Optimization of the Viability of Microencapsulated Lactobacillus reuteri in Gellan Gum-Based Composites Using a Box–Behnken Design
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of the Probiotic Cells
2.2. Microencapsulation of Lactobacillus reuteri
2.2.1. Dispersion Preparation
2.2.2. Emulsion Preparation
2.3. Microencapsulation Efficiency of Microencapsulated Lactobacillus reuteri
2.4. Sizing of Microcapsules by Light Microscopy
2.5. Optimization of Microcapsules’ Wall Material Through Box–Behnken Experimental Design
2.6. Statistical Analysis
2.7. Simulated Gastrointestinal Digestion In Vitro
3. Results and Discussion
3.1. Microcapsules’ Size
3.2. Optimization of the Lactobacillus reuteri Microencapsulation
3.3. Response Surface Plots
3.4. Viability of Lactobacillus reuteri in Simulated Gastric Juice
3.5. Viability of Lactobacillus reuteri in Simulated Intestinal Juice
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO/WHO. Guidelines for the Evaluation of Probiotics in Food; Food and Agriculture Organization of the United Nations/World Health Organization: London, UK, 2002. [Google Scholar]
- Goderska, K.; Agudo Pena, S. An in vitro gastrointestinal model to evaluate the tolerance of encapsulated Lactobacillus and Lactococcus strains with synbiotic containing lactobionic acid via lyophilization technique to harsh gastric conditions during storage time. Eur. J. Pharm. Biopharm. 2024, 197, 114147. [Google Scholar] [CrossRef]
- Axelsson, L.T. Lactic acid bacteria: Classification and physiology. In Lactic Acid Bacteria; Salminen, S., von Wright, A., Eds.; Marcel Dekker Inc.: New York, NY, USA; Basel, Switzerland, 1993; pp. 1–64. [Google Scholar]
- Schell, D.; Beermann, C. Fluidized Bed Microencapsulation of Lactobacillus reuteri with Sweet Whey and Shellac for Improved Acid Resistance and In Vitro Gastrointestinal Survival. Food Res. Int. 2014, 62, 308–314. [Google Scholar] [CrossRef]
- Ortiz-Rivera, Y.; Sánchez-Vega, R.; Gutiérrez-Méndez, N.; León-Félix, J.; Acosta-Muñiz, C.; Sepulveda, D. Production of reuterin in a fermented milk product by Lactobacillus reuteri: Inhibition of pathogens, spoilage microorganisms, and lactic acid bacteria. J. Dairy Sci. 2017, 100, 4258–4268. [Google Scholar] [CrossRef]
- Zhou, X.X.; Pan, Y.J.; Wang, Y.B.; Li, W.F. In vitro assessment of gastrointestinal viability of two photosynthetic bacteria, Rhodopseudomonas palustris and Rhodobacter sphaeroides. J. Zhejiang Univ.-Sci. B 2007, 8, 686–692. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Mascaraque, L.G.; Cruz Morfin, R.; Pérez-Masiá, R.; Sanchez, G.; Lopez-Rubio, A. Optimization of Electrospraying Conditions for the Microencapsulation of Probiotics and Evaluation of Their Resistance During Storage and In-Vitro Digestion. LWT—Food Sci. Technol. 2016, 69, 438–446. [Google Scholar] [CrossRef]
- Lotfipour, F.; Mirzaeei, S.; Maghsoodi, M. Preparation and characterization of alginate and psyllium beads containing Lactobacillus acidophilus. Sci. World J. 2012, 2012, 680108. [Google Scholar] [CrossRef] [PubMed]
- Del Piano, M.; Carmagnola, S.; Andorno, S.; Pagliarulo, M.; Tari, R.; Mogna, L.; Strozzi, G.P.; Sforza, F.; Capurso, L. Evaluation of the intestinal colonization by microencapsulated probiotic bacteria in comparison with the same uncoated strains. J. Clin. Gastroenterol. 2010, 44, S42–S46. [Google Scholar] [CrossRef] [PubMed]
- Piątek, J.; Gibas-Dorna, M.; Olejnik, A.; Krauss, A.; Wierzbicki, K.; Żukiewicz-Sobczak, W.; Głowacki, M. The viability and intestinal epithelial cell adhesion of probiotic strain combination: In vitro study. Ann. Agric. Environ. Med. 2012, 19, 99–102. [Google Scholar] [PubMed]
- Kailasapathy, K.; Chin, J. Survival and therapeutic potential of probiotic organisms with reference to Lactobacillus acidophilus and Bifidobacterium spp. Immunol. Cell Biol. 2000, 78, 80–88. [Google Scholar] [CrossRef]
- González Cuello, R.E.; Perez Mendoza, J.; Moron Alcazar, L.B. Efecto de la Microencapsulación sobre la Viabilidad de Lactobacillus delbrueckii sometido a Jugos Gástricos Simulados. Inf. Tecnol. 2015, 26, 11–16. [Google Scholar] [CrossRef]
- Vivek, K.; Mishra, S.; Pradhan, R.C.; Nagarajan, M.; Kumar, P.K.; Singh, S.S.; Manvi, D.; Gowda, N.N. A comprehensive review on microencapsulation of probiotics: Technology, carriers and current trends. Appl. Food Res. 2023, 3, 100248. [Google Scholar] [CrossRef]
- Canga, E.M.; Dudak, F.C. Improved digestive stability of probiotics encapsulated within poly (vinyl alcohol)/cellulose acetate hybrid fibers. Carbohydr. Polym. 2021, 264, 117990. [Google Scholar] [CrossRef] [PubMed]
- Mohammadalinejhad, S.; Almonaitytė, A.; Jensen, I.-J.; Kurek, M.; Lerfall, J. Alginate microbeads incorporated with anthocyanins from purple corn (Zea mays L.) using electrostatic extrusion: Microencapsulation optimization, characterization, and stability studies. Int. J. Biol. Macromol. 2023, 246, 125684. [Google Scholar] [CrossRef] [PubMed]
- González-Cuello, R.; Hernández-Fernández, J.; Ortega-Toro, R. Response surface methodology-based optimization for enhancing the viability of microencapsulated Lactobacillus plantarum in composite materials. J. Compos. Sci. 2025, 9, 189. [Google Scholar] [CrossRef]
- González, R.E.; Salazar, J.A.; Pérez, J.A. Obtaining Size-Controlled Microcapsules by Ionic Gelation with High and Low Acyl Gellans Containing Lactococcus lactis. Rev. Colomb. Biotecnol. 2013, 15, 70. [Google Scholar] [CrossRef]
- Thinkohkaew, K.; Jonjaroen, V.; Niamsiri, N.; Panya, A.; Suppavorasatit, I.; Potiyaraj, P. Microencapsulation of Probiotics in Chitosan-Coated Alginate/Gellan Gum: Optimization for Viability and Stability Enhancement. Food Hydrocoll. 2024, 151, 109788. [Google Scholar] [CrossRef]
- Rosas-Flores, W.; Ramos-Ramírez, E.G.; Salazar-Montoya, J.A. Microencapsulation of Lactobacillus helveticus and Lactobacillus delbrueckii Using Alginate and Gellan Gum. Carbohydr. Polym. 2013, 98, 1011–1017. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, K.; Ma, X.; Zhang, Y.; Wu, X.; Ma, L.; Zou, L.; Liu, W. Lactobacillus plantarum P9 Encapsulated in Gelatin/Gellan Gum Microcapsules with Lipid Filling and Ca2⁺ Crosslinking: Enhancing Digestive Vitality and Storage Stability. Food Biosci. 2025, 106671, in press. [Google Scholar] [CrossRef]
- Rojas-Espina, D.; Urriola-Urriola, N.; Cañas-Sarazúa, R.; Briones-Labarca, V. Optimizing the viability of microencapsulated Lactiplantibacillus plantarum using response surface methodology for dietary probiotic delivery. Future Foods 2024, 9, 100329. [Google Scholar] [CrossRef]
- Li, W.; Zhao, Y.; Li, S.; Yun, L.; Wu, T.; Zhang, M. Improving the Physical Stability of Lactobacillus plantarum LP90 During Storage by Mixing Carboxymethylated Dextran-Whey Protein Conjugates and Small-Molecule Sugars. Food Res. Int. 2025, 203, 115834. [Google Scholar] [CrossRef]
- Arepally, D.; Reddy, R.S.; Goswami, T.K.; Coorey, R. A Review on Probiotic Microencapsulation and Recent Advances of Their Application in Bakery Products. Food Bioproc. Technol. 2022, 15, 1677–1699. [Google Scholar] [CrossRef]
- Zarali, M.; Sadeghi, A.; Jafari, S.M.; Ebrahimi, M.; Mahoonak, A.S. Enhanced Viability and Improved In Situ Antibacterial Activity of the Probiotic LAB Microencapsulated Layer-by-Layer in Alginate Beads Coated with Nisin. Food Biosci. 2023, 53, 102593. [Google Scholar] [CrossRef]
- Kailasapathy, K. Survival of Free and Encapsulated Probiotic Bacteria and Effect on the Sensory Properties of Yoghurt. LWT—Food Sci. Technol. 2006, 39, 1221–1227. [Google Scholar] [CrossRef]
- Truelstrup Hansen, L.; Jin, Y.L.; Allan-Wojtas, P.M.; Paulson, A.T. Survival of Ca-Alginate Microencapsulated Bifidobacterium spp. in Milk and Simulated Gastrointestinal Conditions. Food Microbiol. 2002, 19, 35–45. [Google Scholar] [CrossRef]
- Burgain, J.; Gaiani, C.; Linder, M.; Scher, J. Encapsulation of Probiotic Living Cells: From Laboratory Scale to Industrial Applications. J. Food Eng. 2011, 104, 467–483. [Google Scholar] [CrossRef]
- Aureli, P.; Capurso, L.; Castellazzi, A.; Clerici, M.; Giovannini, M.; Morelli, L.; Poli, A.; Pregliasco, F.; Salvini, F.; Zuccotti, G. Probiotics and Health: An Evidence-Based Review. Pharmacol. Res. 2011, 63, 366–376. [Google Scholar] [CrossRef] [PubMed]
- Salminen, S.; Kenifel, W.; Ouwehand, A. Probiotics, Applications in Dairy Products. In Encyclopedia of Dairy Sciences; Fuquay, J.W., Fox, P.F., McSweeney, P.L.H., Eds.; Academic Press: San Diego, CA, USA, 2011. [Google Scholar]
- Graff, S.; Hussain, S.; Chaumeil, J.C.; Charrueau, C. Increased Intestinal Delivery of Viable Saccharomyces boulardii by Encapsulation in Microspheres. Pharm. Res. 2007, 25, 1290–1296. [Google Scholar] [CrossRef] [PubMed]
- Vodnar, D.C.; Socaciu, C. Selenium Enriched Green Tea Increases Stability of Lactobacillus casei and Lactobacillus plantarum in Chitosan-Coated Alginate Microcapsules during Exposure to Simulated Gastrointestinal and Refrigerated Conditions. LWT—Food Sci. Technol. 2014, 57, 406–411. [Google Scholar] [CrossRef]
- Corbo, M.R.; Bevilacqua, A.; Sinigaglia, M. Shelf Life of Alginate Beads Containing Lactobacilli and Bifidobacteria: Characterisation of Microspheres Containing Lactobacillus delbruekii subsp. bulgaricus. Int. J. Food Sci. Technol. 2011, 46, 2212–2217. [Google Scholar] [CrossRef]
- Kumar, A.; Prasad, B.; Mishra, I.M. Process Parametric Study for Ethene Carboxylic Acid Removal onto Powder Activated Carbon Using Box–Behnken Design. Chem. Eng. Technol. 2007, 30, 932–937. [Google Scholar] [CrossRef]
- Montgomery, D.C. Introduction to Statistical Quality Control, 6th ed.; Wiley: New York, NY, USA, 2010. [Google Scholar]
- Körbahti, B.K. Response Surface Optimization of Electrochemical Treatment of Textile Dye Wastewater. J. Hazard. Mater. 2007, 145, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Rifa’i Muhaimin, M.F.; Atho’illah, S.N.; Arifah, A.R.; Suharto, A.R.; Fadhilla, A.N.; Sa’adah, N.A.M.; Ardiansyah, E.; Izati, R.; Al Faizah, B.N.; Fadlilah, D.N.; et al. Physicochemical and Functional Optimization of Probiotic Yogurt with Encapsulated Lacticaseibacillus paracasei E1 Enriched with Green Tea Using Box–Behnken Design. Appl. Food Res. 2025, 5, 100690. [Google Scholar] [CrossRef]
- Moorthy, I.G.; Maran, J.P.; Surya, S.M.; Naganyashree, S.; Shivamathi, C.S. Response Surface Optimization of Ultrasound Assisted Extraction of Pectin from Pomegranate Peel. Int. J. Biol. Macromol. 2015, 72, 1323–1328. [Google Scholar] [CrossRef]
- González, R.; Ramos, G.; Cruz, A.; Salazar, A. Rheological Characterization and Activation Energy Values of Binary Mixtures of Gellan. Eur. Food Res. Technol. 2012, 234, 305–313. [Google Scholar] [CrossRef]
- Henseler, J.; Sarstedt, M. Goodness-of-Fit Indices for Partial Least Squares Path Modeling. Comput. Stat. 2013, 28, 565–580. [Google Scholar] [CrossRef]
- Li, J.; Wu, Y.; He, J.; Huang, Y. A New Insight to the Effect of Calcium Concentration on Gelation Process and Physical Properties of Alginate Films. J. Mater. Sci. 2016, 51, 5791–5801. [Google Scholar] [CrossRef]
- Anani, J.; Noby, H.; Zkria, A.; Yoshitake, T.; ElKady, M. Monothetic Analysis and Response Surface Methodology Optimization of Calcium Alginate Microcapsules Characteristics. Polymers 2022, 14, 709. [Google Scholar] [CrossRef] [PubMed]
- Lai, P.Y.; How, Y.H.; Pui, L.P. Microencapsulation of Bifidobacterium lactis Bi-07 with Galactooligosaccharides Using Co-Extrusion Technique. J. Microbiol. Biotechnol. Food Sci. 2022, 11, e2416. [Google Scholar] [CrossRef]
- Yuan, Y.; Yin, M.; Chen, L.; Liu, F.; Chen, M.; Zhong, F. Effect of Calcium Ions on the Freeze-Drying Survival of Probiotic Encapsulated in Sodium Alginate. Food Hydrocoll. 2022, 130, 107668. [Google Scholar] [CrossRef]
- Łetocha, A.; Miastkowska, M.; Sikora, E. Preparation and Characteristics of Alginate Microparticles for Food, Pharmaceutical and Cosmetic Applications. Polymers 2022, 14, 3834. [Google Scholar] [CrossRef] [PubMed]
- Trabelsi, I.; Bejar, W.; Ayadi, D.; Chouayekh, H.; Kammoun, R.; Bejar, S.; Ben Salah, R. Encapsulation in Alginate and Alginate Coated-Chitosan Improved the Survival of Newly Probiotic in Oxgall and Gastric Juice. Int. J. Biol. Macromol. 2013, 61, 36–42. [Google Scholar] [CrossRef]
- Kim, S.-J.; Cho, S.Y.; Kim, S.H.; Song, O.J.; Shin, I.S.; Cha, D.S.; Park, H.J. Effect of Microencapsulation on Viability and Other Characteristics in Lactobacillus acidophilus ATCC 43121. LWT—Food Sci. Technol. 2008, 41, 493–500. [Google Scholar] [CrossRef]
- De Prisco, A.; Maresca, D.; Ongeng, D.; Mauriello, G. Microencapsulation by Vibrating Technology of the Probiotic Strain Lactobacillus reuteri DSM 17938 to Enhance Its Survival in Foods and in Gastrointestinal Environment. LWT—Food Sci. Technol. 2015, 61, 452–462. [Google Scholar] [CrossRef]
- Malmo, C.; La Storia, A.; Mauriello, G. Microencapsulation of Lactobacillus reuteri DSM 17938 Cells Coated in Alginate Beads with Chitosan by Spray Drying to Use as a Probiotic Cell in a Chocolate Souffle. Food Bioprocess Technol. 2013, 6, 795–805. [Google Scholar] [CrossRef]
- Iyer, C.; Kailasapathy, K. Effect of Co-Encapsulation of Probiotics with Prebiotics on Increasing the Viability of Encapsulated Bacteria in Simulated Gastrointestinal Conditions and in Yoghurt. J. Food Sci. 2005, 70, 18–23. [Google Scholar] [CrossRef]
- Wang, X.; Sun, H.; Wu, J.; Wang, Y.; Ai, Z.; Wang, X.; Nan, B.; Cao, Y.; Li, X.; Liu, J.; et al. Improved Viability of Trehalose on Lactobacillus plantarum Embedded with Whey Protein Concentrate/Pullulan in Simulated Gastrointestinal Conditions and Its Application in Acid Juice. Food Sci. Hum. Wellness 2024, 13, 3614–36231. [Google Scholar] [CrossRef]
- Ji, R.; Wu, J.; Zhang, J.; Wang, T.; Zhang, X.; Shao, L.; Chen, D.; Wang, J. Extending Viability of Bifidobacterium longum in Chitosan-Coated Alginate Microcapsules Using Emulsification and Internal Gelation Encapsulation Technology. Front. Microbiol. 2019, 10, 1389. [Google Scholar] [CrossRef]
- Jantzen, M.; Göpel, A.; Beermann, C. Direct Spray Drying and Microencapsulation of Probiotic Lactobacillus reuteri from Slurry Fermentation with Whey. J. Appl. Microbiol. 2013, 115, 1029–1036. [Google Scholar] [CrossRef]
- Motalebi Moghanjougi, Z.; Rezazadeh Bari, M.; Khaledabad, M.A.; Almasi, H.; Amiri, S. Bio-Preservation of White Brined Cheese (Feta) by Using Probiotic Bacteria Immobilized in Bacterial Cellulose: Optimization by Response Surface Method and Characterization. LWT—Food Sci. Technol. 2020, 117, 108603. [Google Scholar] [CrossRef]
Variable | Factor Code | Range and Levels of Factors | |
---|---|---|---|
−1 | 1 | ||
LAG (w/v) | X1 | 0.18 | 1.0 |
HAG (w/v) | X2 | 0.18 | 1.0 |
Ca (mM) | X3 | 5.0 | 40 |
Run | X1: LAG (w/v) | X2: BC (w/v) | X3: Ca (mM) | %EE | Viability (%) | ||
---|---|---|---|---|---|---|---|
Experimental Data | RSM Predicted | Experimental Data | RSM Predicted | ||||
1 | 0.18 | 0.18 | 22.50 | 79.1 ± 2.31 | 79.77 | 88.40 ± 2.08 | 88.77 |
2 | 1.00 | 0.18 | 22.50 | 94.2 ± 2.77 | 94.30 | 96.60 ± 0.94 | 96.45 |
3 | 0.18 | 1.00 | 22.50 | 84.2 ± 3.29 | 84.10 | 92.10 ± 2.01 | 92.25 |
4 | 1.00 | 1.00 | 22.50 | 85.8 ± 2.41 | 85.12 | 91.20 ± 3.09 | 90.82 |
5 | 0.18 | 0.59 | 5.00 | 71.7 ± 3.48 | 71.43 | 81.50 ± 2.77 | 81.33 |
6 | 1.00 | 0.59 | 5.00 | 81.8 ± 2.51 | 82.11 | 85.80 ± 3.05 | 86.16 |
7 | 0.18 | 0.59 | 40 | 76.8 ± 3.12 | 76.48 | 87.90 ± 3.45 | 87.53 |
8 | 1.00 | 0.59 | 40 | 81.1 ± 1.88 | 81.36 | 88.80 ± 2.88 | 88.96 |
9 | 0.59 | 0.18 | 5.00 | 78.9 ± 2.45 | 78.48 | 82.30 ± 3.21 | 82.08 |
10 | 0.59 | 1.00 | 5.00 | 74.4 ± 2.55 | 74.76 | 82.70 ± 2.66 | 82.71 |
11 | 0.59 | 0.18 | 40 | 79.7 ± 3.73 | 79.33 | 88.30 ± 2.28 | 88.28 |
12 | 0.59 | 1.00 | 40 | 77.8 ± 3.39 | 78.21 | 85.30 ± 0.95 | 85.51 |
13 | 0.59 | 0.59 | 22.50 | 95.5 ± 3.11 | 94.40 | 96.40 ± 3.09 | 96.63 |
14 | 0.59 | 0.59 | 22.50 | 93.6 ± 3.07 | 94.40 | 96.30 ± 3.61 | 96.63 |
15 | 0.59 | 0.59 | 22.50 | 94.1 ± 2.26 | 94.40 | 96.25 ± 2.99 | 96.63 |
Factors | %EE | Viability | ||
---|---|---|---|---|
Coefficients δ | p-Value | Coefficients δ | p-Value | |
Intercept | 94.40 | 0.00 | 96.63 | 0.00 |
X1 (LAG) | 3.88 | 0.00 | 1.56 | 0.00 |
X2 (HAG) | −1.21 | 0.01 | −0.53 | 0.01 |
X3 (Ca) | 1.07 | 0.01 | 2.25 | 0.00 |
Interaction | ||||
X1 X2 | −3.37 | 0.00 | −2.27 | 0.00 |
X1 X3 | −1.45 | 0.02 | −0.85 | 0.00 |
X2 X3 | 0.65 | 0.19 | −0.85 | 0.00 |
Quadratic | ||||
−4.21 | 0.00 | −1.60 | 0.00 | |
−4.36 | 0.00 | −2.95 | 0.00 | |
−12.33 | 0.00 | −9.02 | 0.00 | |
p-value (Model) | 0.00 | 0.00 | ||
p-value (Lack fit) | 0.65 | 0.53 | ||
R2 | 99.55% | 99.80% | ||
Adjusted R2 | 98.73% | 99.44% | ||
Predicted R2 | 95.93% | 97.11% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Cuello, R.; Hernández-Fernández, J.; Ortega-Toro, R. Optimization of the Viability of Microencapsulated Lactobacillus reuteri in Gellan Gum-Based Composites Using a Box–Behnken Design. J. Compos. Sci. 2025, 9, 419. https://doi.org/10.3390/jcs9080419
González-Cuello R, Hernández-Fernández J, Ortega-Toro R. Optimization of the Viability of Microencapsulated Lactobacillus reuteri in Gellan Gum-Based Composites Using a Box–Behnken Design. Journal of Composites Science. 2025; 9(8):419. https://doi.org/10.3390/jcs9080419
Chicago/Turabian StyleGonzález-Cuello, Rafael, Joaquín Hernández-Fernández, and Rodrigo Ortega-Toro. 2025. "Optimization of the Viability of Microencapsulated Lactobacillus reuteri in Gellan Gum-Based Composites Using a Box–Behnken Design" Journal of Composites Science 9, no. 8: 419. https://doi.org/10.3390/jcs9080419
APA StyleGonzález-Cuello, R., Hernández-Fernández, J., & Ortega-Toro, R. (2025). Optimization of the Viability of Microencapsulated Lactobacillus reuteri in Gellan Gum-Based Composites Using a Box–Behnken Design. Journal of Composites Science, 9(8), 419. https://doi.org/10.3390/jcs9080419