Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (579)

Search Parameters:
Keywords = gum production

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 666 KiB  
Article
Optimization of the Viability of Microencapsulated Lactobacillus reuteri in Gellan Gum-Based Composites Using a Box–Behnken Design
by Rafael González-Cuello, Joaquín Hernández-Fernández and Rodrigo Ortega-Toro
J. Compos. Sci. 2025, 9(8), 419; https://doi.org/10.3390/jcs9080419 - 5 Aug 2025
Abstract
The growing interest in probiotic bacteria within the food industry is driven by their recognized health benefits for consumers. However, preserving their therapeutic viability and stability during gastrointestinal transit remains a formidable challenge. Hence, this research aimed to enhance the viability of Lactobacillus [...] Read more.
The growing interest in probiotic bacteria within the food industry is driven by their recognized health benefits for consumers. However, preserving their therapeutic viability and stability during gastrointestinal transit remains a formidable challenge. Hence, this research aimed to enhance the viability of Lactobacillus reuteri through microencapsulation using a binary polysaccharide mixture composed of low acyl gellan gum (LAG), high acyl gellan gum (HAG), and calcium for the microencapsulation of L. reuteri. To achieve this, the Box–Behnken design was applied, targeting the optimization of L. reuteri microencapsulated to withstand simulated gastrointestinal conditions. The microcapsules were crafted using the internal ionic gelation method, and optimization was performed using response surface methodology (RSM) based on the Box–Behnken design. The model demonstrated robust predictive power, with R2 values exceeding 95% and a lack of fit greater than p > 0.05. Under optimized conditions—0.88% (w/v) LAG, 0.43% (w/v) HAG, and 24.44 mM Ca—L. reuteri reached a viability of 97.43% following the encapsulation process. After 4 h of exposure to simulated gastric fluid (SGF) and intestinal fluid (SIF), the encapsulated cells maintained a viable count of 8.02 log CFU/mL. These promising results underscore the potential of biopolymer-based microcapsules, such as those containing LAG and HAG, as an innovative approach for safeguarding probiotics during gastrointestinal passage, paving the way for new probiotic-enriched food products. Full article
Show Figures

Figure 1

13 pages, 1859 KiB  
Article
Suspension Fertilizers Based on Waste Organic Matter from Peanut Oil Extraction By-Products
by Sainan Xiang, Baoshen Li and Yang Lyu
Agronomy 2025, 15(8), 1885; https://doi.org/10.3390/agronomy15081885 - 5 Aug 2025
Viewed by 157
Abstract
The use of chemical fertilizers has significantly increased crop yields but has also led to soil problems such as nutrient imbalance and salinization. In response, organic fertilizers have emerged as a crucial component for sustainable agricultural development. This study was designed to develop [...] Read more.
The use of chemical fertilizers has significantly increased crop yields but has also led to soil problems such as nutrient imbalance and salinization. In response, organic fertilizers have emerged as a crucial component for sustainable agricultural development. This study was designed to develop an easily applicable organic suspension fertilizer using peanut bran, the primary by-product of peanut oil extraction, as the main raw material. Fourier-transform infrared (FTIR) analysis revealed that 80 °C is the optimal heating temperature for forming a stable peanut-bran suspension. A comprehensive experimental investigation was conducted to evaluate the effects of different peanut bran addition levels, stabilizers, emulsifiers, and suspending agents on the stability of suspension fertilizers. The results identified the optimal suspension fertilizer formulation as comprising 20% peanut bran, 0.5% sodium bentonite, 0.1% monoglyceride, 0.2% sucrose ester, 0.02% carrageenan, and 0.3% xanthan gum. This formulation ensures good stability and fluidity of the suspension fertilizer while maintaining a low cost of 0.134 USD·kg−1. The findings provide a scalable technological framework for valorizing agro-industrial waste into high-performance organic fertilizers. Full article
Show Figures

Figure 1

16 pages, 4017 KiB  
Article
Recyclable Platinum Nanocatalyst for Nitroarene Hydrogenation: Gum Acacia Polymer-Stabilized Pt Nanoparticles with TiO2 Support
by Supriya Prakash, Selvakumar Ponnusamy, Jagadeeswari Rangaraman, Kundana Nakkala and Putrakumar Balla
ChemEngineering 2025, 9(4), 81; https://doi.org/10.3390/chemengineering9040081 - 30 Jul 2025
Viewed by 166
Abstract
Platinum has emerged as an optimal catalyst for the selective hydrogenation of nitroarenes owing to its high hydrogenation activity, selectivity, and stability. In this study, we report the fabrication of platinum nanoparticles stabilized on a composite support consisting of gum acacia polymer (GAP) [...] Read more.
Platinum has emerged as an optimal catalyst for the selective hydrogenation of nitroarenes owing to its high hydrogenation activity, selectivity, and stability. In this study, we report the fabrication of platinum nanoparticles stabilized on a composite support consisting of gum acacia polymer (GAP) and TiO2. It was engineered for the targeted reduction of nitroarenes to arylamines via selective hydrogenation in methanol at ambient temperature. The non-toxic and biocompatible properties of GAP enable it to act as a reducing and stabilizing agent during synthesis. The synthesized nanocatalyst was characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Morphological and structural analyses revealed that the fabricated catalyst consisted of minuscule Pt nanoparticles integrated within the GAP framework, accompanied by the corresponding TiO2 nanoparticles. Inductively coupled plasma optical emission spectrometry (ICP-OES) was employed to ascertain the Pt content. The mild reaction conditions, decent yields, trouble-free workup, and facile separation of the catalyst make this method a clean and practical alternative to nitroreduction. Selective hydrogenation yielded an average arylamine production of 97.6% over five consecutive cycles, demonstrating the stability of the nanocatalyst without detectable leaching. Full article
Show Figures

Figure 1

17 pages, 1884 KiB  
Article
Modification of Spanish Mackerel (Scomberomorus niphonius) Surimi Gels by Three Anionic Polysaccharides
by Zhu-Jun Zhang, Fan-Yu Kong, Lin-Da Zhang, Miao-Miao Luo, Yin-Yin Lv, Ce Wang, Bin Lai, Li-Chao Zhang, Jia-Nan Yan and Hai-Tao Wu
Foods 2025, 14(15), 2671; https://doi.org/10.3390/foods14152671 - 29 Jul 2025
Viewed by 252
Abstract
This study investigated the gel performance of Spanish mackerel surimi gels (SMSGs) modified by three anionic polysaccharides: κ-carrageenan (KC), ι-carrageenan (IC), and gellan gum (GG). By incorporating polysaccharides, SMSGs showed a 24.9–103.4% improvement in gel and textural properties, in which KC and IC [...] Read more.
This study investigated the gel performance of Spanish mackerel surimi gels (SMSGs) modified by three anionic polysaccharides: κ-carrageenan (KC), ι-carrageenan (IC), and gellan gum (GG). By incorporating polysaccharides, SMSGs showed a 24.9–103.4% improvement in gel and textural properties, in which KC and IC had more improvement effects than GG. Moreover, polysaccharides led to a 10.7–13.1% increment in WHC, a shortened water migration from 61.34 to 52.43–55.93 ms in T22, and enhanced thermal stability of SMSGs. The content of α-helix in SMSGs reduced markedly accompanied by a concurrent enhancement of β-sheet and β-turn by adding polysaccharides, where β-sheet and β-turn are positively correlated with hardness being favorable for gelling. The microstructure of SMSGs/polysaccharides showed a homogeneous network mainly due to hydrophobic interactions and disulfide bonds in SMSG-based gels. This study will demonstrate the effectiveness of KC, IC, and GG in improving the texture and functionality as well as expanding the application of surimi products. Full article
(This article belongs to the Special Issue Applications of Hydrocolloids for Food Product Development)
Show Figures

Figure 1

27 pages, 940 KiB  
Review
Characteristics of Food Industry Wastewaters and Their Potential Application in Biotechnological Production
by Ivana Nikolić, Kosta Mijić and Ivana Mitrović
Processes 2025, 13(8), 2401; https://doi.org/10.3390/pr13082401 - 28 Jul 2025
Viewed by 633
Abstract
The food industry consumes large amounts of water across various processes, and generates wastewater characterized by parameters like biochemical oxygen demand, chemical oxygen demand, pH, suspended solids, and nutrients. To meet environmental standards and enable reuse or valorization, treatment methods such as physicochemical, [...] Read more.
The food industry consumes large amounts of water across various processes, and generates wastewater characterized by parameters like biochemical oxygen demand, chemical oxygen demand, pH, suspended solids, and nutrients. To meet environmental standards and enable reuse or valorization, treatment methods such as physicochemical, biological, and membrane-based processes are applied. This review focuses on the valorization of food industry wastewater in the biotechnological production of high-value products, with an emphasis on starch-rich wastewater, wineries and confectionery industry wastewater, and with a focus on new technologies for reduces environmental burden but also supports circular economy principles. Starch-rich wastewaters, particularly those generated by the potato processing industry, offer considerable potential for biotechnological valorization due to their high content of soluble starch, proteins, organic acids, minerals, and lipids. These effluents can be efficiently converted by various fungi (e.g., Aspergillus, Trichoderma) and yeasts (e.g., Rhodotorula, Candida) into value-added products such as lipids for biodiesel, organic acids, microbial proteins, carotenoids, and biofungicides. Similarly, winery wastewaters, characterized by elevated concentrations of sugars and polyphenols, have been successfully utilized as medium for microbial cultivation and product synthesis. Microorganisms belonging to the genera Aspergillus, Trichoderma, Chlorella, Klebsiella, and Xanthomonas have demonstrated the ability to transform these effluents into biofuels, microbial biomass, biopolymers, and proteins, contributing to sustainable bioprocess development. Additionally, wastewater from the confectionery industry, rich in sugars, proteins, and lipids, serves as a favorable fermentation medium for the production of xanthan gum, bioethanol, biopesticides, and bioplastics (e.g., PHA and PHB). Microorganisms of the genera Xanthomonas, Bacillus, Zymomonas, and Cupriavidus are commonly employed in these processes. Although there are still certain regulatory issues, research gaps, and the need for more detailed economic analysis and kinetics of such production, we can conclude that this type of biotechnological production on waste streams has great potential, contributing to environmental sustainability and advancing the principles of the circular economy. Full article
(This article belongs to the Special Issue 1st SUSTENS Meeting: Advances in Sustainable Engineering Systems)
Show Figures

Figure 1

13 pages, 1220 KiB  
Article
Uncertainty Evaluation of Two-Dimensional Horizontal Distributed Photometric Sensor Based on MCM for Illuminance Measurement Task
by Jianguo Sun, Yueyao Wang, Yinbao Cheng, Guanghu Zhu, Jianwen Shao and Yuebing Sha
Sensors 2025, 25(15), 4648; https://doi.org/10.3390/s25154648 - 27 Jul 2025
Viewed by 228
Abstract
In response to the demand for precise measurement of illuminance distribution in the quality control of LED monitoring fill light products and the iterative direction of secondary optical design, distributed photometric sensors have shown advantages, but their measurement uncertainty assessment faces challenges. This [...] Read more.
In response to the demand for precise measurement of illuminance distribution in the quality control of LED monitoring fill light products and the iterative direction of secondary optical design, distributed photometric sensors have shown advantages, but their measurement uncertainty assessment faces challenges. This paper addresses the problem of uncertainty evaluation in photometric parameter measurement with a two-dimensional horizontal distributed photometric sensor and proposes an uncertainty evaluation framework for this task. We have established an uncertainty analysis model for the measurement system and provided two uncertainty synthesis methods, The Guide to the Expression of Uncertainty in Measurement and the Monte Carlo method. This study designed illuminance measurement experiments to validate the feasibility of the proposed uncertainty evaluation method. The results demonstrate that the actual probability distribution of the measurement data follows a trapezoidal distribution. Furthermore, the expanded uncertainty calculated using the GUM method was 21.1% higher than that obtained by the MCM. This work effectively addresses the uncertainty evaluation challenge for illuminance measurement tasks using a two-dimensional horizontal distributed photometric sensor. The findings offer valuable reference for the uncertainty assessment of other high-precision optical instruments and possess significant engineering value in enhancing the reliability of optical metrology systems. Full article
(This article belongs to the Special Issue Optical Sensors for Industrial Applications)
Show Figures

Figure 1

19 pages, 3238 KiB  
Article
Influences of pH on Gelling and Digestion–Fermentation Properties of Fish Gelatin–Polysaccharide Hydrogels
by Wanyi Sun, Qiuyu Lu, Jiajing Chen, Xinxin Fan, Shengnan Zhan, Wenge Yang, Tao Huang and Fulai Li
Foods 2025, 14(15), 2631; https://doi.org/10.3390/foods14152631 - 26 Jul 2025
Viewed by 495
Abstract
This study systematically evaluated the effects of pH (4–10) on the gelation properties, structural characteristics, and in vitro digestion–fermentation behavior of fish gelatin (FG, 6% (w/v)) hydrogels combined with either xanthan gum (XG, 0.07% (w/v)) [...] Read more.
This study systematically evaluated the effects of pH (4–10) on the gelation properties, structural characteristics, and in vitro digestion–fermentation behavior of fish gelatin (FG, 6% (w/v)) hydrogels combined with either xanthan gum (XG, 0.07% (w/v)) or κ-carrageenan (κC, 0.07% (w/v)). The results revealed that the gel strength, hardness, and chewiness of the composite gels initially increased (pH 4–6) and subsequently decreased with rising pH levels. This trend correlated with the formation of a dense gel network structure. Furthermore, as pH increased, in vitro digestibility showed a similar pH-dependent trend, with FG–XG demonstrating superior enhancement compared to FG–κC. The addition of XG and κC resulted in increased gas production and a decreased pH during fermentation. Intestinal microbiota analysis revealed that both FG–XG and FG–κC improved the abundances of Proteobacteria and Bacteroidete while reducing Firmicutes. Compared to FG–XG and FG, FG–κC promoted higher levels of the genera Lachnospiraceae and Bacteroides, suggesting a more favorable impact on intestinal health. These findings provide valuable insights into the pH-responsive functional properties of FG-based hydrogels and their potential applications in designing novel food matrices with enhanced nutritional and probiotic attributes. Full article
Show Figures

Figure 1

14 pages, 4268 KiB  
Article
Experimental Investigation into the Mechanisms of Liquid-Phase Damage in Shale Oil Reservoirs: A Case Study from the Leijia Area
by Tuan Gu, Chenglong Ma, Yugang Li, Feng Zhao, Xiaoxiang Wang and Jinze Xu
Energies 2025, 18(15), 3990; https://doi.org/10.3390/en18153990 - 25 Jul 2025
Viewed by 215
Abstract
The fourth member of the Shahejie Formation in the Leijia area of the western depression of the Liaohe Oilfield represents a typical shale oil reservoir. However, post-hydraulic fracturing operations in this region are often hindered by significant discrepancies in well productivity, low fracturing [...] Read more.
The fourth member of the Shahejie Formation in the Leijia area of the western depression of the Liaohe Oilfield represents a typical shale oil reservoir. However, post-hydraulic fracturing operations in this region are often hindered by significant discrepancies in well productivity, low fracturing fluid flowback efficiency, and an unclear understanding of reservoir damage mechanisms during fracturing. These challenges have become major bottlenecks restricting the efficient exploration and development of shale oil in this block. In this study, a series of laboratory-simulated experiments were conducted to investigate the primary mechanisms of formation damage induced by fracturing fluids in shale oil reservoirs. An experimental methodology for evaluating reservoir damage caused by fracturing fluids was developed accordingly. Results indicate that guar gum-based fracturing fluids exhibit good compatibility with formation-sensitive minerals, resulting in relatively minor damage. In contrast, capillary trapping of the aqueous phase leads to moderate damage, while polymer adsorption and retention cause low to moderate impairment. The damage associated with fracturing fluid invasion into fractures is found to be moderately high. Overall, the dominant damage mechanisms of guar gum fracturing fluids in the Shahejie Member 4 shale oil reservoir are identified as aqueous phase trapping and polymer adsorption. Based on the identified damage mechanisms, corresponding optimization strategies for fracturing fluid formulations are proposed. The findings of this research provide critical insights for improving shale oil development strategies in the Leijia area. Full article
(This article belongs to the Special Issue Enhanced Oil Recovery: Numerical Simulation and Deep Machine Learning)
Show Figures

Figure 1

21 pages, 4565 KiB  
Article
Experimental Study of Two-Bite Test Parameters for Effective Drug Release from Chewing Gum Using a Novel Bio-Engineered Testbed
by Kazem Alemzadeh and Joseph Alemzadeh
Biomedicines 2025, 13(8), 1811; https://doi.org/10.3390/biomedicines13081811 - 24 Jul 2025
Viewed by 428
Abstract
Background: A critical review of the literature demonstrates that masticatory apparatus with an artificial oral environment is of interest in the fields including (i) dental science; (ii) food science; (iii) the pharmaceutical industries for drug release. However, apparatus that closely mimics human [...] Read more.
Background: A critical review of the literature demonstrates that masticatory apparatus with an artificial oral environment is of interest in the fields including (i) dental science; (ii) food science; (iii) the pharmaceutical industries for drug release. However, apparatus that closely mimics human chewing and oral conditions has yet to be realised. This study investigates the vital role of dental morphology and form–function connections using two-bite test parameters for effective drug release from medicated chewing gum (MCG) and compares them to human chewing efficiency with the aid of a humanoid chewing robot and a bionics product lifecycle management (PLM) framework with built-in reverse biomimetics—both developed by the first author. Methods: A novel, bio-engineered two-bite testbed is created for two testing machines with compression and torsion capabilities to conduct two-bite tests for evaluating the mechanical properties of MCGs. Results: Experimental studies are conducted to investigate the relationship between biting force and crushing/shearing and understand chewing efficiency and effective mastication. This is with respect to mechanochemistry and power stroke for disrupting mechanical bonds releasing the active pharmaceutical ingredients (APIs) of MCGs. The manuscript discusses the effect and the critical role that jaw physiology, dental morphology, the Bennett angle of mandible (BA) and the Frankfort-mandibular plane angle (FMA) on two-bite test parameters when FMA = 0, 25 or 29.1 and BA = 0 or 8. Conclusions: The impact on other scientific fields is also explored. Full article
Show Figures

Graphical abstract

17 pages, 1522 KiB  
Article
Investigating the Microstructural and Textural Properties of Cookies Using Plant-Based Bigel as an Alternative to Commercial Solid Fat
by Ingrid Contardo, Sonia Millao, Eduardo Morales, Mónica Rubilar and Marcela Quilaqueo
Gels 2025, 11(8), 571; https://doi.org/10.3390/gels11080571 - 23 Jul 2025
Viewed by 309
Abstract
In response to the growing demand for improving the nutritional profile of widely consumed products, such as cookies, there has been an increasing interest in fat replacers that preserve sensory attributes and have a more positive health effect. Among the novel fat replacement [...] Read more.
In response to the growing demand for improving the nutritional profile of widely consumed products, such as cookies, there has been an increasing interest in fat replacers that preserve sensory attributes and have a more positive health effect. Among the novel fat replacement strategies, the incorporation of bigels into food formulations has been studied; however, the impact of Arabic gum hydrogel-based bigels on microstructural properties and their correlation with the texture and quality of bakery products remains underexplored. In this study, cookies were formulated using a plant-based bigel (canola oil-carnauba wax oleogel mixed with Arabic gum hydrogel) as a fat substitute, and their microstructural, textural, and quality parameters were compared with those of commercial butter-based cookies. Compared to butter (firmness of 29,102 g, spreadability of 59,624 g∙s, and adhesiveness of 2282 g), bigel exhibited a softer (firmness of 576 g), more spreadable (spreadability of 457 g∙s), and less adhesive texture (adhesiveness of 136 g), while its rheological properties showed similar behavior but at a lower magnitude. Bigel exhibited high thermal stability and good elastic and thixotropic behaviors, indicating reversible structural breakdown and recovery. Cookies prepared with bigels instead of butter exhibited a similar proximate composition, with a slight increase in lipid content (11.7%). The physical dimensions and density were similar across the formulations. However, the microstructural analysis revealed differences when bigels were incorporated into cookies, reducing porosity (55%) and increasing the mean pore size (1781 µm); in contrast, mean wall thickness remained unaffected. Despite these structural modifications, the potential of bigels as viable and nutritionally enhanced substitutes for conventional fats in bakery products was demonstrated. Full article
(This article belongs to the Special Issue Food Gels: Structure and Function)
Show Figures

Graphical abstract

13 pages, 939 KiB  
Article
Composite Coating Enriched with Lemon Peel Extract for Enhancing the Postharvest Quality of Cherry Tomatoes
by Rafael González-Cuello, Joaquín Hernández-Fernández and Rodrigo Ortega-Toro
Coatings 2025, 15(7), 810; https://doi.org/10.3390/coatings15070810 - 10 Jul 2025
Viewed by 309
Abstract
The present study investigated the efficacy of edible coatings formulated with gellan gum and lemon peel extract (LPE) in preserving the postharvest quality of cherry tomatoes (Solanum lycopersicum var. cerasiforme). Selected fruits exhibiting uniform ripeness and free from defects were sanitized [...] Read more.
The present study investigated the efficacy of edible coatings formulated with gellan gum and lemon peel extract (LPE) in preserving the postharvest quality of cherry tomatoes (Solanum lycopersicum var. cerasiforme). Selected fruits exhibiting uniform ripeness and free from defects were sanitized and coated with solutions containing different HAG/LAG (high- and low-acyl gellan gum) ratios, incorporating 4.0% (w/v) LPE. Physicochemical and physiological parameters, including soluble solids content, weight loss, pH, titratable acidity, oxygen consumption, carbon dioxide and ethylene production, skin redness (a*/b* ratio), and decay incidence, were systematically assessed under storage conditions of 25 °C and 70% relative humidity. HAG-coated fruits showed the lowest weight loss (1.08%), higher soluble solids (7.11 °Brix), and greater firmness (3.11 N/mm2) compared to uncoated controls. Moreover, they exhibited reduced oxygen consumption (0.06 mg·kg−1·h−1), ethylene production (3.10 mg·kg−1·h−1), and decay rate (2%). Redness was better preserved, and decay rates were substantially (p < 0.05) reduced throughout the storage period. These findings highlight the potential of HAG-based edible coatings enriched with LPE as an innovative postharvest technology to extend shelf life, maintain quality attributes, and reduce postharvest losses in cherry tomatoes. Full article
(This article belongs to the Section Coatings for Food Technology and System)
Show Figures

Figure 1

21 pages, 4681 KiB  
Article
Spray-Dried Polymeric Microspheres for Lipophilic Drugs: Formulation Design, Physicochemical Characterization, and In Vitro Release Evaluation
by Felipe Nataren-Rodríguez, Jorge Pacheco-Molina, Sandra Leticia Gracia-Vásquez, Isaías Balderas-Rentería, Mónica A. Ramírez-Cabrera, Eder Arredondo-Espinoza, Karla J. Santamaría and Patricia González-Barranco
Pharmaceuticals 2025, 18(7), 1020; https://doi.org/10.3390/ph18071020 - 9 Jul 2025
Viewed by 834
Abstract
Background/Objectives: The formulation of microspheres for lipophilic drugs using aqueous methods, such as spray drying, faces significant challenges. The main objective of this study was to evaluate the effect of the process parameters and polymer selection on the production of microspheres by [...] Read more.
Background/Objectives: The formulation of microspheres for lipophilic drugs using aqueous methods, such as spray drying, faces significant challenges. The main objective of this study was to evaluate the effect of the process parameters and polymer selection on the production of microspheres by spray drying for a lipophilic drug. Methods: Lipophilic drug-loaded microspheres were developed using various polymers via the aqueous spray drying method. The effects of the factors on the yield percentage and encapsulation efficiency were analyzed. Microspheres preparation included Agave inulin, guar gum, hydroxypropyl methylcellulose, and Eudragit® S100. A 23 factorial design was performed, and the parameters were optimized. Results: Inlet temperature, feed flow, and polymer percentage showed a significant effect (p < 0.05) on the yield percentage of guar gum microspheres and encapsulation efficiency of the inulin microspheres. Inulin and guar gum microspheres showed the best yield percentage (75.41%) and encapsulation efficiency (100%), respectively. In addition, guar gum microspheres had the best morphology, and hydroxypropyl methylcellulose microspheres were smaller and had an irregular surface. Eudragit did not maintain its delayed release property due to limitations of the aqueous method; inulin released the drug immediately, and guar gum and hydroxypropyl methylcellulose microspheres prolonged release only by a few additional hours. Conclusions: The experimental design showed that optimizing the parameters (inlet temperature, feed flow, and the type and percentage of polymer) can regulate the microsphere development process to obtain improved product yield and encapsulation efficiency results. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Graphical abstract

24 pages, 3329 KiB  
Article
Heat-Sealing Process for Chañar Brea Gum Films
by María Fernanda Torres, Federico Becerra, Mauricio Filippa, Gisela Melo and Martin Masuelli
Processes 2025, 13(7), 2189; https://doi.org/10.3390/pr13072189 - 9 Jul 2025
Viewed by 351
Abstract
This work presents a comprehensive evaluation of the heat-sealability of films developed from chañar brea gum (CBG), a biopolymer with potential for packaging applications. Heat sealability is a critical property in the packaging industry, as it directly determines the integrity and functionality of [...] Read more.
This work presents a comprehensive evaluation of the heat-sealability of films developed from chañar brea gum (CBG), a biopolymer with potential for packaging applications. Heat sealability is a critical property in the packaging industry, as it directly determines the integrity and functionality of the final product. The films were prepared by the 10% casting method with the addition of glycerin, and heat sealing was performed at 140 °C using a heat sealer. Heat sealing was performed on 2 cm × 10 cm strips of chañar gum in the horizontal (CBG-H) and vertical (CBG-V) directions. This study employs a joint determination to explore the fundamental properties of the films, including proximate analysis, antioxidant capacity, FTIR, DSC, TGA-DTGA, XRD, mechanical testing, water vapor permeability, sorption, and biodegradability. By integrating the results of all these determinations, this study seeks to evaluate and explain the “intimate relationships”—i.e., the complex interconnections among the molecular structure, composition, thermal behavior, mechanical properties, and barrier properties of channier gum films—and how these fundamental properties dictate and control their heat sealability. The thermal stability of CBG is up to 200 °C, with a melting point of 152.48 °C. The interstrand spacing was very similar at 4.88 nm for CBG and 4.66 nm for CBG-H. The SEM images of the heat seal show rounded shapes on the surface, while in the cross section, it is homogeneous and almost without gaps. The WVP decreased from 1.7 to 0.37 for CBG and CBG-H, respectively. The Young’s modulus decreased from 132 MPa for CBG to 96.5 MPa for CBG-H. The heat sealability is 656 N/m, with a biodegradability of 4 days. This comprehensive approach is crucial for optimizing the sealing process and designing functional and efficient biodegradable packages. Full article
Show Figures

Figure 1

15 pages, 1696 KiB  
Article
Techno-Functional Properties of Mexican Cheese Whey Requesón Powder: Effects of Air-Convective Drying and Natural Gum Addition
by Miguel A. Mazorra-Manzano, Angelica Martínez-García, María J. Torres-Llanez, Juan C. Ramírez-Suárez, Yolanda L. López-Franco, Francisco Brown-Bojórquez, José G. Teutle-Paredes and María E. Lugo-Sánchez
Dairy 2025, 6(4), 32; https://doi.org/10.3390/dairy6040032 - 29 Jun 2025
Viewed by 376
Abstract
Requesón, a Mexican whey cheese, has a short shelf life due to its high moisture content, near-neutral pH, and the limited preservation infrastructure of the artisanal cheese sector. Therefore, the development of requesón powder provides an innovative pathway to enhance market potential and [...] Read more.
Requesón, a Mexican whey cheese, has a short shelf life due to its high moisture content, near-neutral pH, and the limited preservation infrastructure of the artisanal cheese sector. Therefore, the development of requesón powder provides an innovative pathway to enhance market potential and expand its applications. This study aimed to evaluate the techno-functional properties of requesón powder produced through air-convective drying and to assess the protective effects of two natural gums, mesquite gum and guar gum, at concentrations of 0.25 and 0.5 g/L. Thermal dehydration significantly affected (p < 0.05) water holding capacity, swelling capacity, and hardness of the reconstituted powder. Although gum addition did not significantly enhance water holding capacity, it moderately improved texture and led to notable increases in swelling capacity (21–34%) and emulsifying capacity (11–20%) at high concentrations (p < 0.05). Structural analyses using X-ray diffraction and electron microscopy revealed that thermal dehydration induced protein aggregation and reduced microporosity, impairing rehydration performance compared to requesón powder obtained by lyophilization. These findings suggest that requesón powder production is a promising strategy for valorizing whey and extending the applications of this traditional cheese as a functional food ingredient. Full article
(This article belongs to the Section Milk Processing)
Show Figures

Figure 1

23 pages, 1247 KiB  
Review
Spray-Drying Microencapsulation of Natural Bioactives: Advances in Sustainable Wall Materials
by Lauryna Pudžiuvelytė, Eglė Petrauskaitė, Jolita Stabrauskienė and Jurga Bernatonienė
Pharmaceuticals 2025, 18(7), 963; https://doi.org/10.3390/ph18070963 - 26 Jun 2025
Viewed by 807
Abstract
Background/Objectives: In recent years, increasing attention has been paid to the stabilization of natural biologically active compounds in order to expand their application in the food, pharmaceutical, and cosmetic industries. Such compounds, such as polyphenols, essential fatty acids, or vitamins, are extremely [...] Read more.
Background/Objectives: In recent years, increasing attention has been paid to the stabilization of natural biologically active compounds in order to expand their application in the food, pharmaceutical, and cosmetic industries. Such compounds, such as polyphenols, essential fatty acids, or vitamins, are extremely sensitive to environmental factors. This study aims to review the spray-drying-based microencapsulation technology and its application for stabilizing sensitive biologically active substances. Methods: This article systematically analyzes the main steps of the spray-drying microencapsulation process and discusses traditional and innovative wall materials, including natural polymers (polysaccharides and proteins), as well as new raw material sources (e.g., yeast cells, canola and pea protein isolates, and hemicelluloses). It also examines the potential of these systems for the stimulated release of active ingredients. Results: This review provides a comprehensive overview of the main stages of the spray-drying process and critically examines both conventional (e.g., maltodextrin and gum Arabic) and innovative wall materials (e.g., plant-based proteins and food industry by-products). Studies show that using different wall materials can achieve high encapsulation efficiency, improve the stability of biologically active substances, and control their release. Various compounds have been successfully microencapsulated—polyphenols, essential oils, carotenoids, fatty acids, and vitamins—protecting them from oxidation, light, and temperature. The review identifies key factors that can enhance product quality, increase encapsulation yield, and reduce processing costs and energy input—offering meaningful insights for optimizing the microencapsulation process. Conclusions: Spray-drying-based microencapsulation is an advanced technology that effectively protects sensitive active ingredients and allows for wider industrial food, pharmaceutical, and cosmetic applications. In the future, more attention is expected to be paid to personalized formulations, stimulated release systems, and sustainable wall materials from by-products. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Figure 1

Back to TopTop