Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (195)

Search Parameters:
Keywords = hard rock mine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 7048 KiB  
Article
Research on Synergistic Control Technology for Composite Roofs in Mining Roadways
by Lei Wang, Gang Liu, Dali Lin, Yue Song and Yongtao Zhu
Processes 2025, 13(8), 2342; https://doi.org/10.3390/pr13082342 - 23 Jul 2025
Viewed by 208
Abstract
Addressing the stability control challenges of roadways with composite roofs in the No. 34 coal seam of Donghai Mine under high-strength mining conditions, this study employed integrated methodologies including laboratory experiments, numerical modeling, and field trials. It investigated the mechanical response characteristics of [...] Read more.
Addressing the stability control challenges of roadways with composite roofs in the No. 34 coal seam of Donghai Mine under high-strength mining conditions, this study employed integrated methodologies including laboratory experiments, numerical modeling, and field trials. It investigated the mechanical response characteristics of the composite roof and developed a synergistic control system, validated through industrial application. Key findings indicate significant differences in mechanical behavior and failure mechanisms between individual rock specimens and composite rock masses. A theoretical “elastic-plastic-fractured” zoning model for the composite roof was established based on the theory of surrounding rock deterioration, elucidating the mechanical mechanism where the cohesive strength of hard rock governs the load-bearing capacity of the outer shell, while the cohesive strength of soft rock controls plastic flow. The influence of in situ stress and support resistance on the evolution of the surrounding rock zone radii was quantitatively determined. The FLAC3D strain-softening model accurately simulated the post-peak behavior of the surrounding rock. Analysis demonstrated specific inherent patterns in the magnitude, ratio, and orientation of principal stresses within the composite roof under mining influence. A high differential stress zone (σ1/σ3 = 6–7) formed within 20 m of the working face, accompanied by a deflection of the maximum principal stress direction by 53, triggering the expansion of a butterfly-shaped plastic zone. Based on these insights, we proposed and implemented a synergistic control system integrating high-pressure grouting, pre-stressed cables, and energy-absorbing bolts. Field tests demonstrated significant improvements: roof-to-floor convergence reduced by 48.4%, rib-to-rib convergence decreased by 39.3%, microseismic events declined by 61%, and the self-stabilization period of the surrounding rock shortened by 11%. Consequently, this research establishes a holistic “theoretical modeling-evolution diagnosis-synergistic control” solution chain, providing a validated theoretical foundation and engineering paradigm for composite roof support design. Full article
Show Figures

Figure 1

15 pages, 1457 KiB  
Article
The Hydrochemical Characteristics Evolution and Driving Factors of Shallow Groundwater in Luxi Plain
by Na Yu, Yingjie Han, Guang Liu, Fulei Zhuang and Qian Wang
Sustainability 2025, 17(14), 6432; https://doi.org/10.3390/su17146432 - 14 Jul 2025
Viewed by 277
Abstract
As China’s primary grain-producing area, the Luxi Plain is rich in groundwater resources, which serves as the main water supply source in this region. Investigating the evolution of hydrochemical characteristics and influencing factors of groundwater in this region is crucial for maintaining the [...] Read more.
As China’s primary grain-producing area, the Luxi Plain is rich in groundwater resources, which serves as the main water supply source in this region. Investigating the evolution of hydrochemical characteristics and influencing factors of groundwater in this region is crucial for maintaining the safety of groundwater quality and ensuring the high-quality development of the water supply. This study took Liaocheng City in the hinterland of the Luxi Plain as the study area. To clarify the hydrochemical characteristics evolution trend of groundwater in the area, the hydrochemical characteristics of shallow groundwater in recent years were systematically analyzed. The methods of ion ratio, correlation analysis, Gibbs and Gaillardet endmember diagrams, as well as the application of the absolute principal component scores–multiple linear regression (APCS-MLR) receptor model were used to determine the contribution rates of different ion sources to groundwater and to elucidate the driving factors behind the evolution of groundwater chemistry. Results showed significant spatiotemporal variations in the concentrations of major ions such as Na+, SO42−, and Cl in groundwater in the study area, and these variations demonstrated an overall increasing trend. Notably, the increases in total hardness (THRD), SO4, and Cl concentrations were particularly pronounced, while the variations in Na+, Mg2+, Ca2+ and other ions were relatively gradual. APCS-MLR receptor model analysis revealed that the ions such as Na+, Ca2+, Mg2+, SO42−, Cl, HCO3 and NO3 all have a significant influence on the hydrochemical composition of groundwater due to the high absolute principal component scores of them. The hydrochemical characteristics of groundwater in the study area were controlled by multiple processes, including evaporites, silicates and carbonates weathering, evaporation-concentration, cation alternating adsorption and human activities. Among the natural driving factors, rock weathering had a greater influence on the evolution of groundwater hydrochemical characteristics. Moreover, mining activities were the most important anthropogenic factor, followed by agricultural activities and living activities. Full article
Show Figures

Figure 1

18 pages, 2462 KiB  
Article
Autonomous Drilling and the Idea of Next-Generation Deep Mineral Exploration
by George Nikolakopoulos, Anton Koval, Matteo Fumagalli, Martyna Konieczna-Fuławka, Laura Santas Moreu, Victor Vigara-Puche, Kashish Verma, Bob de Waard and René Deutsch
Sensors 2025, 25(13), 3953; https://doi.org/10.3390/s25133953 - 25 Jun 2025
Viewed by 782
Abstract
Remote drilling technologies play a crucial role in automating both underground and open-pit hard rock mining operations. These technologies enhance efficiency and, most importantly, improve safety in the mining sector. Autonomous drilling rigs can navigate to pre-determined positions and utilize the appropriate parameters [...] Read more.
Remote drilling technologies play a crucial role in automating both underground and open-pit hard rock mining operations. These technologies enhance efficiency and, most importantly, improve safety in the mining sector. Autonomous drilling rigs can navigate to pre-determined positions and utilize the appropriate parameters to drill boreholes effectively. This article explores various aspects of automation, including the integration of advanced data collection methods that monitor the drilling parameters and facilitate the creation of 3D models of rock hardness. The shift toward machine automation involves transitioning from human-operated machines to systems powered by artificial intelligence, which are capable of making real-time decisions. Navigating underground environments presents unique challenges, as traditional RF-based localization systems often fail in these settings. New solutions, such as constant localization and mapping techniques like SLAM (simultaneous localization and mapping), provide innovative methods for navigating mines, particularly in uncharted territories. The development of robotic exploration rigs equipped with modules that can operate autonomously in hazardous areas has the potential to revolutionize mineral exploration in underground mines. This article also discusses solutions aimed at validating and improving existing methods by optimizing drilling strategies to ensure accuracy, enhance efficiency, and ensure safety. These topics are explored in the context of the Horizon Europe-funded PERSEPHONE project, which seeks to deliver fully autonomous, sensor-integrated robotic systems for deep mineral exploration in challenging underground environments. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

14 pages, 3364 KiB  
Article
Selection of an Optimum Anchoring Method of Composite Rock Stratum Based on Anchor Bolt Support Prestress Field
by Yiqun Zhou, Jianwei Yang, Chenyang Zhang, Dingyi Li and Bin Hu
Appl. Sci. 2025, 15(13), 6990; https://doi.org/10.3390/app15136990 - 20 Jun 2025
Viewed by 326
Abstract
In order to make the anchor bolt support prestress field fully diffuse in the composite rock stratum, improve the overall bearing capacity of surrounding rock, and give full play to the role of active support of the anchor bolt, a self-made 1:1-scale composite [...] Read more.
In order to make the anchor bolt support prestress field fully diffuse in the composite rock stratum, improve the overall bearing capacity of surrounding rock, and give full play to the role of active support of the anchor bolt, a self-made 1:1-scale composite rock stratum similarity simulation test bed was used to compare and analyze the distribution of the anchor bolt support prestress field using different anchoring surrounding rock lithology and anchorage lengths, and the principle for optimum selection of anchoring parameters of composite rock stratum was proposed based on the test results. Considered from the point of view of stress diffusion, the effect of prestress diffusion of end anchorage bolts is better than that of lengthening anchorage; at the same time, the anchorage section should be preferentially arranged in hard rock, and the area of anchorage section near the free section should avoid the structural plane of surrounding rock. In conclusion, an industrial test was carried out under the conditions of a deep composite roof of the 2# coal seam in Qinyuan Mining Area, which determined a reasonable anchoring method and position of the composite roof under different conditions and achieved good results. Full article
Show Figures

Figure 1

25 pages, 4657 KiB  
Article
Sensor-Based Rock Hardness Characterization in a Gold Mine Using Hyperspectral Imaging and Portable X-Ray Fluorescence Technologies
by Saleh Ghadernejad, Kamran Esmaeili and Mariano P. Consens
Remote Sens. 2025, 17(12), 2062; https://doi.org/10.3390/rs17122062 - 15 Jun 2025
Viewed by 733
Abstract
Rock hardness significantly impacts comminution efficiency, one of mining’s most energy-intensive processes. Accurate, rapid, and non-invasive hardness characterization can enhance mine-to-mill optimization and energy management. This study investigates sensor-based technologies, hyperspectral imaging, and portable X-ray fluorescence (pXRF) integrated with machine learning (ML) algorithms [...] Read more.
Rock hardness significantly impacts comminution efficiency, one of mining’s most energy-intensive processes. Accurate, rapid, and non-invasive hardness characterization can enhance mine-to-mill optimization and energy management. This study investigates sensor-based technologies, hyperspectral imaging, and portable X-ray fluorescence (pXRF) integrated with machine learning (ML) algorithms for characterizing rock hardness in open-pit gold mining contexts. A total of 159 rock samples from two Canadian open-pit gold mines were analyzed through Leeb rebound hardness (LRH), short-wave infrared (SWIR) hyperspectral imaging, and a pXRF analyzer for chemical characterization. The most critical spectral features of SWIR images were extracted using a novel and automated feature extraction approach and further refined by applying a recursive feature elimination (RFE) algorithm to reduce the dimensionality of the spectral feature space. Three ML algorithms, including Random Forest Regressor (RFR), Adaptive Boosting (AdaBoost), and Multivariate Linear Regression (MLR), were applied to develop predictive hardness models considering three scenarios: using chemical features, using refined spectral features, and their combination. The findings underscore the potential of advanced sensor integration and analytics in remotely characterizing rock hardness, which could contribute to enhancing efficiency and sustainability in modern mining operations. Full article
Show Figures

Graphical abstract

19 pages, 6638 KiB  
Article
Research and Application of Rockburst Prevention Technology in the Return Airway with Deep Thick Hard Sandstone Roof
by Zhensuo Wang, Yongli Liu, Zhixiang Song, Yaozu Ni and Pengxin Zhang
Appl. Sci. 2025, 15(11), 6270; https://doi.org/10.3390/app15116270 - 3 Jun 2025
Viewed by 325
Abstract
To address the issue of rockburst in deep return airways caused by thick, hard sandstone roofs in the Hulusu Coal Mine, this study proposes a deep borehole pressure relief technique based on hydraulic fracturing. The goal is to proactively weaken the hard roof [...] Read more.
To address the issue of rockburst in deep return airways caused by thick, hard sandstone roofs in the Hulusu Coal Mine, this study proposes a deep borehole pressure relief technique based on hydraulic fracturing. The goal is to proactively weaken the hard roof structure and effectively mitigate rockburst hazards. The research integrates numerical modeling, theoretical analytics, and field application to systematically delve into the unstable mechanism of deep hard rock and determine the crack propagation patterns and optimal borehole parameters. Engineering validation was carried out at the 21,103 mining face. Results indicate that when the borehole inclination is 45°, the spacing is 15 m, the diameter is 65 mm, the borehole depth is 24 m over the coal pillar (CP) and 30 m on the operating face, the pressure relief effect is optimal. This configuration effectively forms a pressure relief zone in the roof, significantly reduces surrounding rock stress concentration, and enhances structural stability. Field monitoring shows that the roof energy is released stably through crack propagation, effectively reducing the risk of rockburst. The proposed technique provides theoretical and engineering support for rockburst prevention in deep hard rock mining conditions. Full article
Show Figures

Figure 1

14 pages, 2015 KiB  
Article
Protective Coatings for Mining Conical Picks Considering Rock Strength and Rock Abrasivity
by Kamil Mucha and Andrzej N. Wieczorek
Coatings 2025, 15(6), 637; https://doi.org/10.3390/coatings15060637 - 25 May 2025
Viewed by 425
Abstract
The selection of mining cutting tools used on the cutting heads of roadheaders and shearers in hard coal mines is primarily based on the uniaxial compressive strength (UCS) of the rock. However, selecting cutting tools solely on the basis of a single parameter [...] Read more.
The selection of mining cutting tools used on the cutting heads of roadheaders and shearers in hard coal mines is primarily based on the uniaxial compressive strength (UCS) of the rock. However, selecting cutting tools solely on the basis of a single parameter characterizing the rock has proven to be insufficient. Therefore, the aim of the presented study was to develop guidelines for the selection of cutting tools with appropriate protective coatings on the working parts, based not only on the mechanical strength properties of rocks, but also on their abrasivity. For the study, twelve rock samples were collected from five different Polish hard coal mines. For each rock type, the UCS (uniaxial compressive strength), BTS (Brazilian tensile strength), and chemical composition (determined using wavelength-dispersive X-ray fluorescence, WD-XRF) were measured, along with the rock abrasivity index Wz, determined using a proprietary method developed at the AGH University of Krakow. The test results were compared with the calculated specific pick wear, defined as the number of picks consumed (replaced) per 1000 m3 of excavated material. As a result, a classification of rocks based on their UCS and abrasivity was developed, along with recommendations for selecting conical picks with suitable protective coatings on the working parts. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Figure 1

20 pages, 12803 KiB  
Article
Prediction of the Water-Conducting Fracture Zone Height Across the Entire Mining Area Based on the Multiple Nonlinear Coordinated Regression Model
by Jianye Feng, Xiaoming Shi, Jiasen Chen and Kang Wang
Water 2025, 17(9), 1303; https://doi.org/10.3390/w17091303 - 27 Apr 2025
Viewed by 426
Abstract
The water-conducting fracture zone (WCFZ) is a critical geological structure formed by the destruction of overburden during coal mining operations. Accurately predicting the height of the water-conducting fractured zone (HWCFZ) is essential for ensuring safe coal production. Based on more than 150 measured [...] Read more.
The water-conducting fracture zone (WCFZ) is a critical geological structure formed by the destruction of overburden during coal mining operations. Accurately predicting the height of the water-conducting fractured zone (HWCFZ) is essential for ensuring safe coal production. Based on more than 150 measured heights of fractured water-conducting zone samples from various mining areas in China, this study investigates the influence of five primary factors on the height: mining thickness, mining depth, length of the panel, coal seam dip, and the proportion coefficient of hard rock. The correlation degrees and relative weights of each factor are determined through grey relational analysis and principal component analysis. All five factors exhibit strong correlations with the height of the fractured water-conducting zone, with correlation degrees exceeding 0.79. Mining thickness is found to have the highest weight (0.256). A multiple nonlinear coordinated regression equation was constructed through regression analysis of the influencing factors. The prediction accuracy was compared with three other predictive models: the multiple nonlinear additive regression model, the BP neural network model, and the GA-BP neural network model. Among these models, the multiple nonlinear coordinated regression model was found to achieve the lowest error rate (7.23%) and the highest coefficient of determination (R2 = 87.42%), indicating superior accuracy and reliability. The model’s performance is further validated using drill hole data and numerical simulations at the B-1 drill hole in the Fuda Coal Mine. Predictive results for the entire Fuda Coal Mine area indicate that as the No. 15 coal seam extends northwestward, the height of the fractured water-conducting zone increases from 52.1 m to 73.9 m. These findings have significant implications for improving mine safety and preventing geological hazards in coal mining operations. Full article
Show Figures

Figure 1

15 pages, 6887 KiB  
Article
SCA Fracturing Mechanisms of Rock Mass and Application in Overhanging Roof Structure Fragmentation of Mine Goaf
by Hui Li, Ruifu Yuan, Penghui Zai, Qunlei Zhang and Chun Feng
Processes 2025, 13(5), 1275; https://doi.org/10.3390/pr13051275 - 22 Apr 2025
Viewed by 349
Abstract
During coal resource mining, hard roof mining is prone to causing rock-burst disasters because traditional blasting–cutting roof technology has the disadvantages of low efficiency and high cost. This article studies the theoretical basis and engineering application of fracturing technology with a static expansion [...] Read more.
During coal resource mining, hard roof mining is prone to causing rock-burst disasters because traditional blasting–cutting roof technology has the disadvantages of low efficiency and high cost. This article studies the theoretical basis and engineering application of fracturing technology with a static expansion agent (SCA). The influences of borehole diameter and spacing on the fracturing effect of a rock mass are studied through theoretical analysis and simulation. Rock mass models of a cantilever beam for a single rock layer and multiple layers were established, and the mechanical properties of the roof strata under three working conditions were analyzed. The research results show that the maximum annular stress value occurs along the drill hole wall between the adjacent drill holes, and the annular stress at the center line between two drill holes is the smallest. As the spacing between the holes increases, the annular stress at the center line decreases; however, the annular stress at the center of the drill line becomes larger with the increase in hole diameter. The degree of stress concentration increases sharply with the decrease in distance f from the borehole center to the free surface. Relative to the cantilever beam model of a single rock layer, the combined rock layers can effectively control the displacement and deformation of the cantilever roof. Based on the above research results, a drilling method with a 75 mm diameter and a 10° inclination angle is used, demonstrating that the suspended roof area can be reduced to below 20 m2 using the fracturing technology with a static expansion agent, allowing the roof strata to fall simultaneously during mining. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

19 pages, 4272 KiB  
Article
A Hybrid Model for Designers to Learn from Failures: A Case of a High Potential Fire Incident at an Underground Hard Rock Mine
by Tafadzwa Gotora and Ashraf Wasfi Labib
Appl. Sci. 2025, 15(8), 4577; https://doi.org/10.3390/app15084577 - 21 Apr 2025
Viewed by 430
Abstract
Mining companies are increasingly being motivated to become High Reliability Organisations (HROs) in order to achieve better results in critical areas such as safety, environment management, and loss avoidance despite their complex environments. High Reliability Organisations are recognised by their abilities to effectively [...] Read more.
Mining companies are increasingly being motivated to become High Reliability Organisations (HROs) in order to achieve better results in critical areas such as safety, environment management, and loss avoidance despite their complex environments. High Reliability Organisations are recognised by their abilities to effectively anticipate failures and disasters, including use of lessons learnt from previous failures. This paper seeks to demonstrate how designers for systems in the mining industry can learn from failures to anticipate failures and effectively manage them. It also demonstrates the applicability of a hybrid model which incorporates and integrates Fault Tree Analysis (FTA), Reliability Block Diagram (RBD) analysis, Risk Priority Number (RPN) concepts, and Analytical Hierarchy Processes (AHPs) in a case study for a High Potential Incident (HPI) at an underground hard rock mine. It shows how valuable lessons can be extracted and how these lessons can be used in decision making to prevent and manage future failures. The main contribution of this work is the demonstration of incorporating HRO principles with a hybrid modelling framework for learning from failures. Full article
Show Figures

Figure 1

21 pages, 5345 KiB  
Article
Modeling and Analysis of a Cutting Robot for the “Excavation–Backfill–Retention” Integrated Mining and Excavation Equipment
by Hongwei Ma, Wenda Cui, Chuanwei Wang, Xusheng Xue, Qinghua Mao, Haotian Wang, Limeng Xue, Hao Su, Zukun Yu, Jiashuai Cheng, Yifeng Guo and Kexiang Ma
Actuators 2025, 14(4), 175; https://doi.org/10.3390/act14040175 - 3 Apr 2025
Viewed by 508
Abstract
To meet the mining requirements of the ’excavation–backfill–retention’ tunneling method for inter-panel coal pillars, this paper proposes an integrated ‘excavation–backfill–retention’ equipment system centered on a cutting robot. An interactive design method was employed to analyze the interaction between mining conditions and the cutting [...] Read more.
To meet the mining requirements of the ’excavation–backfill–retention’ tunneling method for inter-panel coal pillars, this paper proposes an integrated ‘excavation–backfill–retention’ equipment system centered on a cutting robot. An interactive design method was employed to analyze the interaction between mining conditions and the cutting robot, constructing a ’requirements–functions–structure’ model. The robot integrates a horizontal drum cutting mechanism with a slider shoe walking mechanism, offering enhanced adaptability to various mining conditions. A parameter model was constructed to explore the relationship between the cutting arm length and the robot’s structural parameters under varying mining heights. Using a hierarchical solution method that combines local search and multi−objective genetic algorithms, the robot’s fundamental parameters were determined, enabling the development of a detailed 3D model. A kinematic model based on the modified D–H method was developed to analyze the cutting arm’s swing angle, cylinder extension, propulsion velocity, and cutting velocity in practical mining scenarios. The working range of the height adjustment and feed cylinders at different mining heights was determined through simulation. A dynamics model of the cutting drum was developed, and a coupled simulation using the discrete element method (DEM) was conducted to analyze the relationship between coal/rock hardness, drum load, and cutting depth. The simulation results indicate that as the cutting depth raises the number of cutting teeth in contact with surrounding rock, the cutting depth grows, resulting in a larger reaction force from the coal seam and greater fluctuations in drum load torque. Once the maximum cutting depth is reached, load torque stabilizes within a specific range. Considering cutting efficiency, the robot achieves a maximum cutting velocity of 1 m/min with a cutting depth of 250 mm for rock strength greater than f3. For rock strength f3, the maximum cutting velocity is 1 m/min with a 400 mm depth, and for f2, it is 2 m/min with a 400 mm depth. These findings provide a theoretical foundation for the development of adaptive cutting strategies in mining operations, contributing to improved performance and efficiency in complex mining conditions. Full article
(This article belongs to the Section Actuators for Robotics)
Show Figures

Figure 1

33 pages, 12750 KiB  
Article
Experimental Study on Fiber Optic Strain Characterization of Overlying Rock Layer Movement Forms and States Using DFOS
by Tao Hu, Fengjun Wei, Jintao Wang, Yan Wang, Chunhua Song, Kuiliang Han and Kaiqiang Han
Photonics 2025, 12(4), 321; https://doi.org/10.3390/photonics12040321 - 30 Mar 2025
Viewed by 482
Abstract
Mastering the movement laws of hard overlying rock layers is the foundation of the development of coal mining technology and plays an important role in improving coal mine safety production. Therefore, an indoor similar simulation experiment was conducted based on an actual coal [...] Read more.
Mastering the movement laws of hard overlying rock layers is the foundation of the development of coal mining technology and plays an important role in improving coal mine safety production. Therefore, an indoor similar simulation experiment was conducted based on an actual coal mining face to test the strain variations of the pre-embedded optical fibers in the model using distributed fiber optic sensing. Finally, the fiber optic strain distribution curve was used to characterize the movement form and state of the overlying rock layer and fractured rock blocks. The experimental results showed the following. (1) The strain distribution of horizontally laid optical fibers is characterized by an upward trapezoidal convex platform, reflecting the evolution law of various horizontal movement forms of overlying rock layers: voussoir beam → cantilever beam → reverse cantilever beam → voussoir beam. The strain curve of vertically laid optical fibers is characterized by two levels of right-handed trapezoidal protrusions above and below, representing the motion state of the upper voussoir beam–lower cantilever beam structure of the overburden. (2) In addition, as excavation progresses, the range and height of the failure deformation of the overlying rock layers develop in a stepped shape. (3) In the end, the final vertical development heights of the cantilever beam structure and the voussoir beam structure in the overburden were 90.27 m and 24.99 m, respectively. The experimental results are highly consistent with the UDEC numerical simulation and mandatory calculation formulas, thus verifying the feasibility of the experiment. These research results provide theoretical and experimental support for safe coal mining in practical working faces. Full article
Show Figures

Figure 1

23 pages, 17695 KiB  
Article
Exploring Pore Structure Features, Crack Propagation and Failure Behavior of Fiber Reinforced Foam Tail Fill by CT Imaging and 3D Reconstruction
by Tingting Jiang, Shuai Cao and Erol Yilmaz
Minerals 2025, 15(4), 354; https://doi.org/10.3390/min15040354 - 28 Mar 2025
Cited by 1 | Viewed by 555
Abstract
Fiber-reinforced foam tail fill (FRFTF) has been widely investigated in the field of foamed backfill because of its high strength and toughness. However, the fiber enhancement and damage mechanism of FRFTF still need to be further explored. The pore crack growth and particle [...] Read more.
Fiber-reinforced foam tail fill (FRFTF) has been widely investigated in the field of foamed backfill because of its high strength and toughness. However, the fiber enhancement and damage mechanism of FRFTF still need to be further explored. The pore crack growth and particle structure distribution features of three kinds of basalt (B), polypropylene (PP), and glass (G) fibers on FRFTF were explored. The porosity, fracture, sphericity, and fractal dimension of FRFTF were quantitatively probed by X-ray micro-computed tomography combined with uniaxial compression (UCS) and SEM, while the spatial distribution of porosity and fracture of FRFTF was analyzed by 3D reconstruction technology. Laboratory findings demonstrate that the porosity of glass fiber increases from 1.46% to 4.74% with the increase of fiber content from 0.3% to 0.9%. This is related to the weak adhesion between the backfill and the fiber. Adding fiber and blowing agents could well enhance the pore distribution and morphology of FRFTF, reduce the number of principal cracks trapped within backfill specimens, and maintain the structure’s integrity. The relationship between FRFTF’s UCS value and porosity/fracture is closely related to the nature and quantity of fibers, and the overall performance of glass fiber is the best among others. As the quality of glass fiber shifts from 0.3% to 0.9%, the fill specimen’s UCS value is adversely correlated with the porosity. In the current study, the internal connection and damage mechanism of FRFTFs are studied microscopically. The combination of macro-mechanical strength and microscopic mechanism provides a new research idea for FRFTF materials during the implementation of the fully mechanized mining technology in hard rock mines. Full article
(This article belongs to the Special Issue Cemented Mine Waste Backfill: Experiment and Modelling: 2nd Edition)
Show Figures

Figure 1

20 pages, 15866 KiB  
Article
The Effect of Initiation Time Delay and Sequencing on Rock Damage in Multi-Hole Blasting
by Magreth Sungwa Dotto and Yashar Pourrahimian
Mining 2025, 5(2), 22; https://doi.org/10.3390/mining5020022 - 24 Mar 2025
Viewed by 737
Abstract
Rock fracturing by blasting is the most common and efficient method of rock fragmentation in mining operations. The fragmentation size affects the productivity and costs of downstream operations and is influenced by the rock mass and blast design encountered. The encountered rock mass [...] Read more.
Rock fracturing by blasting is the most common and efficient method of rock fragmentation in mining operations. The fragmentation size affects the productivity and costs of downstream operations and is influenced by the rock mass and blast design encountered. The encountered rock mass is the unmodifiable parameter in blasting. Therefore, blasting improvements can be achieved through blast design, which includes explosive selection, geometrical design, and initiation sequencing and delays. Stress wave interactions between blastholes can improve or diminish fracturing. The analysis conducted in this study through numerical modelling indicates an improvement in blast outcomes with appropriate delay and sequencing in some cases. The optimum delay ensures the formation of fractures on the succeeding blasthole and constructive interactions with the stress wave from the preceding blasthole, increasing the stress pulse and fracturing. While it is insignificant in intact rock blasting, the firing sequence is vital when blasting through the contacts of soft and hard rocks or joints, depending on the infill material. Sequential initiation and the firing direction do not improve fracturing in all cases; for example, when blasting through an empty joint, the joint acts as a free face with minimum to no interaction of the stress wave from adjacent charges. In such cases, simultaneous initiation can be used with caution based on the intensity of induced vibrations. Full article
Show Figures

Figure 1

24 pages, 16405 KiB  
Article
Control Mechanism of Earthquake Disasters Induced by Hard–Thick Roofs’ Breakage via Ground Hydraulic Fracturing Technology
by Feilong Guo, Mingxian Peng, Xiangbin Meng, Yang Tai and Bin Yu
Processes 2025, 13(3), 919; https://doi.org/10.3390/pr13030919 - 20 Mar 2025
Cited by 1 | Viewed by 408
Abstract
To investigate the mechanism of ground hydraulic fracturing technology in preventing mine earthquakes induced by hard–thick roof (HTR) breakage in coal mines, this study established a Timoshenko beam model on a Winkler foundation incorporating the elastoplasticity and strain-softening behavior of coal–rock masses. The [...] Read more.
To investigate the mechanism of ground hydraulic fracturing technology in preventing mine earthquakes induced by hard–thick roof (HTR) breakage in coal mines, this study established a Timoshenko beam model on a Winkler foundation incorporating the elastoplasticity and strain-softening behavior of coal–rock masses. The following conclusions were drawn: (1) The periodic breaking step distance of a 15.8 m thick HTR on the 61,304 Workface of Tangjiahui coal mine was calculated as 23 m, with an impact load of 15,308 kN on the hydraulic support, differing from measured data by 4.5% and 4.8%, respectively. (2) During periodic breakage, both the bending moment and elastic deformation energy density of the HTR exhibit a unimodal distribution, peaking 1.0–6.5 m ahead of cantilever endpoint O, while their zero points are 40–41 m ahead, defining the breaking position and advanced influence area. (3) The PBSD has a cubic relationship with the peak values of bending moment and elastic deformation energy density, and the exponential relationship with the impact load on the hydraulic support is FZJ=5185.2e0.00431Lp. (4) Theoretical and measured comparisons indicate that reducing PBSD is an effective way to control impact load. The hard–thick roof ground hydraulic fracturing technology (HTRGFT) weakens HTR strength, shortens PBSD, effectively controls impact load, and helps prevent mine earthquakes. Full article
Show Figures

Figure 1

Back to TopTop