Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,386)

Search Parameters:
Keywords = green fruit

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 766 KiB  
Article
Effect of Ultrasonic Frequencies on the Aqueous Extraction of Polyphenols, Chlorogenic Acid, and Quercetin from the Whole Fruit of Pitaya (Hylocereus spp.)
by Wei-Ting Lian and Chun-Yao Yang
Molecules 2025, 30(15), 3253; https://doi.org/10.3390/molecules30153253 - 3 Aug 2025
Viewed by 163
Abstract
The effect of ultrasonic frequencies of 40 kHz/300 W (U-40) and 120 kHz/300 W (U-120) on the aqueous extraction of bioactive compounds from dried whole-fruit powders (DPs) of red-peel/white-flesh (WFP) and red-peel/red-flesh (RFP) pitayas was investigated, and shaking at 120 rpm (S-120) was [...] Read more.
The effect of ultrasonic frequencies of 40 kHz/300 W (U-40) and 120 kHz/300 W (U-120) on the aqueous extraction of bioactive compounds from dried whole-fruit powders (DPs) of red-peel/white-flesh (WFP) and red-peel/red-flesh (RFP) pitayas was investigated, and shaking at 120 rpm (S-120) was used for a comparison. The effects of temperature and the solid-to-liquid ratio on the extraction efficiencies of the total phenolic content (TPC) and ferric-reducing antioxidant power (FRAP) of WFP and RFP were evaluated. The impact of extraction time on the aqueous extraction of specific compounds, namely, chlorogenic acid (CGA) and quercetin, from WFP and RFP was assessed with extraction modes of U-40, U-120, and S-120. At 40 °C and a 1/20 (g DP/mL) solid-to-liquid ratio, the use of U-40 achieved higher TPC and FRAP values at 15 min than U-120 and S-120 for WFP. The use of U-40 and U-120 extracted higher amounts of free CGA and free quercetin from WFP and RFP at 15 and 60 min than S-120 but showed different extraction efficiencies for free CGA and free quercetin. This study demonstrates that different ultrasonic frequencies can be applied in the green extraction of target bioactive compounds for use in nutraceutical foods. Full article
Show Figures

Figure 1

21 pages, 2074 KiB  
Article
Preliminary Analysis of Bilberry NaDES Extracts as Versatile Active Ingredients of Natural Dermocosmetic Products: In Vitro Evaluation of Anti-Tyrosinase, Anti-Hyaluronidase, Anti-Collagenase, and UV Protective Properties
by Milica Martinović, Ivana Nešić, Ana Žugić and Vanja M. Tadić
Plants 2025, 14(15), 2374; https://doi.org/10.3390/plants14152374 - 1 Aug 2025
Viewed by 207
Abstract
Bilberry (Vaccinium myrtillus L.) fruits represent the recognized wellspring of bioactive compounds with various documented bioactivities. Although bilberry leaves are often treated as industrial by-products, they also represent a valuable source of phytochemicals with potential dermocosmetic applications. In this study, extracts of [...] Read more.
Bilberry (Vaccinium myrtillus L.) fruits represent the recognized wellspring of bioactive compounds with various documented bioactivities. Although bilberry leaves are often treated as industrial by-products, they also represent a valuable source of phytochemicals with potential dermocosmetic applications. In this study, extracts of bilberry fruits and leaves were prepared using both conventional solvents (water and 50% ethanol) and natural deep eutectic solvents (NaDES) as green, biodegradable alternatives. The aim of this study was to examine the UV protective activity and inhibitory potential of those extracts against some enzymes (tyrosinase, hyaluronidase, collagenase) that are important in terms of skin conditioning and skin aging. The results of in vitro tests have shown the superiority of NaDES extracts compared to conventional extracts regarding all tested bioactivities. In addition, bilberry leaves extracts were more potent compared to fruit extracts in all cases. The most potent extract was bilberry leaf extract made with malic acid–glycerol, which exhibited strong anti-tyrosinase (IC50 = 3.52 ± 0.26 mg/mL), anti-hyaluronidase (IC50 = 3.23 ± 0.30 mg/mL), and anti-collagenase (IC50 = 1.84 ± 0.50 mg/mL) activities. The correlation analysis revealed correlation between UV protective and anti-tyrosinase, UV protective and anti-collagenase as well as between anti-hyaluronidase and anti-collagenase activity. UV protection and anti-tyrosinase activity correlated significantly with chlorogenic acid and hyperoside contents in extracts. The extracts with the best activities also demonstrated a good safety profile in a 24 h in vivo study on human volunteers. Full article
Show Figures

Figure 1

16 pages, 1047 KiB  
Article
The Post-Harvest Application of UV-C Rays: Effects on the Shelf Life and Antioxidants of Fresh Green Asparagus (Asparagus officinalis L.)
by Valeria Menga, Romina Beleggia, Domenico Pio Prencipe, Mario Russo and Clara Fares
Appl. Sci. 2025, 15(15), 8533; https://doi.org/10.3390/app15158533 (registering DOI) - 31 Jul 2025
Viewed by 104
Abstract
UV-C irradiation is an innovative postharvest technique for increasing the safety of fruits and vegetables. This study investigated the effect of UV-C rays (UV-C1 = 0.26 KJ/m2; UV-C2 = 0.40 KJ/m2; UV-C3 = 0.67 KJ/m2; and UV-C4 [...] Read more.
UV-C irradiation is an innovative postharvest technique for increasing the safety of fruits and vegetables. This study investigated the effect of UV-C rays (UV-C1 = 0.26 KJ/m2; UV-C2 = 0.40 KJ/m2; UV-C3 = 0.67 KJ/m2; and UV-C4 = 1.34 KJ/m2) on the preservation of the antioxidants, hardness, and color of fresh green asparagus during storage. UV-C1 and UV-C2 significantly maintained higher total phenolic content (10.6%), total flavonoid content (36%), rutin (14.3%), quercetin (27.03%), kaempferol-3-O-rutinoside (21.25%), and antioxidant activity (DPPH 7.5%). Over three weeks of storage, quercetin, ferulic acid, and kaempferol 3-O-rutinoside increased, while rutin and caffeic acid decreased. Storage caused a significant change in the color and hardness of the control sample, but UV-C4 counteracted hardening for up to three weeks, and UV-C3 was the best dose for stabilizing color during storage. This study indicates that the choice of UV-C dose can be modulated based on the characteristics that are intended to be preserved in green asparagus, maintaining a balance between nutraceutical and hedonic characteristics. To maintain the maximum level of nutraceutical compounds over time, UV-C2 can be adopted, while to preserve texture and color, UV-C3 and UV-C4 are a better choice. Full article
Show Figures

Figure 1

23 pages, 7166 KiB  
Article
Deriving Early Citrus Fruit Yield Estimation by Combining Multiple Growing Period Data and Improved YOLOv8 Modeling
by Menglin Zhai, Juanli Jing, Shiqing Dou, Jiancheng Du, Rongbin Wang, Jichi Yan, Yaqin Song and Zhengmin Mei
Sensors 2025, 25(15), 4718; https://doi.org/10.3390/s25154718 - 31 Jul 2025
Viewed by 248
Abstract
Early crop yield prediction is a major challenge in precision agriculture, and efficient and rapid yield prediction is highly important for sustainable fruit production. The accurate detection of major fruit characteristics, including flowering, green fruiting, and ripening stages, is crucial for early yield [...] Read more.
Early crop yield prediction is a major challenge in precision agriculture, and efficient and rapid yield prediction is highly important for sustainable fruit production. The accurate detection of major fruit characteristics, including flowering, green fruiting, and ripening stages, is crucial for early yield estimation. Currently, most crop yield estimation studies based on the YOLO model are only conducted during a single stage of maturity. Combining multi-growth period data for crop analysis is of great significance for crop growth detection and early yield estimation. In this study, a new network model, YOLOv8-RL, was proposed using citrus multigrowth period characteristics as a data source. A citrus yield estimation model was constructed and validated by combining network identification counts with manual field counts. Compared with YOLOv8, the number of parameters of the improved network is reduced by 50.7%, the number of floating-point operations is decreased by 49.4%, and the size of the model is only 3.2 MB. In the test set, the average recognition rate of citrus flowers, green fruits, and orange fruits was 95.6%, the mAP@.5 was 94.6%, the FPS value was 123.1, and the inference time was only 2.3 milliseconds. This provides a reference for the design of lightweight networks and offers the possibility of deployment on embedded devices with limited computational resources. The two estimation models constructed on the basis of the new network had coefficients of determination R2 values of 0.91992 and 0.95639, respectively, with a prediction error rate of 6.96% for citrus green fruits and an average error rate of 3.71% for orange fruits. Compared with network counting, the yield estimation model had a low error rate and high accuracy, which provided a theoretical basis and technical support for the early prediction of fruit yield in complex environments. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

21 pages, 932 KiB  
Article
Investigating Roasted Açaí (Euterpe oleracea) Seed Powder as a Coffee Substitute: Effects of Water Temperature, Milk Addition, and In Vitro Digestion on Phenolic Content and Antioxidant Capacity
by Rayssa Cruz Lima, Carini Aparecida Lelis, Jelmir Craveiro de Andrade and Carlos Adam Conte-Junior
Foods 2025, 14(15), 2696; https://doi.org/10.3390/foods14152696 - 31 Jul 2025
Viewed by 221
Abstract
Açaí (Euterpe oleracea) seeds account for up to 95% of the fruit’s weight and are commonly discarded during pulp processing. Roasted açaí seed extract (RASE) has recently emerged as a caffeine-free coffee substitute, although its composition and functionality remain underexplored. This [...] Read more.
Açaí (Euterpe oleracea) seeds account for up to 95% of the fruit’s weight and are commonly discarded during pulp processing. Roasted açaí seed extract (RASE) has recently emerged as a caffeine-free coffee substitute, although its composition and functionality remain underexplored. This study characterized commercial açaí seed powder and evaluated the effect of temperature on the recovery of total phenolic content (TPC) in the aqueous extract using a Central Composite Rotatable Design (CCRD). An intermediate extraction condition (6.0 ± 0.5 g 100 mL−1 at 100 °C) was selected, resulting in 21.78 mg GAE/g TPC, 36.23 mg QE/g total flavonoids, and notable antioxidant capacity (FRAP: 183.33 µmol TE/g; DPPH: 23.06 mg TE/g; ABTS: 51.63 mg TE/g; ORAC: 31.46 µmol TE/g). Proton Nuclear Magnetic Resonance (1H NMR) analysis suggested the presence of amino acids, carbohydrates, and organic acids. During in vitro digestion, TPC decreased from 54.31 to 17.48 mg GAE 100 mL−1 when RASE was combined with goat milk. However, higher bioaccessibility was observed with skimmed (33%) and semi-skimmed (35%) cow milk. These findings highlight RASE as a phenolic-rich, antioxidant beverage with functional stability when prepared with boiling water. This is the first study to report the phytochemical profile of RASE and its interactions with different milk types, supporting its potential as a coffee alternative. Full article
(This article belongs to the Special Issue Fruit By-Products and Their Applications in Food Industry)
Show Figures

Graphical abstract

13 pages, 4134 KiB  
Communication
An Improved Agrobacterium-Mediated Transformation Method for an Important Fresh Fruit: Kiwifruit (Actinidia deliciosa)
by Chun-Lan Piao, Mengdou Ding, Yongbin Gao, Tao Song, Ying Zhu and Min-Long Cui
Plants 2025, 14(15), 2353; https://doi.org/10.3390/plants14152353 - 31 Jul 2025
Viewed by 273
Abstract
Genetic transformation is an essential tool for investigating gene function and editing genomes. Kiwifruit, recognized as a significant global fresh fruit crop, holds considerable economic and nutritional importance. However, current genetic transformation techniques for kiwifruit are impeded by low efficiency, lengthy culture durations [...] Read more.
Genetic transformation is an essential tool for investigating gene function and editing genomes. Kiwifruit, recognized as a significant global fresh fruit crop, holds considerable economic and nutritional importance. However, current genetic transformation techniques for kiwifruit are impeded by low efficiency, lengthy culture durations (a minimum of six months), and substantial labor requirements. In this research, we established an efficient system for shoot regeneration and the stable genetic transformation of the ‘Hayward’ cultivar, utilizing leaf explants in conjunction with two strains of Agrobacterium that harbor the expression vector pBI121-35S::GFP, which contains the green fluorescent protein (GFP) gene as a visible marker within the T-DNA region. Our results show that 93.3% of leaf explants responded positively to the regeneration medium, producing multiple independent adventitious shoots around the explants within a six-week period. Furthermore, over 71% of kanamycin-resistant plantlets exhibited robust GFP expression, and the entire transformation process was completed within four months of culture. Southern blot analysis confirmed the stable integration of GFP into the genome, while RT-PCR and fluorescence microscopy validated the sustained expression of GFP in mature plants. This efficient protocol for regeneration and transformation provides a solid foundation for micropropagation and the enhancement of desirable traits in kiwifruit through overexpression and gene silencing techniques. Full article
(This article belongs to the Special Issue Plant Transformation and Genome Editing)
Show Figures

Figure 1

16 pages, 1005 KiB  
Review
Green Leafy Vegetables (GLVs) as Nutritional and Preventive Agents Supporting Metabolism
by Renata Nurzyńska-Wierdak
Metabolites 2025, 15(8), 502; https://doi.org/10.3390/metabo15080502 - 28 Jul 2025
Viewed by 315
Abstract
Metabolic syndrome (MetS) is defined as a group of metabolic defects that include hypertension, insulin resistance, visceral obesity, fatty liver disease, and atherosclerotic cardiovascular disease (CVD). The first step in controlling the progression of MetS is lifestyle changes, including dietary modification. Regular consumption [...] Read more.
Metabolic syndrome (MetS) is defined as a group of metabolic defects that include hypertension, insulin resistance, visceral obesity, fatty liver disease, and atherosclerotic cardiovascular disease (CVD). The first step in controlling the progression of MetS is lifestyle changes, including dietary modification. Regular consumption of fruits, vegetables, whole grains and other plant foods negatively correlates with the risk of developing chronic diseases. Green leafy vegetables (GLVs) are a key element of healthy eating habits and an important source of vitamins C and E, carotenoids—mainly β-carotene and lutein—and minerals. This review discusses and summarizes the current knowledge on the health benefits of consuming GLVs in the prevention and treatment of MetS to provide a compendium for other researchers investigating new natural products. Full article
(This article belongs to the Special Issue Plants and Plant-Based Foods for Metabolic Disease Prevention)
Show Figures

Figure 1

17 pages, 2535 KiB  
Article
Climate-Induced Heat Stress Responses on Indigenous Varieties and Elite Hybrids of Mango (Mangifera indica L.)
by Amar Kant Kushwaha, Damodaran Thukkaram, Dheerendra Rastogi, Ningthoujam Samarendra Singh, Karma Beer, Prasenjit Debnath, Vishambhar Dayal, Ashish Yadav, Swosti Suvadarsini Das, Anju Bajpai and Muthukumar Manoharan
Agriculture 2025, 15(15), 1619; https://doi.org/10.3390/agriculture15151619 - 26 Jul 2025
Viewed by 349
Abstract
Mango is highly sensitive to heat stress, which directly affects the yield and quality. The extreme heat waves of 2024, with temperatures reaching 41–47 °C over 25 days, caused significant impacts on sensitive cultivars. The impact of heat waves on ten commercial cultivars [...] Read more.
Mango is highly sensitive to heat stress, which directly affects the yield and quality. The extreme heat waves of 2024, with temperatures reaching 41–47 °C over 25 days, caused significant impacts on sensitive cultivars. The impact of heat waves on ten commercial cultivars from subtropical regions viz.,‘Dashehari’, ‘Langra’, ‘Chausa’, ‘Bombay Green’, ‘Himsagar’, ‘Amrapali’, ‘Mallika’, ‘Sharda Bhog’, ‘Kesar’, and ‘Rataul’, and thirteen selected elite hybrids H-4208, H-3680, H-4505, H-3833, H-4504, H-1739, H-3623, H-1084, H-4264, HS-01, H-949, H-4065, and H-2805, is reported. The predominant effects that were observed include the following: burning symptoms or blackened tips, surrounded by a yellow halo, with premature ripening in affected parts and, in severe cases, tissue mummification. Among commercial cultivars, viz., ‘Amrapali’ (25%), ‘Mallika’ (30%), ‘Langra’ (30%), ‘Dashehari’ (50%), and ‘Himsagar’ and ‘Bombay Green’ had severe impacts, with ~80% of fruits being affected, followed by ‘Sharda Bhog’. In contrast, mid-maturing cultivars like ‘Kesar’, ‘Rataul’, and late-maturing elite hybrids, which were immature during the stress period, showed no symptoms, indicating they are tolerant. Biochemical analyses revealed significantly elevated total soluble solids (TSS > 25 °B) in affected areas of sensitive genotypes compared to non-affected tissues and tolerant genotypes. Aroma profiling indicated variations in compounds such as caryophyllene and humulene between affected and unaffected parts. The study envisages that the phenological maturity scales are indicators for the selection of climate-resilient mango varieties/hybrids and shows potential for future breeding programs. Full article
(This article belongs to the Special Issue Abiotic Stress Responses in Horticultural Crops)
Show Figures

Figure 1

26 pages, 2227 KiB  
Article
Beyond the Hype: Stakeholder Perceptions of Nanotechnology and Genetic Engineering for Sustainable Food Production
by Madison D. Horgan, Christopher L. Cummings, Jennifer Kuzma, Michael Dahlstrom, Ilaria Cimadori, Maude Cuchiara, Colin Larter, Nick Loschin and Khara D. Grieger
Sustainability 2025, 17(15), 6795; https://doi.org/10.3390/su17156795 - 25 Jul 2025
Viewed by 471
Abstract
Ensuring sustainable food systems is an urgent global priority as populations grow and environmental pressures mount. Technological innovations such as genetic engineering (GE) and nanotechnology (nano) have been promoted as promising pathways for achieving greater sustainability in agriculture and food production. Yet, the [...] Read more.
Ensuring sustainable food systems is an urgent global priority as populations grow and environmental pressures mount. Technological innovations such as genetic engineering (GE) and nanotechnology (nano) have been promoted as promising pathways for achieving greater sustainability in agriculture and food production. Yet, the sustainability of these technologies is not defined by technical performance alone; it hinges on how they are perceived by key stakeholders and how well they align with broader societal values. This study addresses the critical question of how expert stakeholders evaluate the sustainability of GE and nano-based food and agriculture (agrifood) products. Using a multi-method online platform, we engaged 42 experts across academia, government, industry, and NGOs in the United States to assess six real-world case studies—three using GE and three using nano—across ten different dimensions of sustainability. We show that nano-based products were consistently rated more favorably than their GE counterparts in terms of environmental, economic, and social sustainability, as well as across ethical and societal dimensions. Like prior studies, our results reveal that stakeholders see meaningful distinctions between nanotechnology and biotechnology, likely due to underlying value-based concerns about animal welfare, perceived naturalness, or corporate control of agrifood systems. The fruit coating and flu vaccine—both nano-enabled—received the most positive ratings, while GE mustard greens and salmon were the most polarizing. These results underscore the importance of incorporating stakeholder perspectives in technology assessment and innovation governance. These results also suggest that responsible innovation efforts in agrifood systems should prioritize communication, addressing meaningful societal needs, and the contextual understanding of societal values to build trust and legitimacy. Full article
(This article belongs to the Special Issue Food Science and Engineering for Sustainability)
Show Figures

Figure 1

7 pages, 723 KiB  
Proceeding Paper
Octanoic Fatty Acid Significantly Impacts the Growth of Foodborne Pathogens and Quality of Mabroom Date Fruits (Phoenix dactylifera L.)
by Elshafia Ali Hamid Mohammed, Károly Pál and Azza Siddig Hussien Abbo
Biol. Life Sci. Forum 2025, 47(1), 2; https://doi.org/10.3390/blsf2025047002 - 24 Jul 2025
Viewed by 261
Abstract
Mabroom dates (Phoenix dactylifera L.) are recognized as one of the most important crops in Qatar. Fresh fruit dates are susceptible to mould and post-harvest spoilage, resulting in a significant financial loss. Octanoic fatty acid (OFA) has been shown to regulate the [...] Read more.
Mabroom dates (Phoenix dactylifera L.) are recognized as one of the most important crops in Qatar. Fresh fruit dates are susceptible to mould and post-harvest spoilage, resulting in a significant financial loss. Octanoic fatty acid (OFA) has been shown to regulate the growth of mould-causing organisms such as fungi and bacteria. It is known to have antibacterial properties. The objective of the current study was to evaluate the in vitro effect of OFA on the post-harvest pathogens of Mabroom fruits. Fresh, apparently healthy, and fully ripe Mabroom dates were obtained from the National Agriculture and Food Corporation (NAFCO). The chosen fruits were packed in sterile, well-ventilated plastic boxes and transported to the lab under controlled conditions. The fruits were distributed into five groups (G1 to G5). The groups G1, G2, and G3 received 1%, 2%, and 3.5% OFA, respectively, while G4 was left untreated and G5 was washed only with tap water as a positive control treatment. Each group contained 200 g of fresh and healthy semi-soft dates. The samples were then dried and incubated in a humidity chamber at 25 °C ± 2 for seven days. The signs and symptoms of decay were monitored and recorded. The presence of pathogens was confirmed via phenotypic and microscopic-based methods. The results showed a significant difference (p ≤ 0.05) among the groups. OFA at 3.5% had the strongest inhibitory action against post-harvest pathogens, followed by OFA2%. However, there were no differences (p ≤ 0.05) between OFA1% and the control groups. Aspergillus spp., Penicillium spp., Rhizopus spp., and Botrytis spp. were most abundant in the control group, followed by OFA2% and OFA1%, respectively. In conclusion, octanoic fatty acid at 3.5% may improve the quality of date fruits through its high antimicrobial activity, reduce the effect of post-harvest decay, minimize the loss of date fruits during storage, and improve the sustainability of date fruits. Further experiments are necessary to confirm the effectiveness of OFA as a green solution for sustainable date fruit production. Full article
Show Figures

Figure 1

19 pages, 2340 KiB  
Article
Analysis of Olive Tree Flowering Behavior Based on Thermal Requirements: A Case Study from the Northern Mediterranean Region
by Maja Podgornik, Jakob Fantinič, Tjaša Pogačar and Vesna Zupanc
Climate 2025, 13(8), 156; https://doi.org/10.3390/cli13080156 - 23 Jul 2025
Viewed by 461
Abstract
In recent years, early olive fruit drop has been observed in the northern Mediterranean regions, causing significant economic losses, although the exact cause remains unknown. Recent studies have identified several possible causes; however, our understanding of how olive trees respond to these environmental [...] Read more.
In recent years, early olive fruit drop has been observed in the northern Mediterranean regions, causing significant economic losses, although the exact cause remains unknown. Recent studies have identified several possible causes; however, our understanding of how olive trees respond to these environmental stresses remains limited. This study includes an analysis of selected meteorological and flowering data for Olea europaea L. “Istrska belica” to evaluate the use of a chilling and forcing model for a better understanding of flowering time dynamics under a changing climate. The flowering process is influenced by high diurnal temperature ranges (DTRs) during the pre-flowering period, resulting in earlier flowering. Despite annual fluctuations due to various climatic factors, an increase in DTRs has been observed in recent decades, although the mechanisms by which olive trees respond to high DTRs remain unclear. The chilling requirements are still well met in the region (1500 ± 250 chilling units), although their total has declined over the years. According to the Chilling Hours Model, chilling units—referred to as chilling hours—represent the number of hours with temperatures between 0 and 7.2 °C, accumulated throughout the winter season. Growing degree hours (GDHs) are strongly correlated with the onset of flowering. These results suggest that global warming is already affecting the synchrony between olive tree phenology and environmental conditions in the northern Mediterranean and may be one of the reason for the green drop. Full article
(This article belongs to the Section Climate Adaptation and Mitigation)
Show Figures

Figure 1

18 pages, 11627 KiB  
Article
Genome-Wide Identification, Characterization, and Expression Analysis of BBX Genes During Anthocyanin Biosynthesis in Mango (Mangifera indica L.)
by Chengkun Yang, Muhammad Mobeen Tahir, Yawen Zhang, Xiaowen Wang, Wencan Zhu, Feili Li, Kaibing Zhou, Qin Deng and Minjie Qian
Biology 2025, 14(8), 919; https://doi.org/10.3390/biology14080919 - 23 Jul 2025
Viewed by 291
Abstract
B-box (BBX) transcription factors are critical regulators of light-mediated anthocyanin biosynthesis, influencing peel coloration in plants. To explore their role in red mango cultivars, we identified 32 BBX genes (MiBBX1MiBBX32) in the mango (Mangifera indica L.) genome using [...] Read more.
B-box (BBX) transcription factors are critical regulators of light-mediated anthocyanin biosynthesis, influencing peel coloration in plants. To explore their role in red mango cultivars, we identified 32 BBX genes (MiBBX1MiBBX32) in the mango (Mangifera indica L.) genome using a genome-wide analysis. Phylogenetic and structural analyses classified these genes into five subfamilies based on conserved domains. A collinearity analysis revealed segmental duplication as the primary mechanism of MiBBX gene family expansion, with purifying selection shaping their evolution. A promoter analysis identified numerous light- and hormone-responsive cis-elements, indicating regulatory roles in the light and hormonal signaling pathways. Expression profiling in the ‘Sensation’ cultivar revealed organ-specific patterns, with several MiBBX genes showing higher expression in the peel than in the flesh. Many of these genes also consistently exhibited elevated expression in the peel of red-skinned cultivars (‘Sensation’ and ‘Guifei’) compared to yellow and green cultivars, suggesting their role in red peel pigmentation. Furthermore, postharvest light treatment of ‘Hongmang No. 6’ fruit significantly upregulated multiple MiBBX genes, suggesting their involvement in light-induced anthocyanin accumulation in red mango peel. These findings provide valuable insights into the molecular mechanisms governing light-regulated peel coloration in mango and establish a foundation for functional studies of MiBBX genes in fruit pigmentation. Full article
(This article belongs to the Special Issue Recent Advances in Biosynthesis and Degradation of Plant Anthocyanin)
Show Figures

Figure 1

14 pages, 2027 KiB  
Article
The Role of Potassium and KUP/KT/HAK Transporters in Regulating Strawberry (Fragaria × ananassa Duch.) Fruit Development
by José A. Mercado-Hornos, Claudia Rodríguez-Hiraldo, Consuelo Guerrero, Sara Posé, Antonio J. Matas, Lourdes Rubio and José A. Mercado
Plants 2025, 14(14), 2241; https://doi.org/10.3390/plants14142241 - 20 Jul 2025
Viewed by 375
Abstract
Potassium is the most abundant macronutrient in plants, participating in essential physiological processes such as turgor maintenance. A reduction in cell turgor is a hallmark of the ripening process associated with fruit softening. The dynamic of K+ fluxes in fleshy fruits is [...] Read more.
Potassium is the most abundant macronutrient in plants, participating in essential physiological processes such as turgor maintenance. A reduction in cell turgor is a hallmark of the ripening process associated with fruit softening. The dynamic of K+ fluxes in fleshy fruits is largely unknown; however, the reallocation of K+ into the apoplast has been proposed as a contributing factor to the decrease in fruit turgor, contributing to fruit softening. High-affinity K+ transporters belonging to the KUP/HT/HAK transporter family have been implicated in this process in some fruits. In this study, a comprehensive genome-wide analysis of the KUP/KT/HAK family of high-affinity K+ transporters in strawberry (Fragaria × ananassa Duch.) was conducted, identifying 60 putative transporter genes. The chromosomal distribution of the FaKUP gene family and phylogenetic relationship and structure of predicted proteins were thoroughly examined. Transcriptomic profiling revealed the expression of 19 FaKUP genes within the fruit receptacle, with a predominant downregulation observed during ripening, particularly in FaKUP14, 24 and 47. This pattern suggests their functional relevance in early fruit development and turgor maintenance. Mineral composition analyses confirmed that K+ is the most abundant macronutrient in strawberry fruits, exhibiting a slight decrease as ripening progressed. Membrane potential (Em) and diffusion potentials (ED) at increasing external K+ concentrations were measured by electrophysiology in parenchymal cells of green and white fruits. The results obtained suggest a significant diminution in cytosolic K+ levels in white compared to green fruits. Furthermore, the slope of change in ED at increasing external K+ concentration indicated a lower K+ permeability of the plasma membrane in white fruits, aligning with transcriptomic data. This study provides critical insights into the regulatory mechanisms of K+ transport during strawberry ripening and identifies potential targets for genetic modifications aimed at enhancing fruit firmness and shelf life. Full article
(This article belongs to the Special Issue Postharvest Quality and Physiology of Vegetables and Fruits)
Show Figures

Figure 1

14 pages, 1146 KiB  
Article
Damage Potential and Feeding Preference of Halyomorpha halys (Stål), Nezara viridula (L.), and Leptoglossus zonatus (Dallas) Among Different Ripening Stages of Tomato
by Md Tafsir Nur Nabi Rashed, Adam G. Dale, Gideon Alake, Simon S. Riley, Nicole Benda and Amanda C. Hodges
Insects 2025, 16(7), 740; https://doi.org/10.3390/insects16070740 - 20 Jul 2025
Viewed by 460
Abstract
Tomato (Solanum lycopersicum L.) is one of the most preferred hosts of polyphagous stink bugs (Hemiptera: Pentatomidae) and leaf-footed bugs (Hemiptera: Coreidae). These hemipterans can infest tomato fruits at all stages of fruit ripening. However, it is unclear whether there is any [...] Read more.
Tomato (Solanum lycopersicum L.) is one of the most preferred hosts of polyphagous stink bugs (Hemiptera: Pentatomidae) and leaf-footed bugs (Hemiptera: Coreidae). These hemipterans can infest tomato fruits at all stages of fruit ripening. However, it is unclear whether there is any feeding preference for these true bugs among different ripening stages of tomato (green, breaker, pink, and red stages). Feeding and behavioral assays were performed to determine the feeding preference and damage potential of two common stink bugs—the brown marmorated stink bug (Halyomorpha halys (Stål)) and the southern green stink bug (Nezara viridula L.)—and a leaf-footed bug (Leptoglossus zonatus (Dallas)) among the various ripening stages of tomato. The results indicated that green is the most preferred ripening stage for N. viridula and L. zonatus, while pink tomatoes were found to be a more preferred feeding site for H. halys. Fully ripe red tomatoes were found to be the least preferred feeding site for all three insects. The findings of this study will be useful for developing fruit damage symptom-based monitoring programs and establishing economic threshold levels for these pests in tomatoes, as well as informing harvesting regimes. Full article
(This article belongs to the Collection Biology and Management of Sap-Sucking Pests)
Show Figures

Figure 1

23 pages, 15440 KiB  
Article
Diversity and Correlation Analysis of Differential Amino Acid Metabolites and Dominant Endophytic Bacteria in Lycium chinense Fruits at Different Stages
by Chongxin Yin, Huichun Xie, Xiaoli Yang, Lianyu Zhou, Guigong Geng and Feng Qiao
Genes 2025, 16(7), 836; https://doi.org/10.3390/genes16070836 - 18 Jul 2025
Viewed by 337
Abstract
Background: Lycium chinense has been acknowledged for its substantial nutritional benefits. The “Mengqi No.1” variety of L. chinense is known for its high yield and exceptional quality. Methods: We screened twenty dominant endophytic bacterial genera based on OTUs from L. [...] Read more.
Background: Lycium chinense has been acknowledged for its substantial nutritional benefits. The “Mengqi No.1” variety of L. chinense is known for its high yield and exceptional quality. Methods: We screened twenty dominant endophytic bacterial genera based on OTUs from L. chinense fruits during three developmental stages. Results: Forty-three differential amino acid metabolites were selected from L. chinense fruits. Five endophytic bacteria (Enterococcus, Escherichia-Shigella, Bacteroides, Pseudomonas, and Bacillus) were dominant genera in green fruit (GF, 16–19 days after flowering), color-changing fruit (CCF, 22–25 days after flowering), and red-ripe fruit (RRF, 31–34 days after flowering). Four endophytic bacterial genera (Enterococcus, Bacillus, Pseudomonas, and Rhodanobacter) showed positive correlation with twenty different amino acid metabolites and negative correlation with seven different amino acid metabolites. Conclusions: Five genes (AST1, ltaE1, TAT1, SHMT2, and SHMT3) indicated positive correlation with seventeen different amino acid metabolites and negative correlation with eight different amino acid metabolites. AST1 gene had a major role in regulating arginine biosynthesis (ko00220); ltaE1, SHMT2, and SHMT3 genes were major in regulating glycine, serine, and threonine metabolism (ko00260); and TAT1 gene had a major role in regulating tyrosine metabolism (ko00350). These findings offer insights into the relationship between amino acid synthesis and endophytic bacteria in L. chinense fruits. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop