Beyond the Hype: Stakeholder Perceptions of Nanotechnology and Genetic Engineering for Sustainable Food Production
Abstract
1. Introduction
2. Literature Review
2.1. Defining Sustainability in Agrifood Systems
2.2. Nano and GE as Approaches to Sustainable Agrifoods
3. Methods
3.1. Respondent Sampling Procedure
3.2. Sample Composition
3.3. Case Studies
3.3.1. Case Study Portrayal
3.3.2. GE Case Studies
Case Study 1: Faster-Growing Atlantic Salmon
Case Study 2: Heat-Tolerant Slick-Hair Beef Cattle
Case Study 3: Less Pungent Mustard Greens
3.3.3. Nano Case Studies
Case Study 4: More Efficient Phosphorus Fertilizer
Case Study 5: Improved Avian Influenza Vaccines
Case Study 6: Fruit Coatings Designed to Increase Shelf Life and Reduce Waste
3.3.4. Quantitative Comparison of the Sustainability of Case Studies
4. Results
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Richardson, K.; Steffen, W.; Lucht, W.; Bendtsen, J.; Cornell, S.E.; Donges, J.F.; Drüke, M.; Fetzer, I.; Bala, G.; von Bloh, W.; et al. Earth beyond Six of Nine Planetary Boundaries. Sci. Adv. 2023, 9, eadh2458. [Google Scholar] [CrossRef]
- Definitions: Sustainability and Food Systems. Available online: https://www.usda.gov/about-usda/general-information/staff-offices/office-chief-economist/sustainability/definitions-sustainability-and-food-systems (accessed on 12 June 2025).
- Saikanth, D.R.K.; Supriya; Singh, B.V.; Rai, A.K.; Bana, S.R.; Sachan, D.S.; Singh, B. Advancing Sustainable Agriculture: A Comprehensive Review for Optimizing Food Production and Environmental Conservation. Int. J. Plant Soil Sci. 2023, 35, 417–425. [Google Scholar] [CrossRef]
- Singh, R.L.; Mondal, S. Biotechnology for Sustainable Agriculture: Emerging Approaches and Strategies; Woodhead Publishing: Sawston, UK, 2017; ISBN 978-0-12-812238-9. [Google Scholar]
- Anderson, J.A.; Gipmans, M.; Hurst, S.; Layton, R.; Nehra, N.; Pickett, J.; Shah, D.M.; Souza, T.L.P.O.; Tripathi, L. Emerging Agricultural Biotechnologies for Sustainable Agriculture and Food Security. J. Agric. Food Chem. 2016, 64, 383–393. [Google Scholar] [CrossRef]
- Hefferon, K.L.; De Steur, H.; Perez-Cueto, F.J.A.; Herring, R. Alternative Protein Innovations and Challenges for Industry and Consumer: An Initial Overview. Front. Sustain. Food Syst. 2023, 7, 1038286. [Google Scholar] [CrossRef]
- Getahun, S.; Kefale, H.; Gelaye, Y. Application of Precision Agriculture Technologies for Sustainable Crop Production and Environmental Sustainability: A Systematic Review. Sci. World J. 2024, 2024, 2126734. [Google Scholar] [CrossRef]
- Razzaq, A.; Kaur, P.; Akhter, N.; Wani, S.H.; Saleem, F. Next-Generation Breeding Strategies for Climate-Ready Crops. Front. Plant Sci. 2021, 12, 620420. [Google Scholar] [CrossRef]
- Guelfi, D.; Nunes, A.P.P.; Sarkis, L.F.; Oliveira, D.P. Innovative Phosphate Fertilizer Technologies to Improve Phosphorus Use Efficiency in Agriculture. Sustainability 2022, 14, 14266. [Google Scholar] [CrossRef]
- Nile, S.H.; Baskar, V.; Selvaraj, D.; Nile, A.; Xiao, J.; Kai, G. Nanotechnologies in Food Science: Applications, Recent Trends, and Future Perspectives. Nanomicro. Lett. 2020, 12, 45. [Google Scholar] [CrossRef] [PubMed]
- Karavolias, N.G.; Horner, W.; Abugu, M.N.; Evanega, S.N. Application of Gene Editing for Climate Change in Agriculture. Front. Sustain. Food Syst. 2021, 5, 685801. [Google Scholar] [CrossRef]
- Eş, I.; Gavahian, M.; Marti-Quijal, F.J.; Lorenzo, J.M.; Mousavi Khaneghah, A.; Tsatsanis, C.; Kampranis, S.C.; Barba, F.J. The Application of the CRISPR-Cas9 Genome Editing Machinery in Food and Agricultural Science: Current Status, Future Perspectives, and Associated Challenges. Biotechnol. Adv. 2019, 37, 410–421. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.H.; Ben Taieb, S.; Moritaka, M.; Ran, L.; Fukuda, S. Public Acceptance of Foods Derived from Genome Editing Technology: A Review of the Technical, Social and Regulatory Aspects. J. Int. Food Agribus. Mark. 2023, 35, 397–427. [Google Scholar] [CrossRef]
- Hofmann, T.; Lowry, G.V.; Ghoshal, S.; Tufenkji, N.; Brambilla, D.; Dutcher, J.R.; Gilbertson, L.M.; Giraldo, J.P.; Kinsella, J.M.; Landry, M.P.; et al. Technology Readiness and Overcoming Barriers to Sustainably Implement Nanotechnology-Enabled Plant Agriculture. Nat. Food 2020, 1, 416–425. [Google Scholar] [CrossRef]
- Sabio, R.P.; Lehoux, P. Responsible Research and Innovation in Food Systems: A Critical Review of the Literature and Future Research Avenues. Agric. Hum. Values 2024. [Google Scholar] [CrossRef]
- Testa, S.; Nielsen, K.R.; Vallentin, S.; Ciccullo, F. Sustainability-Oriented Innovation in the Agri-Food System: Current Issues and the Road Ahead. Technol. Forecast. Soc. Change 2022, 179, 121653. [Google Scholar] [CrossRef]
- Grobe, A.; Renn, O.; Jaeger, A. Risk Governance of Nanotechnology Applications in Food and Cosmetics; International Risk Governance Council: Geneva, Switzerland, 2008. [Google Scholar]
- Selfa, T.; Lindberg, S.; Bain, C. Governing Gene Editing in Agriculture and Food in the United States: Tensions, Contestations, and Realignments. Elem. Sci. Anthr. 2021, 9, 00153. [Google Scholar] [CrossRef]
- Grieger, K.D.; Merck, A.W.; Cuchiara, M.; Binder, A.R.; Kokotovich, A.; Cummings, C.L.; Kuzma, J. Responsible Innovation of Nano-Agrifoods: Insights and Views from U.S. Stakeholders. NanoImpact 2021, 24, 100365. [Google Scholar] [CrossRef]
- Purvis, B.; Mao, Y.; Robinson, D. Three Pillars of Sustainability: In Search of Conceptual Origins. Sustain. Sci. 2019, 14, 681–695. [Google Scholar] [CrossRef]
- Brundtland, G.H. Our Common Future: Report of the World Commission on Environment and Development; United Nations General Assembly: Geneva, Switzerland, 1987. [Google Scholar]
- National Environmental Policy Act; 1969. Available online: https://www.energy.gov/sites/prod/files/nepapub/nepa_documents/RedDont/Req-NEPA.pdf (accessed on 27 June 2025).
- United Nations Sustainable Development Goal 8. Available online: https://sdgs.un.org/goals/goal8 (accessed on 12 June 2025).
- Seghezzo, L. The Five Dimensions of Sustainability. Environ. Politics 2009, 18, 539–556. [Google Scholar] [CrossRef]
- Hahn, T.; Preuss, L.; Pinkse, J.; Figge, F. Cognitive Frames in Corporate Sustainability: Managerial Sensemaking with Paradoxical and Business Case Frames. Acad. Manag. Rev. 2014, 39, 463–487. [Google Scholar] [CrossRef]
- Boyer, R.H.W.; Peterson, N.D.; Arora, P.; Caldwell, K. Five Approaches to Social Sustainability and an Integrated Way Forward. Sustainability 2016, 8, 878. [Google Scholar] [CrossRef]
- Macken-Walsh, A.; Henchion, M.M.; Regan, A. ‘Come Aboard’ the Systems-Based Approach: The Role of Social Science in Agri-Food Research and Innovation. Ir. J. Agric. Food Res. 2022, 61, 168–183. [Google Scholar] [CrossRef]
- Dalziel, P.; Saunders, C.; Tait, P.; Saunders, J.; Miller, S.; Guenther, M.; Rutherford, P.; Driver, T. Rewarding Responsible Innovation When Consumers Are Distant from Producers: Evidence from New Zealand. Int. Food Agribus. Manag. Rev. 2018, 21, 487–504. [Google Scholar] [CrossRef]
- Wenzl, C.; Buddle, E.A.; Ankeny, R.A. Problematic Use of Sustainability Claims in Recent Scientific Literature on Crop Gene Technologies: Toward Improving Practices and Communication. Plant J. 2025, 122, e70137. [Google Scholar] [CrossRef] [PubMed]
- Kuzma, J.; Grieger, K.; Cimadori, I.; Cummings, C.L.; Loschin, N.; Wei, W. Parameters, Practices, and Preferences for Regulatory Review of Emerging Biotechnology Products in Food and Agriculture. Front. Bioeng. Biotechnol. 2023, 11, 1256388. [Google Scholar] [CrossRef]
- Paarlberg, R. The Ethics of Modern Agriculture. Society 2009, 46, 4–8. [Google Scholar] [CrossRef]
- Giri, D.; Pokhrel, S. Organic Farming for Sustainable Agriculture: A Review. Russ. J. Agric. Socio-Econ. Sci. 2022, 130, 23–32. [Google Scholar]
- Brown, S.; Getz, C. Towards Domestic Fair Trade? Farm Labor, Food Localism, and the ‘Family Scale’ Farm. GeoJournal 2008, 73, 11–22. [Google Scholar] [CrossRef]
- Robinson, P.K. Responsible Retailing: Regulating Fair and Ethical Trade. J. Int. Dev. 2009, 21, 1015–1026. [Google Scholar] [CrossRef]
- IRGC. Introduction to the IRGC Risk Governance Framework; EPFL International Risk Governance Center: Lausanne, Switzerland, 2017. [Google Scholar]
- Assunção, R.; Alvito, P.; Brazão, R.; Carmona, P.; Fernandes, P.; Jakobsen, L.S.; Lopes, C.; Martins, C.; Membré, J.-M.; Monteiro, S.; et al. Building Capacity in Risk-Benefit Assessment of Foods: Lessons Learned from the RB4EU Project. Trends Food Sci. Technol. 2019, 91, 541–548. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Science Breakthroughs to Advance Food and Agricultural Research by 2030; National Academies Press: Washington, DC, USA, 2019; ISBN 978-0-309-47392-7. [Google Scholar]
- Young, A.E.; Mansour, T.A.; McNabb, B.R.; Owen, J.R.; Trott, J.F.; Brown, C.T.; Van Eenennaam, A.L. Genomic and Phenotypic Analyses of Six Offspring of a Genome-Edited Hornless Bull. Nat. Biotechnol. 2020, 38, 225–232. [Google Scholar] [CrossRef]
- Zhang, X.; Yao, G.; Vishwakarma, S.; Dalin, C.; Komarek, A.M.; Kanter, D.R.; Davis, K.F.; Pfeifer, K.; Zhao, J.; Zou, T.; et al. Quantitative Assessment of Agricultural Sustainability Reveals Divergent Priorities among Nations. One Earth 2021, 4, 1262–1277. [Google Scholar] [CrossRef]
- Bailey-Serres, J.; Lee, S.C.; Brinton, E. Waterproofing Crops: Effective Flooding Survival Strategies. Plant Physiol. 2012, 160, 1698–1709. [Google Scholar] [CrossRef]
- Esmaeili, N.; Shen, G.; Zhang, H. Genetic Manipulation for Abiotic Stress Resistance Traits in Crops. Front. Plant Sci. 2022, 13, 1011985. [Google Scholar] [CrossRef] [PubMed]
- Yunes, M.C.; Osório-Santos, Z.; von Keyserlingk, M.A.G.; Hötzel, M.J. Gene Editing for Improved Animal Welfare and Production Traits in Cattle: Will This Technology Be Embraced or Rejected by the Public? Sustainability 2021, 13, 4966. [Google Scholar] [CrossRef]
- Zaheer, S.; Shehzad, J.; Chaudhari, S.K.; Mustafa, G. The Application of Nanotechnology to Accelerate Plant Adaptation to Abiotic Stresses. In Advanced Nanotechnology in Plants; CRC Press: Boca Raton, FL, USA, 2023; ISBN 978-1-00-336857-1. [Google Scholar]
- Sampathkumar, K.; Tan, K.X.; Loo, S.C.J. Developing Nano-Delivery Systems for Agriculture and Food Applications with Nature-Derived Polymers. iScience 2020, 23, 101055. [Google Scholar] [CrossRef] [PubMed]
- Zambrano-Zaragoza, M.L.; González-Reza, R.; Mendoza-Muñoz, N.; Miranda-Linares, V.; Bernal-Couoh, T.F.; Mendoza-Elvira, S.; Quintanar-Guerrero, D. Nanosystems in Edible Coatings: A Novel Strategy for Food Preservation. Int. J. Mol. Sci. 2018, 19, 705. [Google Scholar] [CrossRef]
- Basavegowda, N.; Baek, K.-H. Current and Future Perspectives on the Use of Nanofertilizers for Sustainable Agriculture: The Case of Phosphorus Nanofertilizer. 3 Biotech 2021, 11, 357. [Google Scholar] [CrossRef]
- Huntimer, L.; Ramer-Tait, A.E.; Petersen, L.K.; Ross, K.A.; Walz, K.A.; Wang, C.; Hostetter, J.; Narasimhan, B.; Wannemuehler, M.J. Evaluation of Biocompatibility and Administration Site Reactogenicity of Polyanhydride-Particle-Based Platform for Vaccine Delivery. Adv. Healthc. Mater. 2012, 2, 369–378. [Google Scholar] [CrossRef]
- Jung, J.; Deng, Z.; Zhao, Y. A Review of Cellulose Nanomaterials Incorporated Fruit Coatings with Improved Barrier Property and Stability: Principles and Applications. J. Food Process Eng. 2020, 43, e13344. [Google Scholar] [CrossRef]
- Kuzma, J.; Cummings, C.L. Cultural Beliefs and Stakeholder Affiliation Influence Attitudes Towards Responsible Research and Innovation Among United States Stakeholders Involved in Biotechnology and Gene Editing. Front. Polit. Sci. 2021, 3, 677003. [Google Scholar] [CrossRef]
- Gómez-Llorente, H.; Hervás, P.; Pérez-Esteve, É.; Barat, J.M.; Fernández-Segovia, I. Nanotechnology in the Agri-Food Sector: Consumer Perceptions. NanoImpact 2022, 26, 100399. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Zheng, X.; Shangguan, S.; Zhao, L.; Fang, X.; Huang, Y.; Hermanowicz, S.W. Public Perceptions and Willingness-to-Pay for Nanopesticides. Nanomaterials 2022, 12, 1292. [Google Scholar] [CrossRef] [PubMed]
- Woźniak-Gientka, E.; Agata, T.; Milica, P.; Anna, B.; Dennis, E.; Nick, V.; Godelieve, G.; Selim, C.; Naghmeh, A.; Tomasz, T. Public Perception of Plant Gene Technologies Worldwide in the Light of Food Security. GM Crops Food 2022, 13, 218–241. [Google Scholar] [CrossRef] [PubMed]
- Kato-Nitta, N.; Tachikawa, M.; Inagaki, Y.; Maeda, T. Public Perceptions of Risks and Benefits of Gene-Edited Food Crops: An International Comparative Study between the US, Japan, and Germany. Sci. Technol. Hum. Values 2023, 48, 1360–1392. [Google Scholar] [CrossRef]
- Kuzma, J.; Grieger, K. Community-Led Governance for Gene-Edited Crops. Science 2020, 370, 916–918. [Google Scholar] [CrossRef]
- Baranowska-Wójcik, E.; Szwajgier, D.; Oleszczuk, P.; Winiarska-Mieczan, A. Effects of Titanium Dioxide Nanoparticles Exposure on Human Health—A Review. Biol. Trace Elem. Res. 2020, 193, 118–129. [Google Scholar] [CrossRef]
- McClements, D.J.; Rao, J. Food-Grade Nanoemulsions: Formulation, Fabrication, Properties, Performance, Biological Fate, and Potential Toxicity. Crit. Rev. Food Sci. Nutr. 2011, 51, 285–330. [Google Scholar] [CrossRef]
- EIT Food. The Trust Report; EIT Food: Madrid, Spain, 2020. [Google Scholar]
- Grieger, K.; Merck, A.; Kuzma, J. Formulating Best Practices for Responsible Innovation of Nano-Agrifoods through Stakeholder Insights and Reflection. J. Responsible Technol. 2022, 10, 100030. [Google Scholar] [CrossRef]
- Brown, J.; Fatehi, L.; Kuzma, J. Altruism and Skepticism in Public Attitudes toward Food Nanotechnologies. J. Nanopart. Res. 2015, 17, 122. [Google Scholar] [CrossRef]
- Siegrist, M.; Cousin, M.-E.; Kastenholz, H.; Wiek, A. Public Acceptance of Nanotechnology Foods and Food Packaging: The Influence of Affect and Trust. Appetite 2007, 49, 459–466. [Google Scholar] [CrossRef]
- Giles, E.L.; Kuznesof, S.; Clark, B.; Hubbard, C.; Frewer, L.J. Consumer Acceptance of and Willingness to Pay for Food Nanotechnology: A Systematic Review. J. Nanopart. Res. 2015, 17, 467. [Google Scholar] [CrossRef]
- Kuzma, J. Society and Policy Maker’s Responsibilities. In Consumer Perception of Product Risks and Benefits; Springer International Publishing/Springer Nature: Cham, Switzerland, 2017; pp. 547–566. ISBN 978-3-319-50528-2. [Google Scholar]
- Yue, C.; Zhao, S.; Kuzma, J. Heterogeneous Consumer Preferences for Nanotechnology and Genetic-Modification Technology in Food Products. J. Agric. Econ. 2015, 66, 308–328. [Google Scholar] [CrossRef]
- Yue, C.; Zhao, S.; Cummings, C.; Kuzma, J. Investigating Factors Influencing Consumer Willingness to Buy GM Food and Nano-Food. J. Nanopart. Res. 2015, 17, 283. [Google Scholar] [CrossRef]
- Dillman, D.A.; Smyth, J.D.; Christian, L.M. Internet, Phone, Mail, and Mixed Mode Surveys: The Tailored Design Method, 4th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014; pp. xvii, 509. ISBN 978-1-118-45614-9. [Google Scholar]
- Ruzante, J.M.; Shumaker, E.T.; Holt, S.; Mayer, S.; Kokotovich, A.; Cuchiara, M.; Binder, A.R.; Kuzma, J.; Grieger, K. Eliciting Stakeholder Perceptions Using a Novel Online Engagement Platform: A Case Study on Nano-Agrifoods; RTI Press Occasional Papers; RTI Press: Research Triangle Park, NC, USA, 2022. [Google Scholar]
- Creswell, J.E.; Plano Clark, V.L. Designing and Conducting Mixed Methods Research, 3rd ed.; SAGE: Thousand Oaks, CA, USA, 2018. [Google Scholar]
- Cummings, C.L.; Kuzma, J. Societal Risk Evaluation Scheme (SRES): Scenario-Based Multi-Criteria Evaluation of Synthetic Biology Applications. PLoS ONE 2017, 12, e0168564. [Google Scholar] [CrossRef] [PubMed]
- FDA. AquAdvantage Salmon Fact Sheet. Available online: https://www.fda.gov/animal-veterinary/aquadvantage-salmon/aquadvantage-salmon-fact-sheet (accessed on 12 June 2025).
- FDA. Q&A on FDA’s Approval of AquAdvantage Salmon. Available online: https://www.fda.gov/animal-veterinary/aquadvantage-salmon/qa-fdas-approval-aquadvantage-salmon (accessed on 12 June 2025).
- Lindsey, B. The Potential Environmental Impacts of Genetically Modified (GMO) Salmon. Available online: https://sor.senate.ca.gov/sites/sor.senate.ca.gov/files/The%20Potential%20Environmental%20Impacts%20of%20Genetically%20Modified%20%28GMO%29%20Salmon.pdf (accessed on 27 June 2025).
- Lefebvre, S.; Cook, L.A.; Griffiths, M.A. Consumer Perceptions of Genetically Modified Foods: A Mixed-Method Approach. J. Consum. Mark. 2019, 36, 113–123. [Google Scholar] [CrossRef]
- Van Eenennaam, A.L.; Young, A.E. Public Perception of Animal Biotechnology. In Animal Biotechnology 2: Emerging Breeding Technologies; Niemann, H., Wrenzycki, C., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 275–303. ISBN 978-3-319-92348-2. [Google Scholar]
- AquaBounty Technologies, Inc. AquaBounty Announces Plans to Cease Fish Farming Operations. Available online: https://investors.aquabounty.com/news-releases/news-release-details/aquabounty-announces-plans-cease-fish-farming-operations (accessed on 12 June 2025).
- FDA. PRLR-SLICK Cattle Risk Assessment Summary; FDA: Silver Spring, MD, USA, 2022. [Google Scholar]
- Karlson, D.; Mojica, J.P.; Poorten, T.J.; Lawit, S.J.; Jali, S.; Chauhan, R.D.; Pham, G.M.; Marri, P.; Guffy, S.L.; Fear, J.M.; et al. Targeted Mutagenesis of the Multicopy Myrosinase Gene Family in Allotetraploid Brassica Juncea Reduces Pungency in Fresh Leaves across Environments. Plants 2022, 11, 2494. [Google Scholar] [CrossRef]
- Grinstein, J.D. Salad Days: Pairwise Gene Edits Food to Topple Nutrition Barriers. GEN Biotechnol. 2023, 2, 5–9. [Google Scholar] [CrossRef]
- Rungapamestry, V.; Duncan, A.J.; Fuller, Z.; Ratcliffe, B. Effect of Cooking Brassica Vegetables on the Subsequent Hydrolysis and Metabolic Fate of Glucosinolates. Proc. Nutr. Soc. 2007, 66, 69–81. [Google Scholar] [CrossRef]
- Hopkins, R.J.; van Dam, N.M.; van Loon, J.J.A. Role of Glucosinolates in Insect-Plant Relationships and Multitrophic Interactions. Annu. Rev. Entomol. 2009, 54, 57–83. [Google Scholar] [CrossRef]
- Juarez, B. Confirmation of the Regulatory Status of Genome Edited Brassica Juncea Lines with Improved Flavor 2020. Available online: https://www.aphis.usda.gov/sites/default/files/20-168-07_air_response_signed.pdf (accessed on 27 June 2025).
- Mielby, H.; Sandøe, P.; Lassen, J. Multiple Aspects of Unnaturalness: Are Cisgenic Crops Perceived as Being More Natural and More Acceptable than Transgenic Crops? Agric. Hum. Values 2013, 30, 471–480. [Google Scholar] [CrossRef]
- Lusk, J.L.; Jamal, M.; Kurlander, L.; Roucan, M.; Taulman, L. A Meta-Analysis of Genetically Modified Food Valuation Studies. J. Agric. Resour. Econ. 2005, 30, 28–44. [Google Scholar]
- Frewer, L.J.; van der Lans, I.A.; Fischer, A.R.H.; Reinders, M.J.; Menozzi, D.; Zhang, X.; van den Berg, I.; Zimmermann, K.L. Public Perceptions of Agri-Food Applications of Genetic Modification—A Systematic Review and Meta-Analysis. Trends Food Sci. Technol. 2013, 30, 142–152. [Google Scholar] [CrossRef]
- Bunderson, L.D.; Hunter, B.L.; Isaacson, K.J. PAMAM Dendrimers for Fertilizer Delivery 2020. Available online: https://patents.google.com/patent/US11390571B2/en (accessed on 27 June 2025).
- Bunderson, L.D.; Hunter, B.L.; Carpenter, J.O. Blended Nanoparticle Fertilizer Delivery 2020. Available online: https://patents.google.com/patent/WO2020210672A1/en (accessed on 27 June 2025).
- Nano-Yield Nanotechnology. Available online: https://www.nano-yield.com/nanotechnology (accessed on 12 June 2025).
- NanoPhos: Nanoliquid Technology for Delivering Phosphorus and Enhancing Nutrient Uptake. Available online: https://www.nano-yield.com/nano/nanophos (accessed on 12 June 2025).
- Gonzalo, S.; Rodea-Palomares, I.; Leganés, F.; García-Calvo, E.; Rosal, R.; Fernández-Piñas, F. First Evidences of PAMAM Dendrimer Internalization in Microorganisms of Environmental Relevance: A Linkage with Toxicity and Oxidative Stress. Nanotoxicology 2015, 9, 706–718. [Google Scholar] [CrossRef]
- Oliveira, E.; Casado, M.; Faria, M.; Soares, A.M.; Navas, J.M.; Barata, C.; Piña, B. Transcriptomic Response of Zebrafish Embryos to Polyaminoamine (PAMAM) Dendrimers. Nanotoxicology 2014, 8, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Petit, A.-N.; Eullaffroy, P.; Debenest, T.; Gagné, F. Toxicity of PAMAM Dendrimers to Chlamydomonas reinhardtii. Aquat. Toxicol. 2010, 100, 187–193. [Google Scholar] [CrossRef] [PubMed]
- CDC. Current Situation: Bird Flu in Poultry. Available online: https://www.cdc.gov/bird-flu/situation-summary/current-bird-flu-situation-in-poultry.html (accessed on 12 June 2025).
- Kingstad-Bakke, B.A.; Chandrasekar, S.S.; Phanse, Y.; Ross, K.A.; Hatta, M.; Suresh, M.; Kawaoka, Y.; Osorio, J.E.; Narasimhan, B.; Talaat, A.M. Effective Mosaic-Based Nanovaccines against Avian Influenza in Poultry. Vaccine 2019, 37, 5051–5058. [Google Scholar] [CrossRef]
- Ojer, P.; de Cerain, A.L.; Areses, P.; Peñuelas, I.; Irache, J.M. Toxicity Studies of Poly(Anhydride) Nanoparticles as Carriers for Oral Drug Delivery. Pharm. Res. 2012, 29, 2615–2627. [Google Scholar] [CrossRef]
- Pradhan, D.; Jaiswal, A.K.; Jaiswal, S. Emerging Technologies for the Production of Nanocellulose from Lignocellulosic Biomass. Carbohydr. Polym. 2022, 285, 119258. [Google Scholar] [CrossRef]
- Perumal, A.B.; Nambiar, R.B.; Moses, J.A.; Anandharamakrishnan, C. Nanocellulose: Recent Trends and Applications in the Food Industry. Food Hydrocoll. 2022, 127, 107484. [Google Scholar] [CrossRef]
- Brand, W.; van Kesteren, P.C.; Swart, E.; Oomen, A.G. Overview of Potential Adverse Health Effects of Oral Exposure to Nanocellulose. Nanotoxicology 2022, 16, 217–246. [Google Scholar] [CrossRef]
- Shatkin, J.A.; Kim, B. Cellulose Nanomaterials: Life Cycle Risk Assessment, and Environmental Health and Safety Roadmap. Environ. Sci. Nano 2015, 2, 477–499. [Google Scholar] [CrossRef]
- Lie, E.; Ålander, E.; Lindström, T. Possible Toxicological Effects of Nanocellulose—An Updated Literature Study, No 2; Inventia: Stockholm, Sweden, 2017. [Google Scholar]
- Hekmat, S.; Dawson, L.N. Students’ Knowledge and Attitudes towards GMOs and Nanotechnology. Nutr. Food Sci. 2019, 49, 628–638. [Google Scholar] [CrossRef]
- Ineichen, C.; Biller-Andorno, N.; Deplazes-Zemp, A. Image of Synthetic Biology and Nanotechnology: A Survey among University Students. Front. Genet. 2017, 8, 00122. [Google Scholar] [CrossRef]
- Trump, B.; Cummings, C.; Klasa, K.; Galaitsi, S.; Linkov, I. Governing Biotechnology to Provide Safety and Security and Address Ethical, Legal, and Social Implications. Front. Genet. 2022, 13, 1052371. [Google Scholar] [CrossRef]
Salmon (G) | Cattle (G) | Mustard Greens (G) | Fertilizer (N) | Flu Vaccine (N) | Fruit Coating (N) | |
---|---|---|---|---|---|---|
Environmentally Sustainable | 2.38 | 2.48 | 2.43 | 2.69 | 2.48 | 2.74 |
Economically Sustainable | 2.64 | 2.67 | 2.62 | 2.62 | 2.62 | 2.74 |
Socially Sustainable | 2.33 | 2.48 | 2.60 | 2.52 | 2.57 | 2.60 |
Responsible | 2.50 | 2.60 | 2.50 | 2.64 | 2.79 | 2.67 |
Useful | 2.71 | 2.76 | 2.52 | 2.83 | 2.91 | 2.86 |
Superior to Alternatives | 2.38 | 2.45 | 2.29 | 2.57 | 2.83 | 2.64 |
Ethical | 2.52 | 2.57 | 2.51 | 2.62 | 2.79 | 2.69 |
Fosters a fair and just society | 2.38 | 2.42 | 2.32 | 2.37 | 2.45 | 2.57 |
Contributes to a collective good | 2.52 | 2.49 | 2.49 | 2.69 | 2.81 | 2.69 |
Equitable | 2.41 | 2.44 | 2.44 | 2.42 | 2.57 | 2.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horgan, M.D.; Cummings, C.L.; Kuzma, J.; Dahlstrom, M.; Cimadori, I.; Cuchiara, M.; Larter, C.; Loschin, N.; Grieger, K.D. Beyond the Hype: Stakeholder Perceptions of Nanotechnology and Genetic Engineering for Sustainable Food Production. Sustainability 2025, 17, 6795. https://doi.org/10.3390/su17156795
Horgan MD, Cummings CL, Kuzma J, Dahlstrom M, Cimadori I, Cuchiara M, Larter C, Loschin N, Grieger KD. Beyond the Hype: Stakeholder Perceptions of Nanotechnology and Genetic Engineering for Sustainable Food Production. Sustainability. 2025; 17(15):6795. https://doi.org/10.3390/su17156795
Chicago/Turabian StyleHorgan, Madison D., Christopher L. Cummings, Jennifer Kuzma, Michael Dahlstrom, Ilaria Cimadori, Maude Cuchiara, Colin Larter, Nick Loschin, and Khara D. Grieger. 2025. "Beyond the Hype: Stakeholder Perceptions of Nanotechnology and Genetic Engineering for Sustainable Food Production" Sustainability 17, no. 15: 6795. https://doi.org/10.3390/su17156795
APA StyleHorgan, M. D., Cummings, C. L., Kuzma, J., Dahlstrom, M., Cimadori, I., Cuchiara, M., Larter, C., Loschin, N., & Grieger, K. D. (2025). Beyond the Hype: Stakeholder Perceptions of Nanotechnology and Genetic Engineering for Sustainable Food Production. Sustainability, 17(15), 6795. https://doi.org/10.3390/su17156795