p | |||
Ra | Species (1) | 312.21 | 0.000000 | 8 |
Anatomical section (2) | 132.23 | 0.000000 | 3 | |
Direction (3) | 1823.11 | 0.000000 | 47 | |
Sandpaper grit (4) | 290.55 | 0.000000 | 22 | |
(1) × (2) | 58.54 | 0.000000 | 2 | |
(1) × (3) | 60.98 | 0.000000 | 2 | |
(1) × (4) | 17.64 | 0.000000 | 1 | |
(2) × (3) | 7.88 | 0.005346 | 0 | |
(2) × (4) | 9.75 | 0.000004 | 1 | |
(3) × (4) | 87.75 | 0.000000 | 7 | |
(1) × (2) × (3) | 7.44 | 0.006798 | 0 | |
(1) × (2) × (4) | 4.08 | 0.007436 | 0 | |
(1) × (3) × (4) | 0.99 | 0.397278 | 0 | |
(2) × (3) × (4) | 3.20 | 0.023785 | 0 | |
(1) × (2) × (3) × (4) | 0.79 | 0.500475 | 0 | |
Error | 7 | |||
Rz | Species (1) | 391.080 | 0.000000 | 10 |
Anatomical section (2) | 246.409 | 0.000000 | 7 | |
Direction (3) | 1626.492 | 0.000000 | 43 | |
Sandpaper grit (4) | 159.380 | 0.000000 | 13 | |
(1) × (2) | 165.165 | 0.000000 | 4 | |
(1) × (3) | 141.599 | 0.000000 | 4 | |
(1) × (4) | 26.607 | 0.000000 | 2 | |
(2) × (3) | 67.093 | 0.000000 | 2 | |
(2) × (4) | 13.204 | 0.000000 | 1 | |
(3) × (4) | 55.639 | 0.000000 | 4 | |
(1) × (2) × (3) | 18.405 | 0.000025 | 1 | |
(1) × (2) × (4) | 11.766 | 0.000000 | 1 | |
(1) × (3) × (4) | 9.715 | 0.000004 | 1 | |
(2) × (3) × (4) | 6.615 | 0.000248 | 1 | |
(1) × (2) × (3) × (4) | 3.886 | 0.009560 | 0 | |
Error | 7 | |||
Rsm | Species (1) | 5.371 | 0.021216 | 1 |
Anatomical section (2) | 0.732 | 0.393007 | 0 | |
Direction (3) | 46.767 | 0.000000 | 10 | |
Sandpaper grit (4) | 22.432 | 0.000000 | 14 | |
(1) × (2) | 3.152 | 0.076964 | 1 | |
(1) × (3) | 23.391 | 0,000002 | 5 | |
(1) × (4) | 0.226 | 0.878446 | 0 | |
(2) × (3) | 5.468 | 0.020090 | 1 | |
(2) × (4) | 0.881 | 0.451324 | 1 | |
(3) × (4) | 16.602 | 0.000000 | 10 | |
(1) × (2) × (3) | 1.280 | 0.258910 | 0 | |
(1) × (2) × (4) | 0.078 | 0.972005 | 0 | |
(1) × (3) × (4) | 0.339 | 0.797414 | 0 | |
(2) × (3) × (4) | 1.137 | 0.334655 | 1 | |
(1) × (2) × (3) × (4) | 0.133 | 0.940583 | 0 | |
Error | 56 |
Contact Angle | Factor | Fisher’s F-Test | Significance Level | Factor Influence (%) |
---|---|---|---|---|
F | p | |||
after 3 s | Species (1) | 715.76 | 0.000000 | 41 |
Anatomical section (2) | 186.66 | 0.000000 | 11 | |
Sandpaper grit (3) | 24.33 | 0.000000 | 4 | |
(1) × (2) | 498.77 | 0.000000 | 28 | |
(1) × (3) | 30.22 | 0.000000 | 5 | |
(2) × (3) | 12.01 | 0.000001 | 2 | |
(1) × (2) × (3) | 25.66 | 0.000000 | 4 | |
Error | 5 | |||
after 30 s | Species (1) | 1368.78 | 0.000000 | 71 |
Anatomical section (2) | 71.40 | 0.000000 | 4 | |
Sandpaper grit (3) | 67.94 | 0.000000 | 11 | |
(1) × (2) | 143.05 | 0.000000 | 7 | |
(1) × (3) | 4.91 | 0.003500 | 1 | |
(2) × (3) | 5.70 | 0.001373 | 1 | |
(1) × (2) × (3) | 7.54 | 0.000166 | 1 | |
Error | 4 |
Contact Angle | Factor | Fisher’s F-Test | Significance Level | Factor Influence (%) |
---|---|---|---|---|
F | p | |||
after 3 s | Species (1) | 16.16 | 0.000131 | 7 |
Anatomical section (2) | 0.02 | 0.877980 | 0 | |
Sandpaper grit (3) | 20.12 | 0.000000 | 27 | |
(1) × (2) | 10.83 | 0.001485 | 5 | |
(1) × (3) | 7.16 | 0.000257 | 10 | |
(2) × (3) | 5.00 | 0.003138 | 7 | |
(1) × (2) × (3) | 5.78 | 0.001246 | 8 | |
Error | 36 | |||
after 30 s | Species (1) | 23.19 | 0.000007 | 6 |
Anatomical section (2) | 45.66 | 0.000000 | 12 | |
Sandpaper grit (3) | 35.71 | 0.000000 | 28 | |
(1) × (2) | 20.55 | 0.000020 | 6 | |
(1) × (3) | 11.23 | 0.000003 | 9 | |
(2) × (3) | 11.50 | 0.000002 | 9 | |
(1) × (2) × (3) | 11.93 | 0.000002 | 9 | |
Error | 21 |
Species | Sandpaper Grit | Anatomical Section | |||||||
---|---|---|---|---|---|---|---|---|---|
Radial | Tangential | ||||||||
Surface Energy Components (mJ × m−2) | |||||||||
Dispersive | Polar | Dispersive | Polar | ||||||
After 3 s | After 30 s | After 3 s | After 30 s | After 3 s | After 30 s | After 3 s | After 30 s | ||
oak | 60 | 43.854 | 44.358 | 7.528 | 8.304 | 44.779 | 45.467 | 5.292 | 6.283 |
120 | 43.862 | 46.579 | 5.324 | 5.178 | 45.822 | 46.273 | 4.445 | 7.459 | |
180 | 45.463 | 45.774 | 5.845 | 5.648 | 45.090 | 45.448 | 8.700 | 10.354 | |
240 | 44.633 | 45.330 | 5.504 | 4.824 | 44.537 | 45.460 | 6.586 | 8.125 | |
maple | 60 | 43.403 | 44.545 | 3.312 | 2.213 | 44.440 | 45.114 | 4.508 | 2.672 |
120 | 43.890 | 45.368 | 3.113 | 2.489 | 44.764 | 45.376 | 5.357 | 3.652 | |
180 | 42.710 | 44.093 | 3.501 | 2.626 | 44.554 | 45.330 | 5.097 | 3.503 | |
240 | 43.387 | 43.748 | 3.685 | 2.417 | 45.137 | 45.778 | 5.288 | 3.615 |
Color Parameters | Factor | Fisher’s F-Test | Significance Level | Factor Influence (%) |
---|---|---|---|---|
F | p | |||
L* | Species (1) | 3116.4 | 0.000000 | 93 |
Anatomical section (2) | 37.3 | 0.000000 | 1 | |
Sandpaper grit (3) | 1.4 | 0.255406 | 0 | |
(1) × (2) | 1.5 | 0.221479 | 0 | |
(1) × (3) | 2.8 | 0.042156 | 1 | |
(2) × (3) | 1.7 | 0.176550 | 0 | |
(1) × (2) × (3) | 3.2 | 0.023534 | 1 | |
Error | 4 | |||
a* | Species (1) | 211.47 | 0.000000 | 50 |
Anatomical section (2) | 14.33 | 0.000213 | 3 | |
Sandpaper grit (3) | 5.39 | 0.001445 | 4 | |
(1) × (2) | 5.37 | 0.021727 | 1 | |
(1) × (3) | 1.97 | 0.119673 | 0 | |
(2) × (3) | 1.23 | 0.300917 | 0 | |
(1) × (2) × (3) | 4.00 | 0.008817 | 3 | |
Error | 39 | |||
b* | Species (1) | 913.0 | 0.000000 | 78 |
Anatomical section (2) | 13.4 | 0.000329 | 1 | |
Sandpaper grit (3) | 15.2 | 0.000000 | 4 | |
(1) × (2) | 0.0 | 0.884167 | 0 | |
(1) × (3) | 6.1 | 0.000554 | 2 | |
(2) × (3) | 1.6 | 0.186770 | 0 | |
(1) × (2) × (3) | 0.6 | 0.623699 | 0 | |
Error | 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laskowska, A.; Piwek, A.; Lipska, K.; Kłosińska, T.; Rybak, K.; Boruszewski, P. Evaluation of the Selected Surface Properties of European Oak and Norway Maple Wood Sanded with Aluminum Oxide Sandpapers of Different Grits. Coatings 2025, 15, 813. https://doi.org/10.3390/coatings15070813
Laskowska A, Piwek A, Lipska K, Kłosińska T, Rybak K, Boruszewski P. Evaluation of the Selected Surface Properties of European Oak and Norway Maple Wood Sanded with Aluminum Oxide Sandpapers of Different Grits. Coatings. 2025; 15(7):813. https://doi.org/10.3390/coatings15070813
Chicago/Turabian StyleLaskowska, Agnieszka, Anna Piwek, Karolina Lipska, Teresa Kłosińska, Katarzyna Rybak, and Piotr Boruszewski. 2025. "Evaluation of the Selected Surface Properties of European Oak and Norway Maple Wood Sanded with Aluminum Oxide Sandpapers of Different Grits" Coatings 15, no. 7: 813. https://doi.org/10.3390/coatings15070813
APA StyleLaskowska, A., Piwek, A., Lipska, K., Kłosińska, T., Rybak, K., & Boruszewski, P. (2025). Evaluation of the Selected Surface Properties of European Oak and Norway Maple Wood Sanded with Aluminum Oxide Sandpapers of Different Grits. Coatings, 15(7), 813. https://doi.org/10.3390/coatings15070813