Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,518)

Search Parameters:
Keywords = green fruit

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1688 KB  
Article
DepthCL-Seg: Dual-Stream Feature Fusion for Green Fruit Instance Segmentation Based on Monocular Depth
by Yuelong Shang, Guodong Sun and Haiyan Zhang
Agriculture 2026, 16(2), 283; https://doi.org/10.3390/agriculture16020283 - 22 Jan 2026
Abstract
Accurate segmentation of target fruits is essential for automated field management. However, the challenge lies in the fact that many fruits remain green for extended periods, closely resembling the colors of leaves and branches, thus making accurate identification difficult. While current multi-modal methods [...] Read more.
Accurate segmentation of target fruits is essential for automated field management. However, the challenge lies in the fact that many fruits remain green for extended periods, closely resembling the colors of leaves and branches, thus making accurate identification difficult. While current multi-modal methods that utilize depth information can mitigate this problem, the high cost of equipment for acquiring such data limits the practical implementation of these techniques. To tackle this challenge, we introduce the monocular depth estimation technique Depth Anything V2 to fruit segmentation tasks, proposing a novel monocular depth-assisted instance segmentation framework, DepthCL-Seg. Within DepthCL-Seg, the Cross-modal Complementary Fusion (CCF) module effectively fuses RGB and depth information to enhance feature representation in low-contrast target regions. Additionally, a low-contrast adaptive refinement (LAR) module is designed to improve discrimination of easily confusable boundary pixels. Experimental results show that DepthCL-Seg achieves mAP scores of 74.2% and 86.0% on our self-constructed green fig and green peach datasets, respectively. These scores surpass the classical Mask R-CNN by 7.5% and 4.4%, and significantly outperform current mainstream methods. This framework provides novel technical support for automated management in fruit cultivation. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
20 pages, 6904 KB  
Article
Natural Mineral Waters as Solvents for Sustainable Extraction of Polyphenolic Compounds from Aronia Stems
by Irina-Loredana Ifrim, Ionuț Avătămăniței, Oana-Irina Patriciu, Cristina-Gabriela Grigoraș and Adriana-Luminița Fînaru
Foods 2026, 15(2), 406; https://doi.org/10.3390/foods15020406 - 22 Jan 2026
Abstract
Aronia melanocarpa, a plant with nutrient-rich fruits, with application in the food and pharmaceutical industry, has been extensively investigated but, nevertheless, the exploration of the secondary metabolites profile from its by-products remains quite limited. The main objective of this study was to evaluate [...] Read more.
Aronia melanocarpa, a plant with nutrient-rich fruits, with application in the food and pharmaceutical industry, has been extensively investigated but, nevertheless, the exploration of the secondary metabolites profile from its by-products remains quite limited. The main objective of this study was to evaluate the possibility of using some different natural mineral waters from Romania, as green solvents, for the extraction of bioactive compounds from aronia stems and fruits by applying eco-compatible working techniques (maceration for 24 h, and ultrasonication at room temperature and 50 °C for 30 min). The effect of five natural mineral waters (one with medium and four with low mineral content) on the extraction capacity and phytochemical profile of stems and fruits’ extracts was monitored using fast and efficient analysis techniques (electrochemical, spectroscopic, and chromatographic) and compared with that of classical solvents. The results showed that, in the case of stems, extraction by maceration was, for all types of water used, the most efficient, followed by ultrasonication at room temperature. Also, at the same time, in most cases, all mineral waters showed better performance than distilled water, and the highest efficiency of the extraction process was recorded for natural water with a medium mineralization level. The similarity observed in the phytochemical profiles of aqueous extracts from the aronia stems and the fruits highlights both the potential of this by-product as a source of bioactive compounds and the efficiency of natural mineral waters as green extraction solvents. Full article
Show Figures

Figure 1

18 pages, 1044 KB  
Review
Melatonin as a Pre- and Postharvest Tool for Enhancing Fruit Quality
by Pedro Antonio Padilla-González, Fernando Garrido-Auñón, María Emma García-Pastor, Fabián Guillén, María Serrano, Daniel Valero and Vicente Agulló
Plants 2026, 15(2), 331; https://doi.org/10.3390/plants15020331 - 22 Jan 2026
Abstract
Melatonin (MEL), also known as N-acetyl-5-methoxytryptamine, has been reported in plants as a secondary messenger involved in regulating abiotic stress responses. MEL treatment, either preharvest or postharvest, regulates several physiological and biochemical processes during fruit growth and ripening in horticultural products. These [...] Read more.
Melatonin (MEL), also known as N-acetyl-5-methoxytryptamine, has been reported in plants as a secondary messenger involved in regulating abiotic stress responses. MEL treatment, either preharvest or postharvest, regulates several physiological and biochemical processes during fruit growth and ripening in horticultural products. These include reproductive development, tissue and quality maintenance, delayed senescence, and responses to abiotic stress. Due to its natural origin, low toxicity, and multifunctional regulatory capacity, MEL has recently attracted attention as a promising ‘green preservative’ for sustainable postharvest management. Additionally, MEL coordinates through cross-talk with other plant hormones, such as abscisic acid, ethylene, polyamines, jasmonic acid, γ-aminobutyric acid, salicylic acid, and nitric oxide, to regulate postharvest ripening and senescence. Furthermore, MEL enhances antioxidant systems and improves membrane integrity, thereby alleviating chilling injury and enhancing fruit firmness and colour. Notably, recent evidence highlights the innovative regulatory mechanisms of MEL involving redox homeostasis, hormone signalling reprogramming, and transcriptional modulation of stress-responsive pathways. MEL could therefore be considered an emerging, eco-friendly tool for prolonging the shelf-life of fruit and vegetables and maintaining their quality. This review summarises the mechanisms by which MEL contributes to plant stress resistance by regulating the biosynthesis and metabolism of stress tolerance and improving fruit quality. Full article
Show Figures

Figure 1

20 pages, 4309 KB  
Article
Characterization and Optimization of the Ultrasound-Assisted Extraction Process of an Unexplored Amazonian Drupe (Chondrodendron tomentosum): A Novel Source of Anthocyanins and Phenolic Compounds
by Disbexy Huaman-Huaman, Segundo G. Chavez, Laydy Mena-Chacon, José Marcelo-Peña, Hans Minchán-Velayarce and Ralph Rivera-Botonares
Processes 2026, 14(2), 357; https://doi.org/10.3390/pr14020357 - 20 Jan 2026
Viewed by 135
Abstract
This study presents the first comprehensive physicochemical and bioactive characterization of the fruit of Chondrodendron tomentosum Ruiz & Pav. (Menispermaceae). Biometric and physicochemical parameters were characterized across three fruit ripening stages (green, turning, ripe). Additionally, proximate composition was determined in ripe fruits, and [...] Read more.
This study presents the first comprehensive physicochemical and bioactive characterization of the fruit of Chondrodendron tomentosum Ruiz & Pav. (Menispermaceae). Biometric and physicochemical parameters were characterized across three fruit ripening stages (green, turning, ripe). Additionally, proximate composition was determined in ripe fruits, and methanol concentration (25–75%), ultrasonic amplitude (30–70%), and time (1–15 min) were optimized using response surface methodology with a Box–Behnken design. During ripening, weight increased by +47.7% (3.89 to 5.74 g; p < 0.0001), TSS by +26.1% (7.00 to 8.83 °Brix), pH decreased by 32.0% (6.28 to 4.27), and acidity increased by 276% (0.25 to 0.94%). The quadratic models demonstrated high predictive accuracy (R2 > 96.5%; p < 0.004). Optimal conditions (57% methanol, 70% amplitude, and 15 min) maximized total anthocyanin content (120.71 ± 1.89 mg cyanidin-3-glucoside/L), total phenols (672.46 ± 5.84 mg GAE/100 g), and DPPH radical scavenging capacity (5857.55 ± 60.20 µmol Trolox/100 g) in ripe fruits. Unripe fruits do not contain anthocyanins, reaching 46.01 mg C3G/L in turning fruits and 120.71 mg/L in ripe fruits (162% higher than turning fruits). Principal component analysis (90.6% variance) revealed synchronized co-accumulation of anthocyanins and phenols, enhanced by vacuolar acidification. These results suggest ripe C. tomentosum fruits as a potential source for natural colorants, nutraceuticals, and functional foods, pending prior development of green, human-safe extraction processes. Full article
(This article belongs to the Special Issue Advances in Green Extraction and Separation Processes)
Show Figures

Graphical abstract

18 pages, 6934 KB  
Article
Metabolomic and Transcriptomic Analysis Reveal the Impact of Delayed Harvest on the Aroma Profile of ‘Shine Muscat’ Grapes
by Yanshuai Xu, Yang Dong, Meng Yan, Shumin Lei, Rong Wang, Muhammad Khalil-Ur-Rehman, Xueyan Wang, Jun Tan and Guoshun Yang
Horticulturae 2026, 12(1), 109; https://doi.org/10.3390/horticulturae12010109 - 19 Jan 2026
Viewed by 96
Abstract
Delayed harvesting of grapes can alter fruit quality and plays an important role in alleviating the problem of market saturation during peak seasons, as well as in regulating the supply period of grapes. In this study, by conducting a comparative analysis of fruit [...] Read more.
Delayed harvesting of grapes can alter fruit quality and plays an important role in alleviating the problem of market saturation during peak seasons, as well as in regulating the supply period of grapes. In this study, by conducting a comparative analysis of fruit quality, metabolomics (aroma compounds) and transcriptome sequencing of ‘Shine Muscat’ grapes harvested at six different on-tree ripening stages after maturity, we found that: (1) delayed harvesting led to dramatic variation in berry color change (light green to yellow) with a significant increase in soluble solids (19.5 to 20.89 Brix); (2) A total of 25 volatile aroma compounds was identified in collected berry samples, while trans-2-hexenal and hexanal exhibited the highest concentrations in all samples, marking them as key volatile compounds in ‘Shine Muscat’ grapes. Notable variation in the concentrations of linalool, n-butanol, benzyl alcohol, phenylethanol, β-citronellol, and propionic anhydride were recorded in selected harvest periods. OAV analysis results show that linalool has the largest OAV among the detected compounds, and its OAV proportion increased from 53% to 95% during the six sampling periods of ‘Shine Muscat’; (3) Transcriptome sequencing of selected samples demonstrated a positive correlation between eight terpene-synthesis-related genes and linalool accumulation. Furthermore, genes within the MEP pathway (specifically VvTPS55, VvTPS59) and several transcription factors were associated with terpenoids metabolism. Based on soluble solids and OAV results, T18–T22 period (18–22 weeks post-flowering) can become good quality on-vine storge berries. The gene expression profile and developmental patterns of metabolites in MEP pathway may helpful in functional characterization of candidate genes related to terpenoid metabolism in future studies. Full article
Show Figures

Figure 1

15 pages, 9018 KB  
Article
Algorithm for Recognizing Green Apples Using Image Segmentation and Object Detection
by Debin Yu, Yangting Liu, Ying Kong, Jiaxing Yin, Chuanxun Xu, Jinxing Wang and Guangming Wang
Agriculture 2026, 16(2), 247; https://doi.org/10.3390/agriculture16020247 - 18 Jan 2026
Viewed by 132
Abstract
Green apples exhibit a coloration that closely matches their surrounding environment, leading to low recognition accuracy for existing artificial intelligence models. This paper presents a green apple recognition algorithm that integrates an improved U-shaped network (U-Net) and you only look once network (YOLO) [...] Read more.
Green apples exhibit a coloration that closely matches their surrounding environment, leading to low recognition accuracy for existing artificial intelligence models. This paper presents a green apple recognition algorithm that integrates an improved U-shaped network (U-Net) and you only look once network (YOLO) v8 to address this challenge. First, the U-Net is enhanced via Dilated Convolution, Attention Gates, and Residual Connections to blur the background, thereby emphasizing the green apple target. Second, convolutional transformations and an attention mechanism are incorporated into YOLO v8, enabling it to focus more effectively on green apple targets within similarly colored backgrounds. Finally, the improved YOLO v8 is employed to recognize green apple targets segmented by the U-Net, with its performance compared against existing models. Research results show that the proposed algorithm achieves a precision of 92.5% and a Recall of 96.8% in green apple recognition, representing a significant improvement over classical models. To mitigate omission issues and further enhance overall performance, an improved YOLO v8 module is connected in parallel with the primary model. Based on its underlying principles, this approach is also applicable to other green fruits with colors and textures highly similar to their backgrounds, demonstrating strong robustness and generalization capabilities. Full article
Show Figures

Figure 1

22 pages, 3421 KB  
Article
Synergistic Plant Biostimulatory Effects of an Inter-Kingdom Interaction: Chlorella sp. and Kocuria rhizophila Algal–Bacterial Co-Culture for Sustainable Crop Production
by Katalin Tajti, Attila Farkas, Milán Farkas, Tibor Bíró, Vince Ördög and Gergely Maróti
Plants 2026, 15(2), 292; https://doi.org/10.3390/plants15020292 - 18 Jan 2026
Viewed by 272
Abstract
Plant biostimulatory effects of the green alga Chlorella sp. MACC-360, the Kocuria rhizophila FSP120 bacterial strain, and the combined inter-kingdom co-culture of the alga and bacterium were investigated using Solanum lycopersicum as a model plant grown under controlled greenhouse conditions. The application of [...] Read more.
Plant biostimulatory effects of the green alga Chlorella sp. MACC-360, the Kocuria rhizophila FSP120 bacterial strain, and the combined inter-kingdom co-culture of the alga and bacterium were investigated using Solanum lycopersicum as a model plant grown under controlled greenhouse conditions. The application of algal–bacterial co-cultures using the soil drench method significantly improved plant growth parameters, vegetative biomass yield, fruit yield, and photosynthetic performance of the tomato plants. The combined treatment resulted in a 43.7% increase in mean fruit yield, while individual applications of K. rhizophila FSP120 and Chlorella sp. MACC-360 enhanced yields by 30.85% and 19.44%, respectively. Although total yield increases did not reach statistical significance due to high intra-group variability, the treatment’s efficacy was statistically confirmed through key yield parameters including significantly higher fruit weight and fruit diameter (p < 0.05). The enhanced specific biostimulatory effects of the combined treatment could be at least partly attributed to the increased level of algal extracellular polymeric substances (EPS), which was a specific effect of algal co-cultivation with a Kocuria rhizophila bacterium. Detailed analysis of plant phenotypic alterations, biomass yield, fruit and flowering parameters, as well as microbial community analysis of the rhizosphere, were conducted and compared among the various treatments. Our results indicate that an appropriately chosen combination and application of biostimulatory microbes can significantly enhance crop production, which might contribute to more sustainable agriculture. Full article
(This article belongs to the Special Issue Advances in Microbial Solutions for Sustainable Agriculture)
Show Figures

Figure 1

24 pages, 2021 KB  
Article
Phytochemical Composition and Bioactivity of Different Fruit Parts of Opuntia robusta and Opuntia ficus-indica: Conventional Versus NADES-Based Extraction
by Ouafaa Hamdoun, Sandra Gonçalves, Inês Mansinhos, Raquel Rodríguez-Solana, Gema Pereira-Caro, José Manuel Moreno-Rojas, Brahim El Bouzdoudi, Mohammed L’bachir El Kbiach and Anabela Romano
Horticulturae 2026, 12(1), 98; https://doi.org/10.3390/horticulturae12010098 - 17 Jan 2026
Viewed by 108
Abstract
This study evaluated the extraction efficiency of two Natural Deep Eutectic Solvents (NADESs), glycerol–urea (1:1) and citric acid–sorbitol (1:2), for recovering phenolic compounds from the different parts of the fruit (pulp, seed-containing pulp, seeds, and peel) of Opuntia robusta and Opuntia ficus-indica in [...] Read more.
This study evaluated the extraction efficiency of two Natural Deep Eutectic Solvents (NADESs), glycerol–urea (1:1) and citric acid–sorbitol (1:2), for recovering phenolic compounds from the different parts of the fruit (pulp, seed-containing pulp, seeds, and peel) of Opuntia robusta and Opuntia ficus-indica in comparison with 50% methanol. Phytochemical profiling was performed using ultra-high-performance liquid chromatography–high-resolution mass spectrometry, alongside antioxidant and enzyme inhibition assessments (acetylcholinesterase, butyrylcholinesterase, tyrosinase, α-glucosidase, and α-amylase). Glycerol–urea performed similarly to methanol in extracting phenolic compounds with notable antioxidant properties. Peel extracts contained the highest levels of bioactive compounds, particularly phenolic acids (525.49 in O. robusta and 362.96 µg/gDW in O. ficus indica). Enzyme inhibition varied across species and fruit parts, with extracts from both species inhibiting all targeted enzymes. Notably, this study provides the first evidence of tyrosinase inhibitory activity in O. robusta, which exhibited the strongest inhibition. Overall, these results emphasize the potential of cactus fruit extracts, particularly from O. robusta, for valorization, and support the use of NADESs as a sustainable and medium for extracting antioxidant compounds. Furthermore, the potential of fruit peel as waste with nutraceutical applications was demonstrated. Full article
Show Figures

Figure 1

18 pages, 950 KB  
Article
Selected Essential Oils Act as Repellents Against the House Cricket, Acheta domesticus
by Torben K. Heinbockel, Rasha O. Alzyoud, Shazia Raheel and Vonnie D. C. Shields
Insects 2026, 17(1), 106; https://doi.org/10.3390/insects17010106 - 16 Jan 2026
Viewed by 252
Abstract
The house cricket, Acheta domesticus, is found globally. It is an agricultural pest causing economic damage to a wide variety of crops including cereal seedlings, vegetable crops, fruit plants, and stored grains. Additionally, crickets act as mechanical vectors of pathogens by harboring [...] Read more.
The house cricket, Acheta domesticus, is found globally. It is an agricultural pest causing economic damage to a wide variety of crops including cereal seedlings, vegetable crops, fruit plants, and stored grains. Additionally, crickets act as mechanical vectors of pathogens by harboring bacteria, fungi, viruses, and toxins, causing foodborne illnesses. They can contaminate stored grains, packaged foods, or animal feed due to deposition of their feces, lowering the quality of the food and creating food safety risks. Synthetic insect repellents, such as pyrethroids and carbamates, have been used previously in integrated pest management practices to control crickets. Though successful as repellents, they have been associated with health and environmental risks and concerns. The use of organic green repellents, such as plant essential oils, may be a viable alternative in pest management practices. In this study, we tested the effects of 27 plant-based essential oils on the behavior of A. domesticus. A. domesticus were introduced into an open arena to allow them unrestricted movement. A transparent plastic bottle containing an essential oil treatment was placed in the arena to allow voluntary entry by the crickets. Following a predetermined observation period, the number of crickets that entered the bottle was recorded, and percent entry was calculated as the proportion of individuals inside the bottle relative to the total number in the arena. Analysis of the percentage entry into the bottles allowed for a comparative assessment of repellency of the selected essential oils examined in this study. Essential oils that elicited high levels of entry into the bottle were categorized as having weak or no repellency, while those that demonstrated reduced entry were classified as moderate or strong repellents. Our results indicated that A. domesticus responded with strong repellent behavior to nearly half of the essential oils tested, while four essential oils and two synthetic repellents evoked no significant repellent responses. Four strong repellent essential oils, namely peppermint, rosemary, cinnamon, and lemongrass, were tested at different concentrations and showed a clear dose-dependent repellent effect. The results suggest that selected essential oils can be useful in the development of more natural “green” insect repellents. Full article
Show Figures

Figure 1

20 pages, 3077 KB  
Article
Effects of Ethephon and Gibberellic Acid Treatments on Post-Harvest Flavor Quality of Green Lemon
by Birong Zhang, Suyun Yan, Wenbin Shi, Minxian Duan, Weijie Liu, Rangwei Xu, Jiandong Yang, Chunrui Long, Yunjiang Cheng and Xianyan Zhou
Agronomy 2026, 16(2), 203; https://doi.org/10.3390/agronomy16020203 - 14 Jan 2026
Viewed by 188
Abstract
This study investigated the effects of Ethephon (CEPA) and Gibberellic acid (GA3) treatments on the post-harvest flavor quality of ‘Yunning No. 1’ green lemon. A comprehensive analysis was conducted on the changes in primary metabolites (sugars, organic acids, amino acids, alcohols) [...] Read more.
This study investigated the effects of Ethephon (CEPA) and Gibberellic acid (GA3) treatments on the post-harvest flavor quality of ‘Yunning No. 1’ green lemon. A comprehensive analysis was conducted on the changes in primary metabolites (sugars, organic acids, amino acids, alcohols) in the pulp and peel, as well as those in major volatile compounds in the peel during fruit storage. The results showed that CEPA treatment initially increased volatile compounds like monoterpenes and sesquiterpenes in the fruit peel during early storage, but later decreased these compounds along with total sugar and amino acid content in the pulp. Conversely, GA3 treatment markedly delayed the decline in sugars and organic acids in the fruit peel, preserved the amino acid content in the pulp and the alcohol content in the peel, and delayed the decrease in volatile compound content in the peel. In conclusion, GA3 treatment effectively delayed the decline in primary metabolites and volatile compounds to maintain the storage quality of green lemon; therefore, GA3 represents a suitable strategy for the preservation of green lemons. CEPA temporarily improved aroma but accelerated quality deterioration, making it better suited for short-term degreening. This study offers a theoretical foundation for optimizing post-harvest degreening and preservation techniques of green lemons. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

12 pages, 2275 KB  
Article
Penicillium bialowiezense Causing Blue Mold on Bag-Cultivated Shiitake (Lentinula edodes) in China: Morphological, Molecular and Pathogenic Characterization
by Tan Wang, Enping Zhou, Caixia Wang, Zhifeng Zhang, Yingjun Zhang, Siliang Huang and Qiuhong Niu
Horticulturae 2026, 12(1), 86; https://doi.org/10.3390/horticulturae12010086 - 12 Jan 2026
Viewed by 208
Abstract
Lentinula edodes (shiitake) is a major edible and medicinal mushroom and a key component of the horticultural mushroom industry in East Asia. During April–June 2024 cropping season, a widespread blue mold outbreak was observed on bag-cultivated shiitake in Xixia County, Henan Province, China. [...] Read more.
Lentinula edodes (shiitake) is a major edible and medicinal mushroom and a key component of the horticultural mushroom industry in East Asia. During April–June 2024 cropping season, a widespread blue mold outbreak was observed on bag-cultivated shiitake in Xixia County, Henan Province, China. Affected cultivation rooms showed extensive blue-green sporulation on the exposed surfaces of substrate blocks and on developing and mature fruiting bodies, leading to rapid loss of marketability. To clarify the etiology of this disease, we coupled field surveys with morphological, molecular, and pathogenicity analyses. Fifty-five Penicillium isolates were obtained from symptomatic cultivation bags. Three representative isolates (LE06, LE15, and LE26) were characterized in detail. Colonies on PDA produced velutinous to floccose mycelia with blue-green conidial masses and terverticillate penicilli bearing smooth-walled, globose conidia. Sequencing of four loci—the internal transcribed spacer (ITS1-5.8S-ITS2), β-tubulin (benA), calmodulin gene (CaM), and RNA polymerase II second largest subunit (rpb2)—followed by multilocus phylogenetic analysis placed all three isolates in a well-supported clade with the ex-type CBS 227.28 of Penicillium bialowiezense. Inoculation of healthy shiitake cultivation bags with conidial suspensions (1 × 106 conidia mL−1) reproduced typical blue mold symptoms on substrate surfaces and fruiting bodies within 40 days post inoculation, whereas mock-inoculated controls remained symptomless. The pathogen was consistently reisolated from diseased tissues and showed identical ITS and benA sequences to the inoculated strains, thereby fulfilling Koch’s postulates. This is the first confirmed report of P. bialowiezense causing blue mold on shiitake, and it expands the known host range of this species. Our findings highlight the vulnerability of bag cultivation systems to airborne Penicillium contaminants and underscore the need for improved hygiene, environmental management, and targeted diagnostics in commercial shiitake production. Full article
(This article belongs to the Special Issue Sustainable Management of Pathogens in Horticultural Crops)
Show Figures

Figure 1

31 pages, 4403 KB  
Article
HPLC/GC–MS and Electronic Sensing Reveal Tissue-Wide Differences in Bioactive and Flavor Compound Distribution in Coffee Fruits Across Multiple Varieties
by Lu-Xia Ran, Xiao-Hua Dai, Er-Fang Ren, Jin-Hong Li, Lin Yan, Usman Rasheed and Gan-Lin Chen
Foods 2026, 15(2), 269; https://doi.org/10.3390/foods15020269 - 12 Jan 2026
Viewed by 488
Abstract
The quality of different coffee varieties varies, and the corresponding bioactive value of coffee processing byproducts is often overlooked. For that, we employed HPLC, GC-MS, and electronic sensory analyses to evaluate the key bioactive components, antioxidant potential, and flavor traits of green coffee [...] Read more.
The quality of different coffee varieties varies, and the corresponding bioactive value of coffee processing byproducts is often overlooked. For that, we employed HPLC, GC-MS, and electronic sensory analyses to evaluate the key bioactive components, antioxidant potential, and flavor traits of green coffee bean and coffee processing byproducts of seven coffee varieties. The results showed that green coffee beans (Oe+Ie) and exocarp (Ep) possessed strong antioxidant activity and high total phenolic content (TPC), caffeine and trigonelline content. Among the varieties, DR390 contained higher levels of total phenols, caffeine, and trigonelline, whereas DR402 was rich in caffeine and chlorogenic acid. In addition, RY3 exhibited higher TPC, total flavonoid content (TFC), caffeine, and chlorogenic acid. The parchment (Pc) layer was rich in soluble sugars (1.83–5.43%), while the silverskin (Sk) contained relatively high levels of chlorogenic acid (3.58–4.69 mg/g). Flavor analysis identified eleven classes of volatile compounds in green coffee bean (Oe+Ie) and byproducts (Ep, Pc, Sk), with esters, ketones, alcohols, and aldehydes being the most prevalent. Seven key aroma compounds, including methyl salicylate, phenethyl alcohol, nonanal, and benzaldehyde, were identified across the various structural tissues of coffee fruit. Distinct flavor profiles were observed among the coffee fruit parts: green coffee bean (Oe+Ie) was nutty; the Ep showed fruity and cocoa-like aromas; the Pc and Sk exhibited papery and nutty aromas, respectively. Varieties DR397, DR402, and RY3 exhibited pronounced aroma profiles. Comprehensive analysis showed that DR402 and RY3 had higher overall scores for bioactive and flavor components than other varieties in their groups. In summary, green coffee bean (Oe+Ie) exhibited strong antioxidant activity and high levels of bioactive compounds. Coffee byproducts, such as the Ep, hold potential for extracting natural antioxidants and bioactive compounds to develop specialty products or for other high-value utilization. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

39 pages, 1790 KB  
Review
Lactic Acid Bacteria as the Green and Safe Food Preservatives: Their Mechanisms, Applications and Prospects
by Yuwei Zhang, Lianrui Li, Xiaoyang Pang, Shuwen Zhang, Yang Liu, Yunna Wang, Ning Xie and Xu Li
Foods 2026, 15(2), 241; https://doi.org/10.3390/foods15020241 - 9 Jan 2026
Viewed by 273
Abstract
Microbial contamination of food is a crucial cause of food spoilage and foodborne diseases, posing a severe threat to global public health. Although chemical preservatives are effective, their potential hazards to human health and the environment, coupled with the growing demand for “clean [...] Read more.
Microbial contamination of food is a crucial cause of food spoilage and foodborne diseases, posing a severe threat to global public health. Although chemical preservatives are effective, their potential hazards to human health and the environment, coupled with the growing demand for “clean label” products, have driven the search for natural alternatives. Lactic acid bacteria (LAB), recognized as the Generally Recognized as Safe (GRAS) microorganisms, have emerged as the promising bio-preservatives due to their safety, effectiveness, and multifunctionality. This review systematically summarized the core antimicrobial properties of LAB, including their inhibitory spectrum against foodborne pathogens, spoilage microorganisms, viruses, parasites, and their ability to degrade toxic substances such as mycotoxins, pesticides, and heavy metals. Key inhibitory mechanisms of LAB are highlighted, encompassing the production of antimicrobial metabolites, leading to metabolism disruption and cell membrane damage, nutrition and niche competition, quorum-sensing interference, and anti-biofilm formation. Furthermore, recent advances in LAB applications in preserving various food matrices (meat, dairy products, fruits and vegetables, cereals) are integrated, including their roles in enhancing food sensory quality, extending shelf life, and retaining nutritional value. The review also discusses critical factors influencing LAB’s inhibitory activity (medium composition, culture conditions, ionic components, pathway regulator, etc.) and the challenges associated with the application of LAB. Finally, future research directions are outlined, including the novel LAB and metabolites exploration, AI-driven cultural condition optimization, genetic engineering application, nano-encapsulation and active packaging development, and building up the LAB-based cellular factories. In conclusion, LAB and their antimicrobial metabolites hold great promise as green and safe food preservatives. This review is to provide comprehensive theoretical support for the rational improvement and efficient application of LAB-based natural food preservatives, contributing to the development of a safer and more sustainable food processing and preservation systems. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

21 pages, 13341 KB  
Article
Metabolomics and Transcriptomics Analyses Explore the Genes Related to the Biosynthesis of Antioxidant Active Ingredient Isoquercetin
by Liyan Cui, Jiaoli Yang, Rui Yuan, Shuting Wang, Zhennan Ma, Defu Wang and Yanbing Niu
Foods 2026, 15(2), 218; https://doi.org/10.3390/foods15020218 - 8 Jan 2026
Viewed by 202
Abstract
Astragalus membranaceus is a model of traditional ‘homologous nature of medicine and food’. Its stems and leaves have been proven to have a variety of biological activities. In this study, high-throughput sequencing technology was used to sequence transcriptomics and metabolomics A. membranaceus stems [...] Read more.
Astragalus membranaceus is a model of traditional ‘homologous nature of medicine and food’. Its stems and leaves have been proven to have a variety of biological activities. In this study, high-throughput sequencing technology was used to sequence transcriptomics and metabolomics A. membranaceus stems and leaves at different growth stages (flowerless stage, flower bud stage, flowering stage, green fruit stage, mature fruit staged, and withering stage), and a regulation analysis was conducted on its differentially expressed genes and differentially accumulated metabolites. The results showed that five hub genes, PAL, CHI, AMIE, CAD, and PRX, were found to play a central regulatory role in flavonoid biosynthesis. The combined analysis of transcriptomics and metabolomics constructed a flavonoid metabolic regulatory network during the growth and development of A. membranaceus stems and leaves. At the same time, based on the significant antioxidant activity of isoquercitrin, three genes that may be related to isoquercitrin biosynthesis were screened, namely IF7MAT, FG3, and UGT78D2. The results of this study provide insights into the biosynthesis and comprehensive development and utilization of flavonoids in A. membranaceus. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

16 pages, 4196 KB  
Article
A Green Approach to Bio-Based Active Packaging: Grape Skin Extract-Synthesized AgNPs for Food Preservation
by Wenjia Yin, Yongzhen Lei, Jiayi Wang, Qin Lei, Wenxi Yu and Siyu Ou
Materials 2026, 19(2), 218; https://doi.org/10.3390/ma19020218 - 6 Jan 2026
Viewed by 163
Abstract
This study aimed to develop an environmentally friendly composite film with effective antibacterial and preservation properties. Silver nanoparticles (AgNPs) were green-synthesized using grape skin extract as a natural reducing agent and incorporated into a PVA/chitosan matrix. The composition of the extract and the [...] Read more.
This study aimed to develop an environmentally friendly composite film with effective antibacterial and preservation properties. Silver nanoparticles (AgNPs) were green-synthesized using grape skin extract as a natural reducing agent and incorporated into a PVA/chitosan matrix. The composition of the extract and the structural characteristics of the AgNPs were characterized by UPLC-MS and TEM. The barrier, mechanical performance, antibacterial, and fruit preservation properties of the resulting films were systematically evaluated. The results showed that the incorporation of AgNPs significantly improved the water vapor and oxygen barrier properties of the film and imparted excellent broad-spectrum antibacterial activity. In grape storage experiments, films with higher AgNPs content effectively delayed skin aging and moisture loss, maintaining better visual quality of the fruit. This work provides a green and feasible approach for the preparation of nanoparticle-enhanced antibacterial packaging materials based on natural products, with promising application potential. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Graphical abstract

Back to TopTop