Octanoic Fatty Acid Significantly Impacts the Growth of Foodborne Pathogens and Quality of Mabroom Date Fruits (Phoenix dactylifera L.) †
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Octanoic Acid Supplemented Dates
2.2. Microbial Investigations
2.3. Statistical Analysis
3. Results and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Muhammed, N.H.; Ahmed, O.E.; Ahmed, T.A.; Al-Yafai, M.S. Date Palm Status and Perspective in Qatar. In Date Palm Genetic Resources and Utilization; Al-Khayri, J.M., Jain, S.M., Johnson, D.V., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 323–351. ISBN 978-94-017-9706-1. [Google Scholar]
- Botes, A.; Zaid, A. Date Production Support Program; FAO Plant Production and Protection Paper; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2002. [Google Scholar]
- Alqahtan, N.; Makki, H.M.; Mohamed, H.; Ali, D.; Al-Senaien, W. Processing and Quality Evaluations of a Date-Strawberry Mixed Jam for Young Children. Pak. J. Nutr. 2022, 21, 47–52. [Google Scholar] [CrossRef]
- Elghazali, M.N.; Tawfeuk, H.Z.; Gomaa, R.A.; Abbas, A.A.; Tantawy, A.A. Effect of Dehydration Methods on Physicochemical Properties of Aswan Dry Dates. Assiut J. Agric. Sci. 2020, 51, 50–64. [Google Scholar] [CrossRef]
- Kuras, M.J.; Zielińska-Pisklak, M.; Duszyńska, J.; Jabłońska, J. Determination of the Elemental Composition and Antioxidant Properties of Dates (Phoenix dactyliferia) Originated from Different Regions. J. Food Sci. Technol. 2020, 57, 2828–2839. [Google Scholar] [CrossRef] [PubMed]
- Aldhafiri, F.K. Evaluation of Biochemical Parameters, Phenolic Compounds and Antioxidant Capacity of Some Varieties of Phoenix dactylifera L. (Date Fruits) to Determine the Nutritional Impact Values. Mediterr. J. Nutr. Metab. 2017, 10, 153–164. [Google Scholar] [CrossRef]
- Aljaloud, S.; Colleran, H.L.; Ibrahim, S.A. Nutritional Value of Date Fruits and Potential Use in Nutritional Bars for Athletes. Food Nutr. Sci. 2020, 11, 463–480. [Google Scholar] [CrossRef]
- Al-Alawi, R.A.; Al-Mashiqri, J.H.; Al-Nadabi, J.S.M.; Al-Shihi, B.I.; Baqi, Y. Date Palm Tree (Phoenix dactylifera L.): Natural Products and Therapeutic Options. Front. Plant Sci. 2017, 8, 845. [Google Scholar] [CrossRef]
- Dehghan-Shoar, Z.; Hamidi-Esfahani, Z.; Abbasi, S. Effect of temperature and modified atmosphere on quality preservation of sayer date fruits (Phoenix dactylifera L.). J. Food Process Preserv. 2010, 34, 323–334. [Google Scholar] [CrossRef]
- Shenasi, M.; Aidoo, K.E.; Candlish, A.A.G. Microflora of Date Fruits and Production of Aflatoxins at Various Stages of Maturation. Int. J. Food Microbiol. 2002, 79, 113–119. [Google Scholar] [CrossRef]
- Gherbawy, Y.A.; Elhariry, H.M.; Bahobial, A.A.S. Mycobiota and Mycotoxins (Aflatoxins and Ochratoxin) Associated with Some Saudi Date Palm Fruits. Foodborne Pathog. Dis. 2012, 9, 561–567. [Google Scholar] [CrossRef]
- Ibrahim, S.; Rahma, M. Isolation and Indentification of Fungi Associated with Date Fruits (Phoenix dactylifera, Linn) Sold at Bayero University, Kano, Nigeria. Bayero J. Pure Appl. Sci. 2011, 2, 127–130. [Google Scholar] [CrossRef]
- Hamad, S.H. Microbial Spoilage of Date Rutab Collected from the Markets of Al-Hofuf City in the Kingdom of Saudi Arabia. J. Food Prot. 2008, 71, 1406–1411. [Google Scholar] [CrossRef]
- Martorell, P.; Stratford, M.; Steels, H.; Fernández-Espinar, M.T.; Querol, A. Physiological Characterization of Spoilage Strains of Zygosaccharomyces bailii and Zygosaccharomyces rouxii Isolated from High Sugar Environments. Int. J. Food Microbiol. 2007, 114, 234–242. [Google Scholar] [CrossRef]
- Roehuck, B.D.; Maxuitenko, Y.Y. Biochemical Mechanisms and Biological Implication of the Toxicity of Aflatoxins as Related to Aflatoxin Carcinogenesis. In The Toxicology of Aflatoxins: Human Health, Veterinary, and Agricultural Significance; Academic Press: San Diego, CA, USA, 1994. [Google Scholar]
- Almaghrabi, M.; Morgan, M. Susceptibility of Ajwa Dates (Phoenix dactylifera) to Aflatoxin Contamination Based on Liquid Chromatography Combined with Electrospray Ionisation-Triple Quadrupole Tandem-Mass Spectrometry (LC-ESI-MS/MS). Int. Food Res. J. 2023, 30, 324–333. [Google Scholar] [CrossRef]
- Almaghrabi, M.A. The Occurrence of Aflatoxins in Date Palm (Phoenix dactylifera L.) Worldwide. J. Food Qual. 2022, 2022, 1–9. [Google Scholar] [CrossRef]
- Alghalibi, S.M.S.; Shater, A.-R.M. Mycoflora and Mycotoxin Contamination of Some Dried Fruits in Yemen Republic. Assiut Univ. Bull. Environ. Res. 2004, 7.2, 19–27. [Google Scholar] [CrossRef]
- Naeem, I.; Ismail, A.; Rehman, A.; Ismail, Z.; Saima, S.; Naz, A.; Faraz, A.; De Oliveira, C.; Benkerroum, N.; Aslam, M.; et al. Prevalence of Aflatoxins in Selected Dry Fruits, Impact of Storage Conditions on Contamination Levels and Associated Health Risks on Pakistani Consumers. Int. J. Environ. Res. Public Health 2022, 19, 3404. [Google Scholar] [CrossRef]
- Mahajan, A.; Das, S. Plants and Microbes—Potential Source of Pesticide for Future Use. Pestic. Inf. 2003, 28, 33–38. [Google Scholar]
- Hamid, E.A.; Elhassan, S.M.; Abubaker, M.Y.A. Use of Botanicals Against Citrus Canker (Xanthomonas Axonopodis Pv. Citri) Affecting Lime (Citrus Aurantifolia Swingle) in Sudan. J. Hortic. Sci. Technol. 2020, 3, 93–97. [Google Scholar] [CrossRef]
- Direct Food Substances Affirmed as Generally Recognized as Safe: 21 CFR §184.1025. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=184.1025 (accessed on 4 April 2019).
- Kim, S.A.; Rhee, M.S. Highly Enhanced Bactericidal Effects of Medium Chain Fatty Acids (Caprylic, Capric, and Lauric Acid) Combined with Edible Plant Essential Oils (Carvacrol, Eugenol, β-Resorcylic Acid, Trans-Cinnamaldehyde, Thymol, and Vanillin) against Escherichia coli O157:H7. Food Control 2016, 60, 447–454. [Google Scholar] [CrossRef]
- Mohan, A.; Pohlman, F.W.; McDaniel, J.A.; Hunt, M.C. Role of Peroxyacetic Acid, Octanoic Acid, Malic Acid, and Potassium Lactate on the Microbiological and Instrumental Color Characteristics of Ground Beef. J. Food Sci. 2012, 77, M188–M193. [Google Scholar] [CrossRef]
- Nair, M.K.M.; Vasudevan, P.; Hoagland, T.; Venkitanarayanan, K. Inactivation of Escherichia coli O157:H7 and Listeria monocytogenes in Milk by Caprylic Acid and Monocaprylin. Food Microbiol. 2004, 21, 611–616. [Google Scholar] [CrossRef]
- Hilgren, J.D.; Salverda, J.A. Antimicrobial Efficacy of a Peroxyacetic/Octanoic Acid Mixture in Fresh-Cut-Vegetable Process Waters. J. Food Sci. 2000, 65, 1376–1379. [Google Scholar] [CrossRef]
- Kim, S.A.; Rhee, M.S. Synergistic Antimicrobial Activity of Caprylic Acid in Combination with Citric Acid against Both Escherichia coli O157:H7 and Indigenous Microflora in Carrot Juice. Food Microbiol. 2015, 49, 166–172. [Google Scholar] [CrossRef]
- Aussan L44 and L42 Disinfectants. Available online: https://aussan.com.au/l44-l42 (accessed on 27 April 2024).
- Goh, T.K. Single-spore isolation using a hand-made glass needle. J. Fungal Divers. 1999, 2, 47–63. [Google Scholar]
- Seifert, K.; Morgan-Jones, G.; Gams, W.; Kendrick, B. The Genera of Hyphomycetes; CBS-KNAW Fungal Biodiversity Centre: Utrecht, The Netherlands, 2011; p. 997. [Google Scholar]
- López-Velázquez, J.G.; Ayón-Reyna, L.E.; Vega-García, M.O.; López-Angulo, G.; López-López, M.E.; López-Zazueta, B.A.; Delgado-Vargas, F. Caprylic Acid in Vitex mollis Fruit and Its Inhibitory Activity against a Thiabendazole-resistant Colletotrichum gloeosporioides Strain. Pest. Manag. Sci. 2022, 78, 5271–5280. [Google Scholar] [CrossRef]
- Výrostková, J.; Pipová, M.; Bujňák, L.; Bujňáková, D.; Krahulec, J. Antimicrobial Effect of Hydrogen Peroxide and Octanoic Acid on Bacterial Strains Isolated from Food and Water. Pol. J. Vet. Sci. 2020, 23, 451–457. [Google Scholar] [CrossRef]
- Hulankova, R.; Borilova, G.; Steinhauserova, I. Combined Antimicrobial Effect of Oregano Essential Oil and Caprylic Acid in Minced Beef. Meat Sci. 2013, 95, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.; Redondo-Solano, M.; Thippareddi, H. Inactivation of Escherichia coli O157:H7 and Salmonella spp. on Alfalfa Seeds by Caprylic Acid and Monocaprylin. Int. J. Food Microbiol. 2010, 144, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Baky, N. Differential Antimicrobial Effectiveness of Camel Lactoferrin-Oleic Acid and Bovine Lactoferrin-Oleic Acid Complexes against Several Pathogens. SOJ Biochem. 2018, 4, 1–9. [Google Scholar] [CrossRef]
- Huang, C.B.; George, B.; Ebersole, J.L. Antimicrobial Activity of N-6, n-7 and n-9 Fatty Acids and Their Esters for Oral Microorganisms. Arch. Oral. Biol. 2010, 55, 555–560. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammed, E.A.H.; Pál, K.; Abbo, A.S.H. Octanoic Fatty Acid Significantly Impacts the Growth of Foodborne Pathogens and Quality of Mabroom Date Fruits (Phoenix dactylifera L.). Biol. Life Sci. Forum 2025, 47, 2. https://doi.org/10.3390/blsf2025047002
Mohammed EAH, Pál K, Abbo ASH. Octanoic Fatty Acid Significantly Impacts the Growth of Foodborne Pathogens and Quality of Mabroom Date Fruits (Phoenix dactylifera L.). Biology and Life Sciences Forum. 2025; 47(1):2. https://doi.org/10.3390/blsf2025047002
Chicago/Turabian StyleMohammed, Elshafia Ali Hamid, Károly Pál, and Azza Siddig Hussien Abbo. 2025. "Octanoic Fatty Acid Significantly Impacts the Growth of Foodborne Pathogens and Quality of Mabroom Date Fruits (Phoenix dactylifera L.)" Biology and Life Sciences Forum 47, no. 1: 2. https://doi.org/10.3390/blsf2025047002
APA StyleMohammed, E. A. H., Pál, K., & Abbo, A. S. H. (2025). Octanoic Fatty Acid Significantly Impacts the Growth of Foodborne Pathogens and Quality of Mabroom Date Fruits (Phoenix dactylifera L.). Biology and Life Sciences Forum, 47(1), 2. https://doi.org/10.3390/blsf2025047002