Biochar as a Catalyst in Persulfate Activation: A Sustainable Approach to Remove Pesticides from Water
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Preparation of Biochar
2.3. Experimental Procedures
2.4. Analytical Methods
3. Results and Discussion
3.1. Characterization of Biochar
3.2. Adsorption of Pesticides onto Biochar
3.3. Catalytic Degradation of Pesticides
3.4. Identifying the Primary Radical Species
3.5. Stability and Potential for Reusability of Catalyst
3.6. Possible Mechanism Involved in PS Activation and Pesticides Removal
3.7. Practical Application of Catalyst in Surface Water Treatment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- da Silva Júnior, A.H.; Silva de Oliveira, C.R.; Lear, T.W.; Mapossa, A.B.; Fiates, J.; de Souza, A.U.; de Arruda Guelli Ulson de Souza, S.M.; da Silva, A. Organochlorine pesticides remediation techniques: Technological perspective and opportunities. J. Hazard. Mater. Lett. 2024, 5, 100098. [Google Scholar] [CrossRef]
- Asefa, E.M.; Mergia, M.T.; Mengistu, D.A.; Damtew, Y.T.; Dugusa, F.F.; Tessema, R.A.; Enoe, J.; Ober, J.; Teklu, B.M.; Woldemariam, E.D. Organochlorine pesticides in Ethiopian waters: Implications for environmental and human health. Toxicol. Rep. 2024, 12, 622–630. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Dong, F.; Pan, X.; Wu, X.; Xu, J.; Zheng, Y. Quantitative screening of organophosphorus and organochlorine pesticides in water and soil using comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry. J. Chromatogr. Open. 2024, 5, 100140. [Google Scholar] [CrossRef]
- Wu, Y.; Lv, Y.; Jin, J.; Fan, Y.; Li, R.; Bao, J.; Jiang, J.; Han, J.; Wang, Y. Kinetics of and solvent effects on photodegradation of hexachlorobenzene (HCB) and endosulfan (endosulfan I and endosulfan II) in solution. Emerg. Contam. 2024, 10, 100379. [Google Scholar] [CrossRef]
- Duro, A.; Goudou, F.; Minofar, B.; Carmenate-Rodriguez, C.; Gaspard, S.; Jauregui-Haza, U. A computational study of adsorption on activated carbons containing basic oxygenated surface groups of two priority organochlorine pesticides from water. Colloids Surf. A Physicochem. Eng. Asp. 2025, 704, 135449. [Google Scholar] [CrossRef]
- Carolin, F.C.; Kamalesh, T.; Kumar, P.S.; Rangasamy, G. An insights of organochlorine pesticides categories, properties, eco-toxicity and new developments in bioremediation process. Environ. Pollut. 2023, 333, 122114. [Google Scholar] [CrossRef]
- Keshu; Rani, M.; Shanker, U. Synthesis and characterization of novel guar gum based waste material derived nanocomposite for effective removal of hexabromocyclododecane and lindane. Int. J. Biol. Macromol. 2024, 268, 131535. [Google Scholar] [CrossRef] [PubMed]
- Wacławek, S.; Silvestri, D.; Hrabak, P.; Padil, V.V.T.; Torres-Mendieta, R.; Wacławek, M.; Černík, M.; Dionysiou, D.D. Chemical oxidation and reduction of hexachlorocyclohexanes: A review. Water Res. 2019, 162, 302–319. [Google Scholar] [CrossRef]
- Mudhoo, A.; Bhatnagar, A.; Rantalankila, M.; Srivastava, V.; Sillanpää, M. Endosulfan removal through bioremediation, photocatalytic degradation, adsorption and membrane separation processes: A review. Chem. Eng. J. 2019, 360, 912–928. [Google Scholar] [CrossRef]
- Sathishkumar, P.; Govarthanan, M.; Mohan, K.; Ganesan, A.R.; Yusoff, A.R.M.; Gu, F.L. Persistence, toxicological effect and ecological issues of endosulfan–A review. J. Hazard. Mater. 2021, 416, 125779. [Google Scholar] [CrossRef]
- Guo, L.; Gu, C.; Huang, T.; Gao, H.; Zhao, Y.; Mao, X.; Ma, J. Signatures of Indian endosulfan usage in China’s environment. Chemosphere 2022, 306, 135644. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.-I.; Kim, J.-E. Uptake of endosulfan isomers from soils by leafy vegetable lettuce: A comparative study between model-predicted and field-experimented results. Sci. Total Environ. 2022, 844, 157056. [Google Scholar] [CrossRef] [PubMed]
- Rani, M.; Keshu; Shanker, U. Green construction of biochar@NiFe2O4 nanocomposite for highly efficient photocatalytic remediation of pesticides from agriculture wastewater. Chemosphere 2024, 352, 141337. [Google Scholar] [CrossRef] [PubMed]
- Molnar Jazić, J.; Gross, A.; Glaser, B.; Agbaba, J.; Simetić, T.; Nikić, J.; Maletić, S. Boosting advanced oxidation processes by biochar-based catalysts to mitigate pesticides and their metabolites in water treatment: A meta-analysis. J. Environ. Chem. Eng. 2024, 12, 114260. [Google Scholar] [CrossRef]
- Song, Q.; Kong, F.; Liu, B.-F.; Song, X.; Ren, H.-Y. Biochar-based composites for removing chlorinated organic pollutants: Applications, mechanisms, and perspectives. Environ. Sci. Ecotechnology 2024, 21, 100420. [Google Scholar] [CrossRef]
- Istiqomah, N.A.; Jung, D.; Khim, J. Biochar-based persulfate activation: Rate constant prediction, key variables identification, and system optimization. J. Water Process Eng. 2024, 65, 105839. [Google Scholar] [CrossRef]
- Jiang, Z.; Li, J.; Jiang, D.; Gao, Y.; Chen, Y.; Wang, W.; Cao, B.; Tao, Y.; Wang, L.; Zhang, Y. Removal of atrazine by biochar-supported zero-valent iron catalyzed persulfate oxidation: Reactivity, radical production and transformation pathway. Environ. Res. 2020, 184, 109260. [Google Scholar] [CrossRef]
- Wang, C.; Li, Z.; Luo, Z.; Zheng, S.; Zheng, Q.; Wu, B. Effective degradation of ofloxacin using nano-zero-valent iron activated persulfate supported by the reusable porous gel microsphere. Sep. Purif. Technol. 2024, 331, 125634. [Google Scholar] [CrossRef]
- Jiang, B.; Zhang, Y.; Li, C.; Guo, J.; Sun, C. Zero-valent iron loaded on N-doped biochar fabricated by one-step pyrolysis of K2FeO4 and coffee grounds as a persulfate activator for Bisphenol A degradation. Process Saf. Environ. Prot. 2023, 170, 328–338. [Google Scholar] [CrossRef]
- Amalina, F.; Razak, A.S.A.; Krishnan, S.; Sulaiman, H.; Zularisam, A.W.; Nasrullah, M. Biochar production techniques utilizing biomass waste-derived materials and environmental applications–A review. J. Hazard. Mater. Adv. 2022, 7, 100134. [Google Scholar] [CrossRef]
- Boraah, N.; Chakma, S.; Kaushal, P. Optimum features of wood-based biochars: A characterization study. J. Environ. Chem. Eng. 2023, 11, 109976. [Google Scholar] [CrossRef]
- Patel, M.R.; Panwar, N.L. Biochar from agricultural crop residues: Environmental, production, and life cycle assessment overview. Resour. Conserv. Recycl. Adv. 2023, 19, 200173. [Google Scholar] [CrossRef]
- Xin, Z.; Tong, J.; Wang, J.; Ruan, C.; Lyu, J.; Shi, J. Research progress on activated persulfate by biochar: Soil and water environment remediation, mechanism exploration and simulation calculation. Chem. Eng. J. 2024, 493, 152718. [Google Scholar] [CrossRef]
- Mutić, S.; Anojčić, J.; Đukanović, N.; Apostolović, T.; Simetić, T.; Petrović, J.; Beljin, J. Exploring wood-derived biochar potential for electrochemical sensing of fungicides mancozeb and maneb in environmental water samples. Talanta 2025, 287, 127648. [Google Scholar] [CrossRef]
- Manjunath, B.; Ouellet-Plamondon, C.M.; Das, B.B.; Rao, S.; Bhojaraju, C.; Rao, M. Areca nut husk biochar as a sustainable carbonaceous filler for cement: Pyrolysis temperature and its effect on characterization, strength, and hydration. Ind. Crops Prod. 2024, 222, 119883. [Google Scholar] [CrossRef]
- Chen, F.; Liu, X.; Lu, C.; Ruan, M.; Wen, Y.; Wang, S.; Song, Y.; Li, L.; Zhou, L.; Jiang, H.; et al. High-throughput prediction of stalk cellulose and hemicellulose content in maize using machine learning and Fourier transform infrared spectroscopy. Bioresour. Technol. 2024, 413, 131531. [Google Scholar] [CrossRef]
- Ge, L.; Yao, L.; Wang, Y.; Zuo, M.; Liu, Y.; Wu, K.; Zhang, W.; Xu, C. The preparation, layered characterization and potential applications of corncob biochar. J. Anal. Appl. Pyrol. 2024, 183, 106808. [Google Scholar] [CrossRef]
- Rambhatla, N.; Panicker, T.F.; Mishra, R.K.; Manjeshwar, S.K.; Sharma, A. Biomass pyrolysis for biochar production: Study of kinetics parameters and effect of temperature on biochar yield and its physicochemical properties. Results Eng. 2025, 25, 103679. [Google Scholar] [CrossRef]
- Liu, S.; Chen, Z.; Shao, J.; Luo, S.; Yu, D. Novel soybean dregs biochar concrete: Characterization and evaluation of the mechanical properties and microstructure. Constr. Build. Mater. 2025, 458, 139512. [Google Scholar] [CrossRef]
- Geetha, T.; Smitha, J.K.; Sebastian, M.; Litty, M.I.; Joseph, B.; Joseph, J.; Nisha, T.S. Synthesis and characterization of nano iron oxide biochar composite for efficient removal of crystal violet from water. Heliyon 2024, 10, e39450. [Google Scholar] [CrossRef]
- Chai, B.; Xiao, T.; Xiao, E.; Du, S.; Yang, S.; Yin, H.; Dang, Z.; Pan, K. Enhancing microplastics removal from soils using wheat straw and cow dung-derived biochars. J. Clean. Prod. 2024, 470, 143288. [Google Scholar] [CrossRef]
- Shan, R.; Han, J.; Gu, J.; Yuan, H.; Luo, B.; Chen, Y. A review of recent developments in catalytic applications of biochar-based materials. Resour. Conserv. Recycl. 2020, 162, 105036. [Google Scholar] [CrossRef]
- Feng, Q.; Wang, B.; Chen, M.; Wu, P.; Lee, X.; Xing, Y. Invasive plants as potential sustainable feedstocks for biochar production and multiple applications: A review. Resour. Conserv. Recycl. 2021, 164, 1052024. [Google Scholar] [CrossRef]
- El-Bestawy, E.A.; Gaber, M.; Shokry, H.; Samy, M. Effective degradation of atrazine by spinach-derived biochar via persulfate activation system: Process optimization, mechanism, degradation pathway and application in real wastewater. Environ. Res. 2023, 229, 115987. [Google Scholar] [CrossRef]
- Hayat, W.; Zhang, Y.; Hussain, I.; Huang, S.; Du, X. Comparison of radical and non-radical activated persulfate systems for the degradation of imidacloprid in water. Ecotoxicol. Environ. Saf. 2020, 188, 109891. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Huang, D.; Zhang, Y.; El Houda Bouroubi, N.; Chen, P.; Ganbold, N.; Hea, P.; Liu, J.; Fang, Y.; Gana, M.; et al. Natural mineral-derived Fe/Mn-BC as efficient peroxydisulfate activator for 2,4-dichlorophenol removal from wastewater: Performance and sustainable catalytic mechanism. J. Environ. Manage. 2023, 335, 117540. [Google Scholar] [CrossRef]
- Miserli, K.; Kogola, D.; Paraschoudi, I.; Konstantinou, I. Activation of persulfate by biochar for the degradation of phenolic compounds in aqueous systems. Chem. Eng. J. Adv. 2022, 9, 100201. [Google Scholar] [CrossRef]
- Huang, P.; Zhang, P.; Wang, C.; Tang, J.; Sun, H. Enhancement of persulfate activation by Fe-biochar composites: Synergism of Fe and N-doped biochar. Appl. Catal. B Environ. 2022, 303, 120926. [Google Scholar] [CrossRef]
- Liang, X.; Zhao, Y.; Guo, N.; Yang, Q. Heterogeneous activation of peroxymonosulfate by Co3O4 loaded biochar for efficient degradation of 2,4-dichlorophenoxyacetic acid. Colloids Surf. A Physicochem. Eng. Asp. 2021, 627, 127152. [Google Scholar] [CrossRef]
- Yu, T.; Wang, Z.; Li, H.; Zheng, K.; Luo, J.; Liu, H.; Li, Y.; Ai, L.; Wang, J.; Song, Y.; et al. MFe2O4/biochar composites in persulfate-advanced oxidation process for antibiotic treatment: A mini review. J. Water Process Eng. 2024, 68, 106535. [Google Scholar] [CrossRef]
- Yu, Y.; Guo, H.; Zhong, Z.; Wang, A.; Xiang, M.; Xu, S.; Dong, C.; Chang, Z. Fe3O4 loaded on ball milling biochar enhanced bisphenol a removal by activating persulfate: Performance and activating mechanism. J. Environ. Manage. 2022, 319, 115661. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Liu, H.; Zhang, C.; Dawolo, E.H.; Chen, B.; Ding, N. Degradation mechanism of metronidazole using persulfate activated by boron/copper doped biochar derived from Chlorella vulgaris. Process Saf. Environ. Prot. 2024, 191, 1394–1406. [Google Scholar] [CrossRef]
- Luttah, I.; Onunga, D.O.; Shikuku, V.O.; Otieno, B.; Kowenje, C.O. Removal of endosulfan from water by municipal waste incineration fly ash-based geopolymers: Adsorption kinetics, isotherms, and thermodynamics. Front. Environ. Chem. 2023, 4, 1164372. [Google Scholar] [CrossRef]
- He, L.; Shi, Y.; Chen, Y.; Shen, S.; Xue, J.; Ma, Y.; Zheng, L.; Wu, L.; Zhang, Z.; Yang, L. Iron-manganese oxide loaded sludge biochar as a novel periodate activator for thiacloprid efficient degradation over a wide pH range. Sep. Purif. Technol. 2022, 288, 120703. [Google Scholar] [CrossRef]
- Jiang, Q.; Jiang, S.; Li, H.; Zhang, R.; Jiang, Z.; Zhang, Y. A stable biochar supported S-nZVI to activate persulfate for effective dichlorination of atrazine. Chem. Eng. J. 2022, 431, 133937. [Google Scholar] [CrossRef]
- Yang, X.; Guo, Z.; Chen, X.; Xi, S.; Cui, K.; Li, J.; Dong, D.; Wu, F.; Wu, Z. Efficient degradation of thiamethoxam pesticide in water by iron and manganese oxide composite biochar activated persulfate. Chem. Eng. J. 2023, 473, 145051. [Google Scholar] [CrossRef]
- Yu, B.; Man, Y.; Wang, P.; Wu, C.; Xie, J.; Wang, W.; Jiang, H.; Zhang, L.; Zhang, Y.; Mao, L.; et al. Catalytic degradation of dimethomorph by nitrogen-doped rice husk biochar. Ecotoxicol. Environ. Saf. 2023, 257, 114908. [Google Scholar] [CrossRef]
- Liu, W.; Lu, Y.; Dong, Y.; Jin, Q.; Lin, H. A critical review on reliability of quenching experiment in advanced oxidation processes. Chem. Eng. J. 2023, 466, 143161. [Google Scholar] [CrossRef]
- Liu, C.; Chen, L.; Ding, D.; Cai, T. From rice straw to magnetically recoverable nitrogen doped biochar: Efficient activation of peroxymonosulfate for the degradation of metolachlor. Appl. Catal. B Environ. 2019, 254, 312–320. [Google Scholar] [CrossRef]
- Liang, X.; Zhao, Y.; Liu, J.; Yang, Z.; Yang, Q. Highly efficient activation of peroxymonosulfate by cobalt ferrite anchored in P-doped activated carbon for degradation of 2,4-D: Adsorption and electron transfer mechanism. J. Colloid Interface Sci. 2023, 642, 757–770. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J. Activation of peroxymonosulfate by sludge-derived biochar for the degradation of triclosan in water and wastewater. Chem. Eng. J. 2019, 356, 350–358. [Google Scholar] [CrossRef]
- Lin, D.; Fu, Y.; Li, X.; Wang, L.; Hou, M.; Hu, D.; Li, Q.; Zhang, Z.; Xu, C.; Qui, S.; et al. Application of persulfate-based oxidation processes to address diverse sustainability challenges: A critical review. J. Hazard. Mater. 2022, 440, 129722. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Wen, Y.; Liu, M.; Su, L.; Wang, Y.; Li, S.; Zhong, M.; Zhou, Z.; Zhou, N. Simultaneous removal of organic inorganic composite contaminants by in situ double modified biochar: Performance and mechanisms. J. Taiwan Inst. Chem. Eng. 2022, 139, 104523. [Google Scholar] [CrossRef]
- Dai, L.-Y.; Li, B.; Xu, H.-Y.; Wang, W.-S.; Zhang, S.-Q.; Xu, Y.; Qi, S.-Y.; He, X.-L.; Jin, L.-G. Magnetic nanoreactor Fe3O4@HNTs as heterogeneous Fenton-like catalyst for acid fuchsin degradation: Efficiency, kinetics and mechanism. J. Phys. Chem. Sol. 2023, 180, 111445. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, Q.; Jiang, S.; Li, H.; Zhang, R.; Qu, J.; Zhang, S.; Han, W. One-step synthesis of biochar supported nZVI composites for highly efficient activating persulfate to oxidatively degrade atrazine. Chem. Eng. J. 2021, 420, 129868. [Google Scholar] [CrossRef]
- Simetić, T.; Nikić, J.; Kuč, M.; Tamindžija, D.; Tubić, A.; Agbaba, J.; Molnar Jazić, J. New Insight into the Degradation of Sunscreen Agents in Water Treatment Using UV-Driven Advanced Oxidation Processes. Processes 2024, 12, 1156. [Google Scholar] [CrossRef]
- Wu, L.; Gao, Y.; Qiu, S.; Hu, Z.; Liu, C.; Yue, C.; Zhou, J. Efficient oxidative remediation of polycyclic aromatic hydrocarbons (PAHs)-contaminated soil: A thorough comprehension of Fe-loaded biochar activated persulfate. Chemosphere 2024, 368, 143699. [Google Scholar] [CrossRef]
- Qian, W.; Deng, Y.-L.; Liu, X.-L.; Liu, H.; Ye, M.-Y.; Li, Y.-Y.; Zhang, Y.-Z.; Diao, Z.-H.; Liang, J.-L. Degradation of ofloxacin by activation of persulfate with metal-N co-doped modified peanut shell biochar: The key role of cobalt doping. J. Water Process Eng. 2025, 70, 106967. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Y.; Li, Y.; Wang, C.; Kuang, S.; Ren, P.; Xie, B. Persulfate oxidation of tetracycline, antibiotic resistant bacteria, and resistance genes activated by Fe doped biochar catalysts: Synergy of radical and non-radical processes. Chem. Eng. J. 2023, 464, 142558. [Google Scholar] [CrossRef]
- Pi, Z.; Li, X.; Wang, D.; Xu, Q.; Tao, Z.; Huang, X.; Yao, F.; Wu, Y.; He, L.; Yang, Q. Persulfate activation by oxidation biochar supported magnetite particles for tetracycline removal: Performance and degradation pathway. J. Clean. Prod. 2019, 235, 1103–1115. [Google Scholar] [CrossRef]
- Liu, H.; Liu, Y.; Tang, L.; Wang, J.; Yu, J.; Zhang, H.; Yu, M.; Zou, J.; Xie, Q. Egg shell biochar-based green catalysts for the removal of organic pollutants by activating persulfate. Sci. Total Environ. 2020, 745, 141095. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Kang, Z.; Xu, G.; Wang, J.; Yu, Y. Degradation of bensulfuron methyl by nitrogen/boron codoped biochar activated peroxydisulfate at lower temperature. J. Clean. Prod. 2023, 402, 136816. [Google Scholar] [CrossRef]
- Wang, J.; Liao, Z.; Ifthikar, J.; Shi, L.; Du, Y.; Zhu, J.; Xi, S.; Chen, Z.; Chen, Z. Treatment of refractory contaminants by sludge-derived biochar/persulfate system via both adsorption and advanced oxidation process. Chemosphere 2017, 185, 754–763. [Google Scholar] [CrossRef] [PubMed]
- Zhong, S.; Pan, J.; Tian, K.; Qin, J.; Qing, T.; Zhang, J. Efficient degradation of p chlorophenol by N,S-codoped biochar activated perxymonosulfate. Process Saf. Environ. Prot. 2023, 169, 437–446. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater, 22nd ed.; American Public Health Association: Washington DC, USA, 2012; ISBN 978-087553-013-0. [Google Scholar]
- Šolić, M.; Maletić, S.; Kragulj Isakovski, M.; Nikić, J.; Watson, M.; Kónya, Z.; Tricković, J. Comparing the Adsorption Performance of Multiwalled Carbon Nanotubes Oxidized by Varying Degrees for Removal of Low Levels of Copper, Nickel and Chromium (VI) from Aqueous Solutions. Water 2020, 12, 723. [Google Scholar] [CrossRef]
- SRPS EN ISO 6878; Water Quality—Determination of Phosphorus—Spectrometric Method with Ammonium Molybdate. Institute for Standardization: Belgrade, Serbia, 2008.
- SRPS H.Z.1.111; Pure Chemicals—Ammonium Acetate—Measurement of pH Value—Potentiometric Method. Institute for Standardization: Belgrade, Serbia, 1987.
- SRPS ISO H.ZI.184; Water Testing—Determination of Ammonia Content—Method Using Nessler’s Reagent. Institute for Standardization: Belgrade, Serbia, 1974.
- US EPA. Nitrogen, Kjeldahl, Total (Colorimetric, Titrimetric, Potentiometric); Method 351.3; US EPA: Washington, DC, USA, 1978.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simetić, T.; Marjanović Srebro, T.; Apostolović, T.; Anojčić, J.; Đukanović, N.; Mutić, S.; Molnar Jazić, J.; Beljin, J. Biochar as a Catalyst in Persulfate Activation: A Sustainable Approach to Remove Pesticides from Water. Processes 2025, 13, 1856. https://doi.org/10.3390/pr13061856
Simetić T, Marjanović Srebro T, Apostolović T, Anojčić J, Đukanović N, Mutić S, Molnar Jazić J, Beljin J. Biochar as a Catalyst in Persulfate Activation: A Sustainable Approach to Remove Pesticides from Water. Processes. 2025; 13(6):1856. https://doi.org/10.3390/pr13061856
Chicago/Turabian StyleSimetić, Tajana, Tijana Marjanović Srebro, Tamara Apostolović, Jasmina Anojčić, Nina Đukanović, Sanja Mutić, Jelena Molnar Jazić, and Jelena Beljin. 2025. "Biochar as a Catalyst in Persulfate Activation: A Sustainable Approach to Remove Pesticides from Water" Processes 13, no. 6: 1856. https://doi.org/10.3390/pr13061856
APA StyleSimetić, T., Marjanović Srebro, T., Apostolović, T., Anojčić, J., Đukanović, N., Mutić, S., Molnar Jazić, J., & Beljin, J. (2025). Biochar as a Catalyst in Persulfate Activation: A Sustainable Approach to Remove Pesticides from Water. Processes, 13(6), 1856. https://doi.org/10.3390/pr13061856