Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,236)

Search Parameters:
Keywords = hardware design

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1389 KiB  
Article
High-Throughput Post-Quantum Cryptographic System: CRYSTALS-Kyber with Computational Scheduling and Architecture Optimization
by Shih-Hsiang Chou, Yu-Hua Yang, Wen-Long Chin, Ci Chen, Cheng-Yu Tsao and Pin-Luen Tung
Electronics 2025, 14(15), 2969; https://doi.org/10.3390/electronics14152969 - 24 Jul 2025
Abstract
With the development of a quantum computer in the near future, classical public-key cryptography will face the challenge of being vulnerable to quantum algorithms, such as Shor’s algorithm. As communication technology advances rapidly, a great deal of personal information is being transmitted over [...] Read more.
With the development of a quantum computer in the near future, classical public-key cryptography will face the challenge of being vulnerable to quantum algorithms, such as Shor’s algorithm. As communication technology advances rapidly, a great deal of personal information is being transmitted over the Internet. Based on our observation that the Kyber algorithm exhibits a significant number of idle cycles during execution when implemented following the conventional software procedure, this paper proposes a high-throughput scheduling for Kyber by parallelizing the SHA-3 function, the sampling algorithm, and the NTT computations to improve hardware utilization and reduce latency. We also introduce the 8-stage pipelined SHA-3 architecture and multi-mode polynomial arithmetic module to increase area efficiency. By also optimizing the hardware architecture of the various computational modules used by Kyber, according to the implementation result, an aggregate throughput of 877.192 kOPS in Kyber KEM can be achieved on TSMC 40 nm. In addition, our design not only achieves the highest throughput among existing studies but also improves the area and power efficiencies. Full article
25 pages, 19515 KiB  
Article
Towards Efficient SAR Ship Detection: Multi-Level Feature Fusion and Lightweight Network Design
by Wei Xu, Zengyuan Guo, Pingping Huang, Weixian Tan and Zhiqi Gao
Remote Sens. 2025, 17(15), 2588; https://doi.org/10.3390/rs17152588 - 24 Jul 2025
Abstract
Synthetic Aperture Radar (SAR) provides all-weather, all-time imaging capabilities, enabling reliable maritime ship detection under challenging weather and lighting conditions. However, most high-precision detection models rely on complex architectures and large-scale parameters, limiting their applicability to resource-constrained platforms such as satellite-based systems, where [...] Read more.
Synthetic Aperture Radar (SAR) provides all-weather, all-time imaging capabilities, enabling reliable maritime ship detection under challenging weather and lighting conditions. However, most high-precision detection models rely on complex architectures and large-scale parameters, limiting their applicability to resource-constrained platforms such as satellite-based systems, where model size, computational load, and power consumption are tightly restricted. Thus, guided by the principles of lightweight design, robustness, and energy efficiency optimization, this study proposes a three-stage collaborative multi-level feature fusion framework to reduce model complexity without compromising detection performance. Firstly, the backbone network integrates depthwise separable convolutions and a Convolutional Block Attention Module (CBAM) to suppress background clutter and extract effective features. Building upon this, a cross-layer feature interaction mechanism is introduced via the Multi-Scale Coordinated Fusion (MSCF) and Bi-EMA Enhanced Fusion (Bi-EF) modules to strengthen joint spatial-channel perception. To further enhance the detection capability, Efficient Feature Learning (EFL) modules are embedded in the neck to improve feature representation. Experiments on the Synthetic Aperture Radar (SAR) Ship Detection Dataset (SSDD) show that this method, with only 1.6 M parameters, achieves a mean average precision (mAP) of 98.35% in complex scenarios, including inshore and offshore environments. It balances the difficult problem of being unable to simultaneously consider accuracy and hardware resource requirements in traditional methods, providing a new technical path for real-time SAR ship detection on satellite platforms. Full article
Show Figures

Figure 1

15 pages, 2127 KiB  
Article
Accessible Interface for Museum Geological Exhibitions: PETRA—A Gesture-Controlled Experience of Three-Dimensional Rocks and Minerals
by Andrei Ionuţ Apopei
Minerals 2025, 15(8), 775; https://doi.org/10.3390/min15080775 - 24 Jul 2025
Abstract
The increasing integration of 3D technologies and machine learning is fundamentally reshaping mineral sciences and cultural heritage, establishing the foundation for an emerging “Mineralogy 4.0” framework. However, public engagement with digital 3D collections is often limited by complex or costly interfaces, such as [...] Read more.
The increasing integration of 3D technologies and machine learning is fundamentally reshaping mineral sciences and cultural heritage, establishing the foundation for an emerging “Mineralogy 4.0” framework. However, public engagement with digital 3D collections is often limited by complex or costly interfaces, such as VR/AR systems and traditional touchscreen kiosks, creating a clear need for more intuitive, accessible, and more engaging and inclusive solutions. This paper presents PETRA, an open-source, gesture-controlled system for exploring 3D rocks and minerals. Developed in the TouchDesigner environment, PETRA utilizes a standard webcam and the MediaPipe framework to translate natural hand movements into real-time manipulation of digital specimens, requiring no specialized hardware. The system provides a customizable, node-based framework for creating touchless, interactive exhibits. Successfully evaluated during a “Long Night of Museums” public event with 550 visitors, direct qualitative observations confirmed high user engagement, rapid instruction-free learnability across diverse age groups, and robust system stability in a continuous-use setting. As a practical case study, PETRA demonstrates that low-cost, webcam-based gesture control is a viable solution for creating accessible and immersive learning experiences. This work offers a significant contribution to the fields of digital mineralogy, human–machine interaction, and cultural heritage by providing a hygienic, scalable, and socially engaging method for interacting with geological collections. This research confirms that as digital archives grow, the development of human-centered interfaces is paramount in unlocking their full scientific and educational potential. Full article
(This article belongs to the Special Issue 3D Technologies and Machine Learning in Mineral Sciences)
Show Figures

Figure 1

18 pages, 8466 KiB  
Article
COTS Battery Charge Equalizer for Small Satellite Applications
by Pablo Casado, José M. Blanes, Ausiàs Garrigós, David Marroquí and Cristian Torres
Appl. Sci. 2025, 15(15), 8228; https://doi.org/10.3390/app15158228 - 24 Jul 2025
Abstract
This paper describes the design and implementation of a battery equalizer circuit for small satellites, developed under the New Space philosophy exclusively using commercial off-the-shelf (COTS) components. The primary objective is to ensure high reliability for mission-critical power systems while adhering to strict [...] Read more.
This paper describes the design and implementation of a battery equalizer circuit for small satellites, developed under the New Space philosophy exclusively using commercial off-the-shelf (COTS) components. The primary objective is to ensure high reliability for mission-critical power systems while adhering to strict cost constraints. In order to achieve this objective, the design incorporates a robust analog control circuit, thereby avoiding the complexities and potential single-point failures associated with digital controllers. A comprehensive study of various cell-balancing topologies was conducted, leading to the selection, hardware implementation, and comparative analysis of the two most suitable candidates. The results of this study provide a validated, cost-effective, and reliable battery equalizer solution for developers of small satellites. Full article
(This article belongs to the Special Issue Control Systems for Next Generation Electric Applications)
Show Figures

Figure 1

27 pages, 3280 KiB  
Article
Design and Implementation of a Robust Hierarchical Control for Sustainable Operation of Hybrid Shipboard Microgrid
by Arsalan Rehmat, Farooq Alam, Mohammad Taufiqul Arif and Syed Sajjad Haider Zaidi
Sustainability 2025, 17(15), 6724; https://doi.org/10.3390/su17156724 - 24 Jul 2025
Abstract
The growing demand for low-emission maritime transport and efficient onboard energy management has intensified research into advanced control strategies for hybrid shipboard microgrids. These systems integrate both AC and DC power domains, incorporating renewable energy sources and battery storage to enhance fuel efficiency, [...] Read more.
The growing demand for low-emission maritime transport and efficient onboard energy management has intensified research into advanced control strategies for hybrid shipboard microgrids. These systems integrate both AC and DC power domains, incorporating renewable energy sources and battery storage to enhance fuel efficiency, reduce greenhouse gas emissions, and support operational flexibility. However, integrating renewable energy into shipboard microgrids introduces challenges, such as power fluctuations, varying line impedances, and disturbances caused by AC/DC load transitions, harmonics, and mismatches in demand and supply. These issues impact system stability and the seamless coordination of multiple distributed generators. To address these challenges, we proposed a hierarchical control strategy that supports sustainable operation by improving the voltage and frequency regulation under dynamic conditions, as demonstrated through both MATLAB/Simulink simulations and real-time hardware validation. Simulation results show that the proposed controller reduces the frequency deviation by up to 25.5% and power variation improved by 20.1% compared with conventional PI-based secondary control during load transition scenarios. Hardware implementation on the NVIDIA Jetson Nano confirms real-time feasibility, maintaining power and frequency tracking errors below 5% under dynamic loading. A comparative analysis of the classical PI and sliding mode control-based designs is conducted under various grid conditions, such as cold ironing mode of the shipboard microgrid, and load variations, considering both the AC and DC loads. The system stability and control law formulation are verified through simulations in MATLAB/SIMULINK and practical implementation. The experimental results demonstrate that the proposed secondary control architecture enhances the system robustness and ensures sustainable operation, making it a viable solution for modern shipboard microgrids transitioning towards green energy. Full article
(This article belongs to the Special Issue Smart Grid Technologies and Energy Sustainability)
Show Figures

Figure 1

24 pages, 8344 KiB  
Article
Research and Implementation of Travel Aids for Blind and Visually Impaired People
by Jun Xu, Shilong Xu, Mingyu Ma, Jing Ma and Chuanlong Li
Sensors 2025, 25(14), 4518; https://doi.org/10.3390/s25144518 - 21 Jul 2025
Viewed by 145
Abstract
Blind and visually impaired (BVI) people face significant challenges in perception, navigation, and safety during travel. Existing infrastructure (e.g., blind lanes) and traditional aids (e.g., walking sticks, basic audio feedback) provide limited flexibility and interactivity for complex environments. To solve this problem, we [...] Read more.
Blind and visually impaired (BVI) people face significant challenges in perception, navigation, and safety during travel. Existing infrastructure (e.g., blind lanes) and traditional aids (e.g., walking sticks, basic audio feedback) provide limited flexibility and interactivity for complex environments. To solve this problem, we propose a real-time travel assistance system based on deep learning. The hardware comprises an NVIDIA Jetson Nano controller, an Intel D435i depth camera for environmental sensing, and SG90 servo motors for feedback. To address embedded device computational constraints, we developed a lightweight object detection and segmentation algorithm. Key innovations include a multi-scale attention feature extraction backbone, a dual-stream fusion module incorporating the Mamba architecture, and adaptive context-aware detection/segmentation heads. This design ensures high computational efficiency and real-time performance. The system workflow is as follows: (1) the D435i captures real-time environmental data; (2) the processor analyzes this data, converting obstacle distances and path deviations into electrical signals; (3) servo motors deliver vibratory feedback for guidance and alerts. Preliminary tests confirm that the system can effectively detect obstacles and correct path deviations in real time, suggesting its potential to assist BVI users. However, as this is a work in progress, comprehensive field trials with BVI participants are required to fully validate its efficacy. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

30 pages, 10173 KiB  
Article
Integrated Robust Optimization for Lightweight Transformer Models in Low-Resource Scenarios
by Hui Huang, Hengyu Zhang, Yusen Wang, Haibin Liu, Xiaojie Chen, Yiling Chen and Yuan Liang
Symmetry 2025, 17(7), 1162; https://doi.org/10.3390/sym17071162 - 21 Jul 2025
Viewed by 162
Abstract
With the rapid proliferation of artificial intelligence (AI) applications, an increasing number of edge devices—such as smartphones, cameras, and embedded controllers—are being tasked with performing AI-based inference. Due to constraints in storage capacity, computational power, and network connectivity, these devices are often categorized [...] Read more.
With the rapid proliferation of artificial intelligence (AI) applications, an increasing number of edge devices—such as smartphones, cameras, and embedded controllers—are being tasked with performing AI-based inference. Due to constraints in storage capacity, computational power, and network connectivity, these devices are often categorized as operating in resource-constrained environments. In such scenarios, deploying powerful Transformer-based models like ChatGPT and Vision Transformers is highly impractical because of their large parameter sizes and intensive computational requirements. While lightweight Transformer models, such as MobileViT, offer a promising solution to meet storage and computational limitations, their robustness remains insufficient. This poses a significant security risk for AI applications, particularly in critical edge environments. To address this challenge, our research focuses on enhancing the robustness of lightweight Transformer models under resource-constrained conditions. First, we propose a comprehensive robustness evaluation framework tailored for lightweight Transformer inference. This framework assesses model robustness across three key dimensions: noise robustness, distributional robustness, and adversarial robustness. It further investigates how model size and hardware limitations affect robustness, thereby providing valuable insights for robustness-aware model design. Second, we introduce a novel adversarial robustness enhancement strategy that integrates lightweight modeling techniques. This approach leverages methods such as gradient clipping and layer-wise unfreezing, as well as decision boundary optimization techniques like TRADES and SMART. Together, these strategies effectively address challenges related to training instability and decision boundary smoothness, significantly improving model robustness. Finally, we deploy the robust lightweight Transformer models in real-world resource-constrained environments and empirically validate their inference robustness. The results confirm the effectiveness of our proposed methods in enhancing the robustness and reliability of lightweight Transformers for edge AI applications. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

27 pages, 5012 KiB  
Article
Optimizing FPGA Resource Allocation in SDR Remote Laboratories via Partial Reconfiguration
by Zhiyun Zhang and Rania Hussein
Electronics 2025, 14(14), 2908; https://doi.org/10.3390/electronics14142908 - 20 Jul 2025
Viewed by 200
Abstract
In wireless communications and radio frequency courses, Software-Defined Radios (SDRs) offer students hands-on experience with software-based signal processing on programmable hardware platforms such as Field Programmable Gate Arrays (FPGAs). While some remote SDR laboratories enable students to access real hardware, they typically lack [...] Read more.
In wireless communications and radio frequency courses, Software-Defined Radios (SDRs) offer students hands-on experience with software-based signal processing on programmable hardware platforms such as Field Programmable Gate Arrays (FPGAs). While some remote SDR laboratories enable students to access real hardware, they typically lack support for Partial Reconfiguration (PR)—a powerful FPGA capability that allows sections of a design to be reconfigured at runtime without disrupting the main system operation. This capability enhances real-time adaptability and optimizes resource utilization, making it highly relevant for modern SDR applications. This study addresses this gap by extending an existing SDR remote lab to support PR, enabling students to explore reconfigurable hardware design within a remote learning environment. Two integration architectures were developed: one based on a graphical user interface (UI) and another utilizing a command-line workflow, both accessible via a web browser. Preliminary experiments using Red Pitaya SDR platforms—reportedly the first use of these devices for educational PR exploration—examined the impact of PR on logic resource utilization and total power consumption across three levels of design complexity. These results were compared to equivalent static FPGA designs performing the same functionality without PR. By making PR experimentation accessible through a remote platform, this work enhances STEM education by bridging advanced FPGA techniques with practical learning. It will equip students with industry-relevant skills for developing agile, resource-efficient wireless systems and foster a deeper understanding of adaptive hardware design. Full article
(This article belongs to the Special Issue FPGA-Based Reconfigurable Embedded Systems)
Show Figures

Figure 1

30 pages, 15434 KiB  
Article
A DSP–FPGA Heterogeneous Accelerator for On-Board Pose Estimation of Non-Cooperative Targets
by Qiuyu Song, Kai Liu, Shangrong Li, Mengyuan Wang and Junyi Wang
Aerospace 2025, 12(7), 641; https://doi.org/10.3390/aerospace12070641 - 19 Jul 2025
Viewed by 216
Abstract
The increasing presence of non-cooperative targets poses significant challenges to the space environment and threatens the sustainability of aerospace operations. Accurate on-orbit perception of such targets, particularly those without cooperative markers, requires advanced algorithms and efficient system architectures. This study presents a hardware–software [...] Read more.
The increasing presence of non-cooperative targets poses significant challenges to the space environment and threatens the sustainability of aerospace operations. Accurate on-orbit perception of such targets, particularly those without cooperative markers, requires advanced algorithms and efficient system architectures. This study presents a hardware–software co-design framework for the pose estimation of non-cooperative targets. Firstly, a two-stage architecture is proposed, comprising object detection and pose estimation. YOLOv5s is modified with a Focus module to enhance feature extraction, and URSONet adopts global average pooling to reduce the computational burden. Optimization techniques, including batch normalization fusion, ReLU integration, and linear quantization, are applied to improve inference efficiency. Secondly, a customized FPGA-based accelerator is developed with an instruction scheduler, memory slicing mechanism, and computation array. Instruction-level control supports model generalization, while a weight concatenation strategy improves resource utilization during convolution. Finally, a heterogeneous DSP–FPGA system is implemented, where the DSP manages data pre-processing and result integration, and the FPGA performs core inference. The system is deployed on a Xilinx X7K325T FPGA operating at 200 MHz. Experimental results show that the optimized model achieves a peak throughput of 399.16 GOP/s with less than 1% accuracy loss. The proposed design reaches 0.461 and 0.447 GOP/s/DSP48E1 for two model variants, achieving a 2× to 3× improvement over comparable designs. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

33 pages, 2299 KiB  
Review
Edge Intelligence in Urban Landscapes: Reviewing TinyML Applications for Connected and Sustainable Smart Cities
by Athanasios Trigkas, Dimitrios Piromalis and Panagiotis Papageorgas
Electronics 2025, 14(14), 2890; https://doi.org/10.3390/electronics14142890 - 19 Jul 2025
Viewed by 208
Abstract
Tiny Machine Learning (TinyML) extends edge AI capabilities to resource-constrained devices, offering a promising solution for real-time, low-power intelligence in smart cities. This review systematically analyzes 66 peer-reviewed studies from 2019 to 2024, covering applications across urban mobility, environmental monitoring, public safety, waste [...] Read more.
Tiny Machine Learning (TinyML) extends edge AI capabilities to resource-constrained devices, offering a promising solution for real-time, low-power intelligence in smart cities. This review systematically analyzes 66 peer-reviewed studies from 2019 to 2024, covering applications across urban mobility, environmental monitoring, public safety, waste management, and infrastructure health. We examine hardware platforms and machine learning models, with particular attention to power-efficient deployment and data privacy. We review the approaches employed in published studies for deploying machine learning models on resource-constrained hardware, emphasizing the most commonly used communication technologies—while noting the limited uptake of low-power options such as Low Power Wide Area Networks (LPWANs). We also discuss hardware–software co-design strategies that enable sustainable operation. Furthermore, we evaluate the alignment of these deployments with the United Nations Sustainable Development Goals (SDGs), highlighting both their contributions and existing gaps in current practices. This review identifies recurring technical patterns, methodological challenges, and underexplored opportunities, particularly in the areas of hardware provisioning, usage of inherent privacy benefits in relevant applications, communication technologies, and dataset practices, offering a roadmap for future TinyML research and deployment in smart urban systems. Among the 66 studies examined, 29 focused on mobility and transportation, 17 on public safety, 10 on environmental sensing, 6 on waste management, and 4 on infrastructure monitoring. TinyML was deployed on constrained microcontrollers in 32 studies, while 36 used optimized models for resource-limited environments. Energy harvesting, primarily solar, was featured in 6 studies, and low-power communication networks were used in 5. Public datasets were used in 27 studies, custom datasets in 24, and the remainder relied on hybrid or simulated data. Only one study explicitly referenced SDGs, and 13 studies considered privacy in their system design. Full article
(This article belongs to the Special Issue New Advances in Embedded Software and Applications)
Show Figures

Figure 1

21 pages, 7897 KiB  
Article
Quantum Selection for Genetic Algorithms Applied to Electromagnetic Design Problems
by Gabriel F. Martinez, Alessandro Niccolai, Eleonora L. Zich and Riccardo E. Zich
Appl. Sci. 2025, 15(14), 8029; https://doi.org/10.3390/app15148029 - 18 Jul 2025
Viewed by 225
Abstract
Optimization has always been viewed as a central component of many electrical engineering techniques, where it involves designing a complex system with various constraints and competing objectives. The method described in this work proposes a hybrid quantum–classical evolutionary optimization algorithm targeting high-frequency electromagnetic [...] Read more.
Optimization has always been viewed as a central component of many electrical engineering techniques, where it involves designing a complex system with various constraints and competing objectives. The method described in this work proposes a hybrid quantum–classical evolutionary optimization algorithm targeting high-frequency electromagnetic problems. A genetic algorithm with a quantum selection operator that applies high selection pressure while preserving selection diversity is introduced. This change means that stagnation can be reduced without compromising the speed of convergence. This was used on both real quantum hardware as well as quantum simulators. The results demonstrate that the performance of the real quantum devices was deteriorated by the noise in these devices and that simulators would be a useful option. We provide a description of the operation of the proposed evolutionary optimization method with mathematical benchmarks and electromagnetic design problems that show that it outperforms conventional evolutionary algorithms in terms of convergence behavior and robustness. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

20 pages, 5404 KiB  
Article
Flying Steel Detection in Wire Rod Production Based on Improved You Only Look Once v8
by Yifan Lu, Fei Zhang, Xiaozhan Li, Jian Zhang, Xiong Xiao, Lijun Wang and Xiaofei Xiang
Processes 2025, 13(7), 2297; https://doi.org/10.3390/pr13072297 - 18 Jul 2025
Viewed by 202
Abstract
In the process of high-speed wire rod production, flying steel accidents may occur due to various reasons. Current detection methods relying on sensors like hardware make debugging complex as well as limit real-time and accuracy. These methods are complicated to debug, and the [...] Read more.
In the process of high-speed wire rod production, flying steel accidents may occur due to various reasons. Current detection methods relying on sensors like hardware make debugging complex as well as limit real-time and accuracy. These methods are complicated to debug, and the real-time and accuracy of detection are poor. Therefore, this paper proposes a flying steel detection method based on improved You Only Look Once v8 (YOLOv8), which can realize high-precision flying steel detection based on machine vision through the monitoring video of the production site. Firstly, the Omni-dimensional Dynamic Convolution (ODConv) is added to the backbone network to improve the feature extraction ability of the input image. Then, a lightweight C2f-PCCA_RVB module is proposed to be integrated into the neck network, so as to carry out the lightweight design of the neck network. Finally, the Efficient Multi-Scale Attention (EMA) module is added to the neck network to fuse the context information of different scales and improve the feature extraction ability. The experimental results show that the average accuracy (mAP@0.5) of the flying steel detection method based on the improved YOLOv8 is 99.1%, and the latency is reduced to 2.5 ms, which can realize the real-time accurate detection of the flying steel. Full article
Show Figures

Figure 1

12 pages, 5437 KiB  
Article
Cyber-Physical System Interface for Implantable Esophageal Prosthesis
by Ana Magdalena Anghel and Teodora Mîndra
Sensors 2025, 25(14), 4469; https://doi.org/10.3390/s25144469 - 18 Jul 2025
Viewed by 196
Abstract
This article presents a Cyber-Physical System Interface (CPSI) for a patented implantable esophageal prosthesis. Designed for in vivo use, the CPSI has been implemented in a MATLAB (version R2021b) simulation environment integrated with real-time data from sensors relevant for monitoring the prosthesis’s physical [...] Read more.
This article presents a Cyber-Physical System Interface (CPSI) for a patented implantable esophageal prosthesis. Designed for in vivo use, the CPSI has been implemented in a MATLAB (version R2021b) simulation environment integrated with real-time data from sensors relevant for monitoring the prosthesis’s physical positioning and environmental interactions, aggregated through an Arduino external system. This setup enables the modeling and analysis of system behaviors in a controlled setting. The paper discusses the sensors, hardware and software components supporting a wide range of applications, and the method chosen for sensor-to-display flow. The case study demonstrates two monitoring system applications: one analyzes the influence of variations in the prosthesis geometry, while the other evaluates the tissue response to the implant. The proposed framework and implementation are highly relevant for a wide range of in vivo implants and related systems. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

22 pages, 15962 KiB  
Article
Audible Noise-Based Hardware System for Acoustic Monitoring in Wind Turbines
by Gabriel Miguel Castro Martins, Murillo Ferreira dos Santos, Mathaus Ferreira da Silva, Juliano Emir Nunes Masson, Vinícius Barbosa Schettino, Iuri Wladimir Molina and William Rodrigues Silva
Inventions 2025, 10(4), 58; https://doi.org/10.3390/inventions10040058 - 17 Jul 2025
Viewed by 151
Abstract
This paper presents a robust hardware system designed for future detection of faults in wind turbines by analyzing audible noise signals. Predictive maintenance strategies have increasingly relied on acoustic monitoring as a non-invasive method for identifying anomalies that may indicate component wear, misalignment, [...] Read more.
This paper presents a robust hardware system designed for future detection of faults in wind turbines by analyzing audible noise signals. Predictive maintenance strategies have increasingly relied on acoustic monitoring as a non-invasive method for identifying anomalies that may indicate component wear, misalignment, or impending mechanical failures. The proposed device captures and processes sound signals in real-time using strategically positioned microphones, ensuring high-fidelity data acquisition without interfering with turbine operation. Signal processing techniques are applied to extract relevant acoustic features, facilitating future identification of abnormal sound patterns that may indicate mechanical issues. The system’s effectiveness was validated through rigorous field tests, demonstrating its capability to enhance the reliability and efficiency of wind turbine maintenance. Experimental results showed an average transmission latency of 131.8 milliseconds, validating the system’s applicability for near real-time audible noise monitoring in wind turbines operating under limited connectivity conditions. Full article
Show Figures

Figure 1

20 pages, 2382 KiB  
Article
Heterogeneity-Aware Personalized Federated Neural Architecture Search
by An Yang and Ying Liu
Entropy 2025, 27(7), 759; https://doi.org/10.3390/e27070759 - 16 Jul 2025
Viewed by 201
Abstract
Federated learning (FL), which enables collaborative learning across distributed nodes, confronts a significant heterogeneity challenge, primarily including resource heterogeneity induced by different hardware platforms, and statistical heterogeneity originating from non-IID private data distributions among clients. Neural architecture search (NAS), particularly one-shot NAS, holds [...] Read more.
Federated learning (FL), which enables collaborative learning across distributed nodes, confronts a significant heterogeneity challenge, primarily including resource heterogeneity induced by different hardware platforms, and statistical heterogeneity originating from non-IID private data distributions among clients. Neural architecture search (NAS), particularly one-shot NAS, holds great promise for automatically designing optimal personalized models tailored to such heterogeneous scenarios. However, the coexistence of both resource and statistical heterogeneity destabilizes the training of the one-shot supernet, impairs the evaluation of candidate architectures, and ultimately hinders the discovery of optimal personalized models. To address this problem, we propose a heterogeneity-aware personalized federated NAS (HAPFNAS) method. First, we leverage lightweight knowledge models to distill knowledge from clients to server-side supernet, thereby effectively mitigating the effects of heterogeneity and enhancing the training stability. Then, we build random-forest-based personalized performance predictors to enable the efficient evaluation of candidate architectures across clients. Furthermore, we develop a model-heterogeneous FL algorithm called heteroFedAvg to facilitate collaborative model training for the discovered personalized models. Comprehensive experiments on CIFAR-10/100 and Tiny-ImageNet classification datasets demonstrate the effectiveness of our HAPFNAS, compared to state-of-the-art federated NAS methods. Full article
(This article belongs to the Section Signal and Data Analysis)
Show Figures

Figure 1

Back to TopTop