Investigating the Microstructural and Textural Properties of Cookies Using Plant-Based Bigel as an Alternative to Commercial Solid Fat
Abstract
1. Introduction
2. Results and Discussion
2.1. Characterization of the Bigel and Commercial Butter
2.2. Quality Characteristics of Cookies
2.2.1. Composition and Amino Acid Profile
2.2.2. Physical Dimensions and Density
2.2.3. Color
2.3. Effect of the Bigel on the Microstructural Properties of Cookies
2.4. Texture Analysis of the Cookies
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Bigel Preparation
4.3. Texture and Rheology of Fat Matters
4.4. Fourier-Transform Infrared (FTIR)
4.5. Cookie Preparation
4.6. Nutritional Characterization of Cookies: Proximate Analysis and Amino Acid Profile
4.7. Cookie Texture
4.8. Expansion and Geometry of Cookies
4.9. Color and Density of Cookies
4.10. X-Ray Microcomputed Tomography (Micro-CT) of Cookies
4.11. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gutiérrez-Luna, K.; Astiasaran, I.; Ansorena, D. Fat Reduced Cookies Using an Olive Oil-Alginate Gelled Emulsion: Sensory Properties, Storage Stability and in Vitro Digestion. Food Res. Int. 2023, 167, 112714. [Google Scholar] [CrossRef]
- Sree Nivetha, B.B.; Saravanan, M.; Thomas, P.E.; Vijayaraj, P.; Prabhasankar, P. Development of Chitosan Based Oleogel Using Emulsion Template Approach: Characterization and Application as Fat-Replacer in Cookies. Int. J. Biol. Macromol. 2025, 292, 139130. [Google Scholar] [CrossRef] [PubMed]
- Karimidastjerd, A.; Cetinkaya, T.; Tarahi, M.; Singh, L.; Konar, N.; Khiabani, A.H.; Toker, O.S. Novel Approaches in Food Grade Bigels Properties and Applications: A Review. Int. J. Biol. Macromol. 2024, 283, 137424. [Google Scholar] [CrossRef] [PubMed]
- Morales, E.; Iturra, N.; Contardo, I.; Quilaqueo, M.; Franco, D.; Rubilar, M. Fat Replacers Based on Oleogelation of Beeswax/Shellac Wax and Healthy Vegetable Oils. LWT-Food Sci. Technol. 2023, 185, 115144. [Google Scholar] [CrossRef]
- Zhou, Y.; Chang, Y.; You, J.; Li, S.; Zhuang, W.; Cao, C. Cold-pressed Canola Oil Reduces Hepatic Steatosis by Modulating Oxidative Stress and Lipid Metabolism in KM Mice Compared with Refined Bleached Deodorized Canola Oil. J. Food Sci. 2019, 84, 1900–1908. [Google Scholar] [CrossRef] [PubMed]
- Ghazani, S.M.; García-Llatas, G.; Marangoni, A.G. Micronutrient Content of Cold-pressed, Hot-pressed, Solvent Extracted and RBD Canola Oil: Implications for Nutrition and Quality. Eur. J. Lipid Sci. Technol. 2014, 116, 380–387. [Google Scholar] [CrossRef]
- Sinha, S.S.; Upadhyay, A.; Singh, A.; Mishra, S.; Pandey, N. Bigels a Versatile Gel Composite for Tailored Application in Food Industries: A Review. Food Struct. 2024, 41, 100380. [Google Scholar] [CrossRef]
- Quilaqueo, M.; Iturra, N.; Contardo, I.; Millao, S.; Morales, E.; Rubilar, M. Food-Grade Bigels with Potential to Replace Saturated and Trans Fats in Cookies. Gels 2022, 8, 445. [Google Scholar] [CrossRef]
- Leahu, A.; Ghinea, C.; Ropciuc, S.; Damian, C. Textural, Color, and Sensory Analysis of Cookies Prepared with Hemp Oil-Based Oleogels. Gels 2025, 11, 46. [Google Scholar] [CrossRef]
- Thakur, D.; Singh, A.; Prabhakar, P.K.; Meghwal, M.; Upadhyay, A. Optimization and Characterization of Soybean Oil-Carnauba Wax Oleogel. LWT-Food Sci. Technol. 2022, 157, 113108. [Google Scholar] [CrossRef]
- Tanislav, A.E.; Șandru, B.; Man, S.M.; Pușcaș, A.; Mureșan, A.E.; Păucean, A.; Mureșan, V.; Mudura, E. Investigating the Complete Replacement of Conventional Fat with Oleogel on the Structural Behavior of Five Different Pastry Products. Eur. Food Res. Technol. 2024, 250, 1933–1947. [Google Scholar] [CrossRef]
- Kan, X.; Zhang, S.; Kwok, E.; Chu, Y.; Chen, L.; Zeng, X. Granular Hydrogels with Tunable Properties Prepared from Gum Arabic and Protein Microgels. Int. J. Biol. Macromol. 2024, 273, 132878. [Google Scholar] [CrossRef] [PubMed]
- Quilaqueo, M.; Millao, S.; Morales, E.; Rubilar, M.; Contardo, I. Evaluation of Mixing Temperature in the Preparation of Plant-Based Bigels. Gels 2024, 10, 725. [Google Scholar] [CrossRef] [PubMed]
- Pădureţ, S. The Effect of Fat Content and Fatty Acids Composition on Color and Textural Properties of Butter. Molecules 2021, 26, 4565. [Google Scholar] [CrossRef]
- Lin, X.; Liu, F.; Ma, Z.; Li, X.; Li, Y. Investigating the Impact of Beeswax Addition and Diacylglycerol Profiles on Bigel Properties and Application in Bread: Insights on Intermolecular Interaction Mechanisms. Food Hydrocoll. 2025, 160, 110838. [Google Scholar] [CrossRef]
- Steinkellner, C.; Kroll, L.; Franke, K. Bigels Containing Different Wax-Based Oleogels as Laminating Fat Replacers in Croissants. Curr. Res. Food Sci. 2025, 10, 101042. [Google Scholar] [CrossRef]
- Contreras, M.P.; Avula, R.Y.; Singh, R.K. Evaluation of Nano Zinc (ZnO) for Surface Enhancement of ATR–FTIR Spectra of Butter and Spread. Food Bioprocess Technol. 2010, 3, 629–635. [Google Scholar] [CrossRef]
- Akram, U.; Sahar, A.; Sameen, A.; Muhammad, N.; Ahmad, M.H.; Khan, M.I.; Usman, M.; Rahman, H.U.U. Use of Fourier Transform Infrared Spectroscopy and Multi-Variant Analysis for Detection of Butter Adulteration with Vegetable Oil. Int. J. Food Prop. 2023, 26, 167–178. [Google Scholar] [CrossRef]
- Ariza-Ortega, J.A.; Ramos-Cassellis, M.E.; Vargas Bello Pérez, E.; Betanzos Cabrera, G.; Molina Trinidad, E.M.; Alanís García, E.; Suárez Diéguez, T.; Díaz-Reyes, J. Lipid Authentication of Butter and Margarine Using Fourier Transform Infrared Spectroscopy (FTIR). Meas. Food 2023, 11, 100095. [Google Scholar] [CrossRef]
- Mashodi, N.; Rahim, N.Y.; Muhammad, N.; Asman, S. Evaluation of Extra Virgin Olive Oil Adulteration with Edible Oils Using ATR-FTIR Spectroscopy. Malays. J. Appl. Sci. 2020, 5, 35–44. [Google Scholar] [CrossRef]
- Naderi, B.; Keramat, J.; Nasirpour, A.; Aminifar, M. Complex Coacervation between Oak Protein Isolate and Gum Arabic: Optimization & Functional Characterization. Int. J. Food Prop. 2020, 23, 1854–1873. [Google Scholar] [CrossRef]
- Oliveira, T.A.D.; Mota, I.D.O.; Carvalho, L.H.D.; Barbosa, R.; Alves, T.S. Influence of Carnauba Wax on Films of Poly (Butylene Adipate Co-Terephthalate) and Sugarcane Residue for Application in Soil Cover (Mulching). Mater. Res. 2019, 22, e20190040. [Google Scholar] [CrossRef]
- Kausar, T.; Hussain, A.; Ainee, A.; Firdous, N.; Ahmed, A.; Arshad, R.; Ali, S.; Hussain, A.; Sajid, A.; Majeed, M.; et al. A Sustainable Approach to Utilize Sunflower Seed Powder as a Fat Replacer in Cookies; Effects on Physicochemical, Phytochemical, and Sensory Properties. Discov. Sustain. 2025, 6, 493. [Google Scholar] [CrossRef]
- Saboo, B.; Singh, R.; Bhardwaj, K.; Maheshwari, A.; Verma, N.; Vargova, V.; Pella, D. Fats and Oils for Health Promotion and Disease Prevention. In The Role of Functional Food Security in Global Health; Academic Press: Cambridge, MA, USA, 2019; ISBN 978-0-12-813148-0. [Google Scholar]
- Chaisawang, M.; Sripywan, A. A Comparative Study of a Reduced-Fat Butter Cookie Containing Different Hydrocolloid Types on Physical Properties and Sensory Evaluation. Burapha Sci. J. 2019, 25, 285–300. [Google Scholar]
- Mudgil, D.; Barak, S.; Khatkar, B.S. Cookie Texture, Spread Ratio and Sensory Acceptability of Cookies as a Function of Soluble Dietary Fiber, Baking Time and Different Water Levels. LWT-Food Sci. Technol. 2017, 80, 537–542. [Google Scholar] [CrossRef]
- Shahzad, S.A.; Hussain, S.; Mohamed, A.A.; Alamri, M.S.; Qasem, A.A.A.; Ibraheem, M.A.; Almaiman, S.A.M.; El-Din, M.F.S. Gluten-Free Cookies from Sorghum and Turkish Beans; Effect of Some Non-Conventional and Commercial Hydrocolloids on Their Technological and Sensory Attributes. Food Sci. Technol. 2021, 41, 15–24. [Google Scholar] [CrossRef]
- Onacik-Gür, S.; Żbikowska, A. Effect of High-Oleic Rapeseed Oil Oleogels on the Quality of Short-Dough Biscuits and Fat Migration. J. Food Sci. Technol. 2020, 57, 1609–1618. [Google Scholar] [CrossRef]
- Melo, B.G.D.; Tagliapietra, B.L.; Clerici, M.T.P.S. Evolution of the Technological, Sensory, and Nutritional Quality of Gluten-Free Cookies: A Critical Review. Food Sci. Technol. 2023, 43. [Google Scholar] [CrossRef]
- Martins, S.I.F.S.; Jongen, W.M.F.; Van Boekel, M.A.J.S. A Review of Maillard Reaction in Food and Implications to Kinetic Modelling. Trends Food Sci. Technol. 2000, 11, 364–373. [Google Scholar] [CrossRef]
- Li, S.; Zhu, L.; Li, X.; Wu, G.; Liu, T.; Qi, X.; Wuang, X.; Zhang, H. Determination of Characteristic Evaluation Indexes for Novel Cookies Prepared with Wax Oleogels. J. Sci. Food Agric. 2022, 102, 5544–5553. [Google Scholar] [CrossRef]
- Pareyt, B.; Talhaoui, F.; Kerckhofs, G.; Brijs, K.; Goesaert, H.; Wevers, M.; Delcour, J.A. The Role of Sugar and Fat in Sugar-Snap Cookies: Structural and Textural Properties. J. Food Eng. 2009, 90, 400–408. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Y.; Wang, W.; Li, Y. Advanced Properties of Gluten-Free Cookies, Cakes, and Crackers: A Review. Trends Food Sci. Technol. 2020, 103, 200–213. [Google Scholar] [CrossRef]
- Giarnetti, M.; Paradiso, V.M.; Caponio, F.; Summo, C.; Pasqualone, A. Fat Replacement in Shortbread Cookies Using an Emulsion Filled Gel Based on Inulin and Extra Virgin Olive Oil. LWT-Food Sci. Technol. 2015, 63, 339–345. [Google Scholar] [CrossRef]
- Nutter, J.; Shi, X.; Lamsal, B.; Acevedo, N.C. Plant-Based Bigels as a Novel Alternative to Commercial Solid Fats in Short Dough Products: Textural and Structural Properties of Short Dough and Shortbread. Food Biosci. 2023, 54, 102865. [Google Scholar] [CrossRef]
- Kouhsari, F.; Saberi, F.; Kowalczewski, P.Ł.; Lorenzo, J.M.; Kieliszek, M. Effect of the Various Fats on the Structural Characteristics of the Hard Dough Biscuit. LWT-Food Sci. Technol. 2022, 159, 113227. [Google Scholar] [CrossRef]
- Martínez-Velasco, A.; Trujillo-Ramírez, D.; Bustos-Vázquez, G.; Cervantes-Arista, C. The Use of Candelilla Wax/Canola Oil Oleogel in the Formulation of Sponge Cake Bread Improves Morphostructural and Sensory Properties. Discov. Food 2024, 4, 160. [Google Scholar] [CrossRef]
- Demirkesen, I.; Mert, B. Recent Developments of Oleogel Utilizations in Bakery Products. Crit. Rev. Food Sci. Nutr. 2020, 60, 2460–2479. [Google Scholar] [CrossRef] [PubMed]
- Malvano, F.; Laudisio, M.; Albanese, D.; d’Amore, M.; Marra, F. Olive Oil-Based Oleogel as Fat Replacer in a Sponge Cake: A Comparative Study and Optimization. Foods 2022, 11, 2643. [Google Scholar] [CrossRef] [PubMed]
- Francavilla, A.; Corradini, M.G.; Joye, I.J. Bigels as Delivery Systems: Potential Uses and Applicability in Food. Gels 2023, 9, 648. [Google Scholar] [CrossRef] [PubMed]
- Hitlamani, V.; Hemraj, T.M.; Inamdar, A.A. Optimizing Fatty Acid Composition in Cookie Formulation Using Vegetable Oil Blends: Impacts on Dough Rheology, Physical Properties, and Sensory Qualities. J. Food Meas. Charact. 2025, 19, 2461–2475. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of the Association of AOAC International 2019; AOAC International: Rockville, MD, USA, 2019. [Google Scholar]
- Contardo, I.; Guzmán, F.; Enrione, J. Conformational and Structural Changes in Chickpea Proteins Caused by Simulated Salivary Alterations in the Elderly. Foods 2023, 12, 3668. [Google Scholar] [CrossRef]
- Rubilar, M.; Morales, E.; Contreras, K.; Ceballos, C.; Acevedo, F.; Villarroel, M.; Shene, C. Development of a Soup Powder Enriched with Microencapsulated Linseed Oil as a Source of Omega-3 Fatty Acids. Eur. J. Lipid Sci. Technol. 2012, 114, 423–433. [Google Scholar] [CrossRef]
- Chen, C.; Espinal-Ruiz, M.; Francavilla, A.; Joye, I.J.; Corradini, M.G. Morphological Changes and Color Development during Cookie Baking—Kinetic, Heat, and Mass Transfer Considerations. J. Food Sci. 2024, 89, 4331–4344. [Google Scholar] [CrossRef]
- Contardo, I.; James, B.; Bouchon, P. Microstructural Characterization of Vacuum-Fried Matrices and Their Influence on Starch Digestion. Food Struct. 2020, 25, 100146. [Google Scholar] [CrossRef]
Sample | Firmness (g) | Spreadability (g·s) | Adhesiveness (g) |
---|---|---|---|
Butter | 29,102 ± 387 b | 59,624 ± 2314 b | 2282 ± 273 b |
Bigel | 576 ± 116 a | 457 ± 105 a | 136 ± 25 a |
Sample | ||
---|---|---|
Bigel | Butter | |
Proximatecomposition | ||
Moisture | 5.7 ± 0.03 a | 5.7 ± 0.03 a |
Proteins | 7.0 ± 0.02 a | 7.2 ± 0.03 a |
Lipids | 25.7 ± 0.08 b | 23.0 ± 0.16 a |
Ashes | 0.3 ± 0.01 a | 0.5 ± 0.00 b |
Non-nitrogenous extract | 61.3 ± 0.04 a | 63.6 ± 0.16 b |
Calories (Kcal) | 504.5 ± 0.5 | 490.1 ± 0.2 |
Amino acid composition (mg/100 g) | ||
Aspartic acid | 316.4 ± 1.3 a | 296.5 ± 24.9 a |
Glutamic acid | 2075.0 ± 53.3 a | 2179.0 ± 38.8 a |
Serine | 259.1 ± 1.7 a | 326.2 ± 17.0 b |
Glycine | 208.5 ± 2.7 a | 225.9 ± 12.0 a |
Histidine | 105.6 ± 5.3 a | 102.1 ± 16.8 a |
Arginine | 118.6 ± 7.3 a | 127.1 ± 25.0 a |
Threonine | 131.8 ± 4.2 a | 150.3 ± 13.1 a |
Alanine | 203.0 ± 6.6 a | 210.8 ± 15.6 a |
Proline | 549.7 ± 14.7 a | 574.8 ± 33.9 a |
Tyrosine | 20.1 ± 2.4 a | 89.8 ± 13.4 b |
Valine | 222.6 ± 9.2 a | 237.7 ± 12.4 a |
Methionine | 37.9 ± 3.0 a | 40.5 ± 2.1 a |
Cysteine | 16.5 ± 0.6 a | 23.0 ± 1.7 b |
Isoleucine | 218.5 ± 4.0 a | 230.8 ± 0.4 a |
Leucine | 379.5 ± 6.4 a | 392.3 ± 2.9 a |
Phenylalanine | 241.8 ± 6.4 a | 241.1 ± 9.5 a |
Lysine | 143.7 ± 0.6 b | 130.3 ± 3.1 a |
Sample | ||
---|---|---|
Bigel | Butter | |
Expansion | ||
Width (cm) | 4.23 ± 0.12 a | 4.18 ± 0.17 a |
Thickness (cm) | 0.71 ± 0.04 a | 0.77 ± 0.09 a |
W/T ratio | 5.95 ± 0.43 a | 5.54 ± 0.71 a |
Density | 1.34 ± 0.00 a | 1.37 ± 0.00 b |
Browning index | ||
Top | 53.42 ± 2.31 b | 41.88 ± 0.94 a |
Bottom | 55.27 ± 2.94 b | 47.91 ± 3.75 a |
Texture | ||
Hardness (g) | 1680 ± 300 a | 2350 ± 492 b |
Fracturability (mm) | 0.70 ± 0.07 a | 0.85 ± 0.14 b |
Microstructure | ||
Porosity (%) | 55 ± 3 a | 61 ± 1 b |
Mean pore size (µm) | 1781 ± 15 b | 1051 ± 72 a |
Mean wall thickness (µm) | 254 ± 19 a | 244 ± 15 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Contardo, I.; Millao, S.; Morales, E.; Rubilar, M.; Quilaqueo, M. Investigating the Microstructural and Textural Properties of Cookies Using Plant-Based Bigel as an Alternative to Commercial Solid Fat. Gels 2025, 11, 571. https://doi.org/10.3390/gels11080571
Contardo I, Millao S, Morales E, Rubilar M, Quilaqueo M. Investigating the Microstructural and Textural Properties of Cookies Using Plant-Based Bigel as an Alternative to Commercial Solid Fat. Gels. 2025; 11(8):571. https://doi.org/10.3390/gels11080571
Chicago/Turabian StyleContardo, Ingrid, Sonia Millao, Eduardo Morales, Mónica Rubilar, and Marcela Quilaqueo. 2025. "Investigating the Microstructural and Textural Properties of Cookies Using Plant-Based Bigel as an Alternative to Commercial Solid Fat" Gels 11, no. 8: 571. https://doi.org/10.3390/gels11080571
APA StyleContardo, I., Millao, S., Morales, E., Rubilar, M., & Quilaqueo, M. (2025). Investigating the Microstructural and Textural Properties of Cookies Using Plant-Based Bigel as an Alternative to Commercial Solid Fat. Gels, 11(8), 571. https://doi.org/10.3390/gels11080571