Volvariella volvacea Processive Endoglucanase EG1 Treatment Improved the Physical Strength of Bleached Pulps and Reduced Vessel Picking in Eucalyptus Pulp
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Enzymatic Treatment of Pulp
2.3. PFI Refining
2.4. Sheet Forming
2.5. Physical Properties of Hand Sheets
2.6. Water Retention Value Measurement
2.7. Measurement of Fiber Morphology
2.8. DP Determination
2.9. Vessel Separation Process
2.10. Surface Strength of Pulp Hand Sheet
2.11. Zeta Potential
2.12. Observation of the Fibers by SEM
3. Results and Discussion
3.1. Refining Characteristics of BSKP and BHKP
3.2. EG1-Assisted Refining to Improve the Physical Strength of the Pulps
3.3. Effect of the EG1-Assisted Refining on the Fiber Morphology
3.4. Effect of EG1-Assisted Refining on Vessel Picking of BHKP
3.5. Changes in Zeta Potential of the Pulps
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gharehkhani, S.; Sadeghinezhad, E.; Kazi, S.N.; Yarmand, H.; Badarudin, A.; Safaei, M.R.; Zubir, M.N.M. Basic effects of pulp refining on fiber properties—A review. Carbohydr. Polym. 2015, 115, 785–803. [Google Scholar] [CrossRef]
- Cui, L.; Meddeb-Mouelhi, F.; Laframboise, F.; Beauregard, M. Effect of commercial cellulases and refining on kraft pulp properties: Correlations between treatment impacts and enzymatic activity components. Carbohydr. Polym. 2015, 115, 193–199. [Google Scholar] [CrossRef]
- Haske-Cornelius, O.; Hartmann, A.; Brunner, F.; Pellis, A.; Bauer, W.; Nyanhongo, G.S.; Guebitz, G.M. Effects of enzymes on the refining of different pulps. J. Biotechnol. 2020, 320, 1–10. [Google Scholar] [CrossRef]
- Liang, X.; Wei, S.; Xu, Y.; Yin, L.; Wang, R.; Li, P.; Liu, K. Construction and Characterization of Fitting Equations for a New Wheat Straw Pulping Method. Polymers 2023, 15, 4637. [Google Scholar] [CrossRef]
- Jia, Q.; Chen, J.; Yang, G.; Liu, K.; Wang, Y.; Zhang, K. Effects of Lipase and Xylanase Pretreatment on the Structure and Pulping Properties of Wheat Straw. Polymers 2022, 14, 5129. [Google Scholar] [CrossRef]
- Yoo, S.; Hsieh, J.S. Enzyme-Assisted Preparation of Fibrillated Cellulose Fibers and Its Effect on Physical and Mechanical Properties of Paper Sheet Composites. Ind. Eng. Chem. Res. 2010, 49, 2161–2168. [Google Scholar] [CrossRef]
- Gil, N.; Gil, C.; Amaral, M.E.; Costa, A.P.; Duarte, A.P. Use of enzymes to improve the refining of a bleached Eucalyptus globulus kraft pulp. Biochem. Eng. J. 2009, 46, 89–95. [Google Scholar] [CrossRef]
- García, O.; Torres, A.L.; Colom, J.F.; Pastor, F.I.J.; Díaz, P.; Vidal, T. Effect of cellulase-assisted refining on the properties of dried and never-dried eucalyptus pulp. Cellulose 2002, 9, 115–125. [Google Scholar] [CrossRef]
- Cadena, E.M.; Vidal, T.; Torres, A.L. Can the laccase mediator system affect the chemical and refining properties of the eucalyptus pulp? Bioresour. Technol. 2010, 101, 8199–8204. [Google Scholar] [CrossRef]
- Du, X.; Martín, M.E.E.; Li, J. Improvement of kraft pulp bleaching by treatments with laccase, urea, and refining. Holzforschung 2013, 67, 651–658. [Google Scholar] [CrossRef]
- Sabourin, M.J.; Hart, P.W. Enhanced Fiber Quality of Black Spruce (Picea mariana) Thermomechanical Pulp Fiber Through Selective Enzyme Application. Ind. Eng. Chem. Res. 2010, 49, 5945–5951. [Google Scholar] [CrossRef]
- Silva, T.C.F.; Colodette, J.L.; Lucia, L.A.; Oliveira, R.C.d.; Oliveira, F.N.; Silva, L.H.M. Adsorption of Chemically Modified Xylans on Eucalyptus Pulp and Its Effect on the Pulp Physical Properties. Ind. Eng. Chem. Res. 2011, 50, 1138–1145. [Google Scholar] [CrossRef]
- Przybysz Buzała, K.; Kalinowska, H.; Borkowski, J.; Przybysz, P. Effect of xylanases on refining process and kraft pulp properties. Cellulose 2018, 25, 1319–1328. [Google Scholar] [CrossRef]
- Nagl, M.; Haske-Cornelius, O.; Bauer, W.; Nyanhongo, G.S.; Guebitz, G.M. Enhanced energy savings in enzymatic refining of hardwood and softwood pulp. Energy Sustain. Soc. 2023, 13, 19. [Google Scholar] [CrossRef]
- Ballinas-Casarrubias, L.; Villanueva-Solís, L.; Espinoza-Hicks, C.; Camacho-Dávila, A.; Castillo, H.A.P.; Pérez, S.B.; Villa, E.D.; Hernández, M.D.D.; González-Sánchez, G. Effect of Laccase-Mediated Biopolymer Grafting on Kraft Pulp Fibers for Enhancing Paper’s Mechanical Properties. Polymers 2017, 9, 570. [Google Scholar] [CrossRef]
- Vaz, Á.; Coelho, J.; Costa, V.; Maloney, T.; Phiri, J.; Pinto, P.; de Sousa, A.M.; Simões, R. Effect of enzymatic treatment on Eucalyptus globulus vessels passivation. Sci. Rep. 2023, 13, 2832. [Google Scholar] [CrossRef]
- Rakkolainen, M.; Kontturi, E.; Isogai, A.; Enomae, T.; Blomstedt, M.; Vuorinen, T. Carboxymethyl Cellulose Treatment As a Method to Inhibit Vessel Picking Tendency in Printing of Eucalyptus Pulp Sheets. Ind. Eng. Chem. Res. 2009, 48, 1887–1892. [Google Scholar] [CrossRef]
- Coelho, J.; Costa, V.; de Sousa, A.M.; Pinto, P.; Ramos, A.; Simões, R.; Vaz, Á. Vessel picking in Eucalyptus globulus bleached kraft pulp sheets: Effect of mechanical and enzymatic treatment. Bioresour. Technol. Rep. 2023, 22, 101496. [Google Scholar] [CrossRef]
- Ohsawa, J.; Ohtake, T.; Wakai, M.; Mukoyoshi, S.-i.; Nanko, H. Prevention of Vessel Picking Trouble in Tropical Hardwood Pulps IV. Bench Scale Investigation on Beating and Papermaking. Jpn. TAPPI J. 1986, 40, 671–677. [Google Scholar] [CrossRef]
- Nanko, H.; Mukoyoshi, S.-i.; Ohsawa, J. Prevention of Vessel Picking trouble by the stratified sheet formation. Jpn. TAPPI J. 1987, 41, 823–830. [Google Scholar] [CrossRef]
- Konar, A.; Aich, S.; Katakojwala, R.; Datta, S.; Mohan, S.V. A processive GH9 family endoglucanase of Bacillus licheniformis and the role of its carbohydrate-binding domain. Appl. Microbiol. Biotechnol. 2022, 106, 6059–6075. [Google Scholar] [CrossRef]
- Wang, W.; Archbold, T.; Lam, J.S.; Kimber, M.S.; Fan, M.Z. A processive endoglucanase with multi-substrate specificity is characterized from porcine gut microbiota. Sci. Rep. 2019, 9, 13630. [Google Scholar] [CrossRef]
- Wu, B.; Zheng, S.; Pedroso, M.M.; Guddat, L.W.; Chang, S.; He, B.; Schenk, G. Processivity and enzymatic mechanism of a multifunctional family 5 endoglucanase from Bacillus subtilis BS-5 with potential applications in the saccharification of cellulosic substrates. Biotechnol. Biofuels 2018, 11, 20. [Google Scholar] [CrossRef]
- Zheng, F.; Ding, S. Processivity and Enzymatic Mode of a Glycoside Hydrolase Family 5 Endoglucanase from Volvariella volvacea. Appl. Environ. Microbiol. 2013, 79, 989–996. [Google Scholar] [CrossRef]
- Wu, S.; Wu, S. Processivity and the Mechanisms of Processive Endoglucanases. Appl. Biochem. Biotechnol. 2020, 190, 448–463. [Google Scholar] [CrossRef]
- Wu, S.; Jiang, X.; Jiang, H.; Wu, S.; Ding, S.; Jin, Y. Impacts of cotton linter pulp characteristics on the processivity of glycoside hydrolase family 5 endoglucanase from Volvariella Volvacea. Cellulose 2021, 28, 1947–1959. [Google Scholar] [CrossRef]
- Somogyi, M. Notes on sugar determination. J. Biol. Chem. 1952, 195, 19–23. [Google Scholar] [CrossRef]
- ISO 5267-1:2000/AC:2002; Pulps—Determination of Drainability—Part 1: Schopper-Riegler Method. International Organization for Standardization: Geneva, Switzerland, 2002.
- TAPPI T 494 Om-22; Tensile Properties of Paper And Paperboard (Using Constant Rate Of Elongation Apparatus). Technical Association of the Pulp and Paper Industry: Atlanta, GA, USA, 2022.
- TAPPI T 403 Om-22; Bursting Strength of Paper. Technical Association of the Pulp and Paper Industry: Atlanta, GA, USA, 2022.
- TAPPI T 414 Om-12; Internal Tearing Resistance of Paper (Elmendorf-Type Method). Technical Association of the Pulp and Paper Industry: Atlanta, GA, USA, 2022.
- ISO 5351:2010; Pulps—Determination of Limiting Viscosity Number in Cupri-Ethylenediamine (CED) Solution. International Organization for Standardization: Geneva, Switzerland, 2002.
- Ang, S.; Haritos, V.; Batchelor, W. Effect of refining and homogenization on nanocellulose fiber development, sheet strength and energy consumption. Cellulose 2019, 26, 4767–4786. [Google Scholar] [CrossRef]
- Ross, R.J.; Usda Forest Service, F.P.L. Wood Handbook: Wood as an Engineering Material; U.S. Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 2010. [CrossRef]
- Zhang, J.; Tuomainen, P.; Siika-Aho, M.; Viikari, L. Comparison of the synergistic action of two thermostable xylanases from GH families 10 and 11 with thermostable cellulases in lignocellulose hydrolysis. Bioresour. Technol. 2011, 102, 9090–9095. [Google Scholar] [CrossRef]
- Liu, N.; Qin, M.; Gao, Y.; Li, Z.; Fu, Y.; Xu, Q. Pulp properties and fiber characteristics of xylanase-treated aspen APMP. BioResources 2012, 7, 3367–3377. [Google Scholar] [CrossRef]
- Lecourt, M.; Sigoillot, J.-C.; Petit-Conil, M. Cellulase-assisted refining of chemical pulps: Impact of enzymatic charge and refining intensity on energy consumption and pulp quality. Process Biochem. 2010, 45, 1274–1278. [Google Scholar] [CrossRef]
- Wong, K.K.; Richardson, J.D.; Mansfield, S.D. Enzymatic treatment of mechanical pulp fibers for improving papermaking properties. Biotechnol. Prog. 2000, 16, 1025–1029. [Google Scholar] [CrossRef] [PubMed]
- Ko, C.-H.; Chen, F.-J.; Lee, J.J.; Tzou, D.-L.M. Effects of fiber physical and chemical characteristics on the interaction between endoglucanase and eucalypt fibers. Cellulose 2011, 18, 1043–1054. [Google Scholar] [CrossRef]
- Nagl, M.; Haske-Cornelius, O.; Skopek, L.; Pellis, A.; Bauer, W.; Nyanhongo, G.S.; Guebitz, G. Biorefining: The role of endoglucanases in refining of cellulose fibers. Cellulose 2021, 28, 7633–7650. [Google Scholar] [CrossRef]
- Banavath, H.N.; Bhardwaj, N.K.; Ray, A.K. A comparative study of the effect of refining on charge of various pulps. Bioresour. Technol. 2011, 102, 4544–4551. [Google Scholar] [CrossRef] [PubMed]
- Lindström, N.; Fardim, P. Chemistry and surface chemistry of vessels in eucalyptus kraft pulps. O. Pap. 2012, 73, 65–72. [Google Scholar]
- Ek, M.; Gellerstedt, G.; Henriksson, G. Wood Chemistry and Wood Biotechnology; Walter de Gruyter: Berlin, Germany, 2009. [Google Scholar]
- Ona, T.; Sonoda, T.; Ito, K.; Shibata, M.; Tamai, Y.; Kojima, Y.; Ohshima, J.; Yokota, S.; Yoshizawa, N. Investigation of relationships between cell and pulp properties in Eucalyptus by examination of within-tree property variations. Wood Sci. Technol. 2001, 35, 229–243. [Google Scholar] [CrossRef]
Samples | °SR * | Weighted Fiber Length (mm) | WRV (%) | Sheet Density (g/cm3) | Tensile Index (N·m/g) | Burst Index (kPa·m2/g) | Surface Strength (m/s) |
---|---|---|---|---|---|---|---|
VRP | 31 | 0.909 | 266.5 | 0.59 ± 0.03 | 57.2 ± 0.0 | 2.7 ± 0.1 | 1.35 |
VEP | 24 | 0.758 | 242.3 | 0.58 ± 0.00 | 44.6 ± 1.0 | 2.6 ± 0.2 | 0.75 |
VRP-EG1 | 39 | 0.845 | 293.3 | 0.65 ± 0.01 | 61.9 ± 1.1 | 3.4 ± 0.3 | 2.78 |
VEP-EG1 | 37 | 0.717 | 258.8 | 0.62 ± 0.02 | 54.6 ± 0.3 | 2.9 ± 0.1 | 1.95 |
Samples | Zeta Potential, mV |
---|---|
VRP | −20.75 ± 0.25 |
VEP | −16.85 ± 0.65 |
VRP-EG1 | −18.13 ± 0.63 |
VEP-EG1 | −15.20 ± 0.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, J.; Zhang, Y.; Wu, S. Volvariella volvacea Processive Endoglucanase EG1 Treatment Improved the Physical Strength of Bleached Pulps and Reduced Vessel Picking in Eucalyptus Pulp. Polymers 2025, 17, 1714. https://doi.org/10.3390/polym17121714
Yan J, Zhang Y, Wu S. Volvariella volvacea Processive Endoglucanase EG1 Treatment Improved the Physical Strength of Bleached Pulps and Reduced Vessel Picking in Eucalyptus Pulp. Polymers. 2025; 17(12):1714. https://doi.org/10.3390/polym17121714
Chicago/Turabian StyleYan, Jiamin, Yuemei Zhang, and Shufang Wu. 2025. "Volvariella volvacea Processive Endoglucanase EG1 Treatment Improved the Physical Strength of Bleached Pulps and Reduced Vessel Picking in Eucalyptus Pulp" Polymers 17, no. 12: 1714. https://doi.org/10.3390/polym17121714
APA StyleYan, J., Zhang, Y., & Wu, S. (2025). Volvariella volvacea Processive Endoglucanase EG1 Treatment Improved the Physical Strength of Bleached Pulps and Reduced Vessel Picking in Eucalyptus Pulp. Polymers, 17(12), 1714. https://doi.org/10.3390/polym17121714