Effect of Ultrasonic Frequencies on the Aqueous Extraction of Polyphenols, Chlorogenic Acid, and Quercetin from the Whole Fruit of Pitaya (Hylocereus spp.)
Abstract
1. Introduction
2. Results and Discussion
2.1. Effect of Extraction Mode
2.2. Effect of Temperature
2.3. Effect of Solid-to-Liquid Ratio
2.4. Effect of Extraction Time
2.5. Aqueous Extraction of Chlorogenic Acid and Quercetin
3. Materials and Methods
3.1. Materials
3.2. Ultrasound-Assisted Extraction of Bioactive Compounds
3.3. Determination of Total Phenolic Content
3.4. Determination of Ferric-Reducing Antioxidant Power
3.5. HPLC Analysis of CGA and Quercetin
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, H.; Zhang, W.; Li, X.; Shu, C.; Jiang, W.; Cao, J. Nutrition, phytochemical profile, bioactivities and applications in food industry of pitaya (Hylocereus spp.) peels: A comprehensive review. Trends Food Sci. Technol. 2021, 116, 199–217. [Google Scholar] [CrossRef]
- Huang, Y.; Brennan, M.A.; Kasapis, S.; Richardson, S.J.; Brennan, C.S. Maturation process, nutritional profile, bioactivities and utilisation in food products of red pitaya fruits: A review. Foods 2021, 10, 2862. [Google Scholar] [CrossRef]
- Arivalagan, M.; Karunakaran, G.; Roy, T.K.; Dinsha, M.; Sindhu, B.C.; Shilpashree, V.M.; Satisha, G.C.; Shivashankara, K.S. Biochemical and nutritional characterization of dragon fruit (Hylocereus species). Food Chem. 2021, 353, 129426. [Google Scholar] [CrossRef]
- Joshi, M.; Prabhakar, B. Phytoconstituents and pharmaco-therapeutic benefits of pitaya: A wonder fruit. J. Food Biochem. 2020, 44, e13260. [Google Scholar] [CrossRef]
- Tang, W.; Li, W.; Yang, Y.; Lin, X.; Wang, L.; Li, C.; Yang, R. Phenolic compounds profile and antioxidant capacity of pitahaya fruit peel from two red-skinned species (Hylocereus polyrhizus and Hylocereus undatus). Foods 2021, 10, 1183. [Google Scholar] [CrossRef] [PubMed]
- Bishoyi, A.K.; Saeed, F.; Shehzadi, U.; Shankar, A.; Balaji, J.; Kaur, J.; Afzaal, M.; Imran, A.; Rasheed, M.; Hussain, B.; et al. Nutritional composition, phytochemical profile, and health benefits of Hylocereus Undatus (pitaya): A comprehensive review. eFood 2024, 5, e70017. [Google Scholar] [CrossRef]
- Angonese, M.; Motta, G.E.; Silva de Farias, N.; Molognoni, L.; Daguer, H.; Brugnerotto, P.; de Oliveira Costa, A.C.; Olivera Müller, C.M. Organic dragon fruits (Hylocereus undatus and Hylocereus polyrhizus) grown at the same edaphoclimatic conditions: Comparison of phenolic and organic acids profiles and antioxidant activities. LWT-Food Sci. Technol. 2021, 149, 111924. [Google Scholar] [CrossRef]
- Coelho, V.S.; de Moura, D.G.; Aguiar, L.L.; Ribeiro, L.V.; Silva, V.D.M.; da Veiga Correia, V.T.; Melo, A.C.; Silva, M.R.; de Paula, A.C.C.F.F.; de Araújo, R.L.B.; et al. The Profile of phenolic compounds identified in pitaya fruits, health effects, and food applications: An integrative review. Plants 2024, 13, 3020. [Google Scholar] [CrossRef]
- Attar¸, S.H.; Günde, M.A.; Urün, I.; Kafkas, S.; Kafkas, N.E.; Ercisli, S.; Ge, C.; Mlcek, J.; Adamkova, A. Nutritional analysis of red-purple and white-fleshed pitaya (Hylocereus) Species. Molecules 2022, 27, 808. [Google Scholar] [CrossRef]
- Santana-Gálvez, J.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. Chlorogenic acid: Recent advances on its dual role as a food additive and a nutraceutical against metabolic syndrome. Molecules 2017, 22, 358. [Google Scholar] [CrossRef]
- Rasheed, H.; Ahmad, D.; Bao, J. Genetic diversity and health properties of polyphenols in potato. Antioxidants 2022, 11, 603. [Google Scholar] [CrossRef] [PubMed]
- Aghababaei, F.; Hadidi, M. Recent advances in potential health benefits of quercetin. Pharmaceuticals 2023, 16, 1020. [Google Scholar] [CrossRef]
- Deepika; Maurya, P.K. Health benefits of quercetin in age-related diseases. Molecules 2022, 27, 2498. [Google Scholar] [CrossRef]
- Carmen, F.; Frances, C.; Barthe, L. Trends on valorization of pitaya fruit biomass through value-added and green extraction technology – A critical review of advancements and processes. Trends Food Sci. Technol. 2023, 138, 339–354. [Google Scholar] [CrossRef]
- El-Hefny, N.E. Chemical kinetics and reaction mechanisms in solvent extraction: New trends and applications. J. Phys. Sci. 2017, 28, 129–156. [Google Scholar] [CrossRef]
- Chen, Y.; Su, J.-Y.; Yang, C.-Y. Ultrasound-assisted aqueous extraction of chlorogenic acid and cynarin with the impact of inulin from burdock (Arctium lappa L.) roots. Antioxidants 2022, 11, 1219. [Google Scholar] [CrossRef] [PubMed]
- Passos, C.P.; Costa, R.M.; Ferreira, S.S.; Lopes, G.R.; Cruz, M.T.; Coimbra, M.A. Role of coffee caffeine and chlorogenic acids adsorption to polysaccharides with impact on brew immunomodulation effects. Foods 2021, 10, 378. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Zhang, S.; Wang, H.; Yang, J.; Li, L.; Zhu, J.; Liu, Y. Ultrasound-alkaline combined extraction improves the release of bound polyphenols from pitahaya (Hylocereus undatus ‘Foo-Lon’) peel: Composition, antioxidant activities and enzyme inhibitory activity. Ultrason. Sonochem. 2022, 90, 106213. [Google Scholar] [CrossRef]
- Tarte, I.; Singh, A.; Dar, A.H.; Sharma, A.; Altaf, A.; Sharma, P. Unfolding the potential of dragon fruit (Hylocereus spp.) for value addition: A review. eFood 2023, 4, e76. [Google Scholar] [CrossRef]
- Nutrition Information Database, Pitaya: D0700101 (White-flesh), D0700201 (Red-flesh), 2024UPDATE2, Food and Drug Administration, Taiwan (R.O.C.). Available online: https://consumer.fda.gov.tw/Food/TFND.aspx?nodeID=178 (accessed on 13 July 2025).
- Wu, L.C.; Hsu, H.W.; Chen, Y.C.; Chiu, C.C.; Lin, Y.I.; Ho, J.A. Antioxidant and antiproliferative activities of red pitaya. Food Chem. 2006, 95, 319–327. [Google Scholar] [CrossRef]
- Smirnov, I.; Mikhailova, N. An analysis of acoustic cavitation thresholds of water based on the incubation time criterion approach. Fluids 2021, 6, 134. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Asakura, Y.; Koda, S.; Yasuda, K. Dependence of cavitation, chemical effect, and mechanical effect thresholds on ultrasonic frequency. Ultrason. Sonochem. 2017, 39, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Bu, X.; Alheshibri, M. The effect of ultrasound on bulk and surface nanobubbles: A review of the current status. Ultrason. Sonochem. 2021, 76, 105629. [Google Scholar] [CrossRef] [PubMed]
- Klöckner, W.; Büchs, J. Advances in shaking technologies. Trends Biotechnol. 2012, 30, 307–314. [Google Scholar] [CrossRef]
- Wang, P.; Cheng, C.; Ma, Y.; Jia, M. Degradation behavior of polyphenols in model aqueous extraction system based on mechanical and sonochemical effects induced by ultrasound. Sep. Purif. Technol. 2020, 247, 116967. [Google Scholar] [CrossRef]
- Kumar, K.; Srivastav, S.; Sharanagat, V.S. Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. Ultrason. Sonochem. 2021, 70, 105325. [Google Scholar] [CrossRef] [PubMed]
- Su, D.; Zhang, R.; Hou, F.; Zhang, M.; Guo, J.; Huang, F.; Deng, Y.; Wei, Z. Comparison of the free and bound phenolic profiles and cellular antioxidant activities of litchi pulp extracts from different solvents. BMC Complement. Altern. Med. 2014, 14, 9. [Google Scholar] [CrossRef] [PubMed]
- Yeh, Y.M.; Tsai, T.Y.; Yang, C.Y. Encapsulation and release kinetics of polyphenols and p-coumaric acid extracted from Phyllostachys makinoi by ultrasonic-pretreatment autoclaving. LWT-Food Sci. Technol. 2022, 167, 113838. [Google Scholar] [CrossRef]
- Razmara, R.S.; Daneshfar, A.; Sahraei, R. Solubility of quercetin in water + methanol and water + ethanol from (292.8 to 333.8) K. J. Chem. Eng. Data 2010, 55, 3934–3936. [Google Scholar] [CrossRef]
- Hsu, Y.-C.; Yang, C.-Y. Assessment of ethanolic extraction of chlorogenic acid, cynarin, and polyphenols from burdock (Arctium lappa L.) roots under ultrasound. Molecules 2024, 29, 5115. [Google Scholar] [CrossRef]
- Kujala, T.S.; Loponen, J.M.; Klika, K.D.; Kalevi, P. Phenolics and betacyanins in red beetroot (Beta vulgaris) root: Distribution and effect of cold storage on the content of total phenolics and three individual compounds. J. Agric. Food Chem. 2000, 48, 5338–5342. [Google Scholar] [CrossRef] [PubMed]
- Madane, P.; Das, A.K.; Nanda, P.; Bandyopadhyay, S.; Jagtap, P.; Shewalkar, A.; Maity, B. Dragon fruit (Hylocereus undatus) peel as antioxidant dietary fibre on quality and lipid oxidation of chicken nuggets. J. Food Sci. Technol. 2020, 57, 1449–1461. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.H.; Yang, C.Y. Ultrasound-assisted extraction of bioactive compounds and antioxidant capacity for the valorization of Elaeocarpus serratus L. leaves. Processes 2020, 8, 1218. [Google Scholar] [CrossRef]
Type of Pitaya | Extraction Mode | Extract Yield (% of DP) | TPC (mg GAE/g DPE) | FRAP (mg FSE/g DPE) |
---|---|---|---|---|
WFP | U-40 | 67.103 ± 1.057 B | 3.399 ± 0.181 A | 9.646 ± 0.407 A |
U-120 | 69.027 ± 0.952 A | 3.050 ± 0.148 B | 7.567 ± 0.320 B | |
S-120 | 67.137 ± 0.649 B | 3.105 ± 0.049 B | 8.285 ± 0.611 B | |
RFP | U-40 | 61.963 ± 1.240 a | 8.985 ± 0.180 a | 29.903 ± 1.695 a |
U-120 | 63.173 ± 1.023 a | 8.105 ± 0.119 b | 28.415 ± 0.615 a | |
S-120 | 62.173 ± 2.440 a | 8.125 ± 0.290 b | 29.339 ± 1.468 a |
Type of Pitaya | Temperature (°C) | Extract Yield (% of DP) | TPC (mg GAE/g DP) | FRAP (mg FSE/g DP) |
---|---|---|---|---|
WFP | 30 | 65.600 ± 0.782 B | 2.213 ± 0.092 B | 4.643 ± 0.369 B |
40 | 67.103 ± 1.057 AB | 2.280 ± 0.111 AB | 6.470 ± 0.179 A | |
50 | 67.967 ± 0.627 A | 2.346 ± 0.181 AB | 6.349 ± 0.408 A | |
60 | 67.897 ± 1.401 A | 2.536 ± 0.166 A | 6.824 ± 0.186 A | |
RFP | 30 | 60.673 ± 0.943 a | 5.355 ± 0.768 a | 18.605 ± 3.034 a |
40 | 61.963 ± 1.240 a | 5.568 ± 0.205 a | 18.525 ± 1.017 a | |
50 | 61.620 ± 1.846 a | 5.613 ± 0.254 a | 19.528 ± 0.369 a | |
60 | 61.493 ± 1.557 a | 5.425 ± 0.171 a | 19.951 ± 1.296 a |
Type of Pitaya | Solid-to-Liquid Ratio (g/mL) | Extract Yield (% of DP) | TPC (mg GAE/g DP) | FRAP (mg FSE/g DP) |
---|---|---|---|---|
WFP | 1/10 | 67.320 ± 0.864 B | 2.125 ± 0.123 B | 5.667 ± 0.265 A |
1/20 | 67.103 ± 1.057 B | 2.280 ± 0.111 AB | 6.470 ± 0.179 A | |
1/30 | 68.570 ± 1.488 B | 2.507 ± 0.190 A | 6.078 ± 0.641 A | |
1/40 | 73.360 ± 0.472 A | 2.479 ± 0.109 A | 6.064 ± 1.222 A | |
RFP | 1/10 | 52.863 ± 2.125 c | 4.552 ± 0.052 b | 15.287 ± 0.707 b |
1/20 | 61.963 ± 1.240 ab | 5.568 ± 0.205 a | 18.525 ± 1.017 a | |
1/30 | 64.820 ± 0.442 a | 5.617 ± 0.306 a | 19.407 ± 1.867 a | |
1/40 | 59.480 ± 3.680 b | 4.820 ± 0.453 b | 17.071 ± 1.861 ab |
Type of Pitaya | Extraction Mode | FRAP (mg FSE/g DP) and Extraction Time | |||
---|---|---|---|---|---|
5 min | 10 min | 15 min | 60 min | ||
WFP | U-40 | 6.879 ± 1.086 a A | 7.291 ± 1.762 a A | 6.470 ± 0.179 a A | 5.443 ± 0.192 a A |
U-120 | 6.745 ± 0.404 a A | 6.023 ± 1.090 ab A | 5.222 ± 0.184 b B | 5.056 ± 0.157 b A | |
S-120 | 6.457 ± 1.645 a A | 5.837 ± 1.085 a A | 5.560 ± 0.360 a B | 5.343 ± 0.591 a A | |
RFP | U-40 | 18.834 ± 1.468 a A | 17.764 ± 3.166 a A | 18.525 ± 1.017 a A | 17.443 ± 1.406 a A |
U-120 | 18.483 ± 1.442 a A | 17.750 ± 0.575 a A | 17.949 ± 0.329 a A | 17.385 ± 1.371 a A | |
S-120 | 18.642 ± 1.355 a A | 19.213 ± 1.003 a A | 18.256 ± 1.463 a A | 17.897 ± 0.248 a A |
Type of Pitaya | Extraction Mode | Free CGA (μg/g DP) and Extraction Time | |||
---|---|---|---|---|---|
5 min | 10 min | 15 min | 60 min | ||
WFP | U-40 | 67.78 ± 4.11 b B | 75.92 ± 7.53 ab A | 101.68 ± 31.12 a A | 71.58 ± 5.93 ab A |
U-120 | 72.00 ± 3.56 a AB | 74.13 ± 8.28 a A | 76.15 ± 5.89 a A | 71.44 ± 5.67 a A | |
S-120 | 75.25 ± 1.40 a A | 79.55 ± 2.10 a A | 67.85 ± 4.18 b A | 65.25 ± 3.90 b A | |
RFP | U-40 | 8.68 ± 0.96 b A | 11.07 ± 1.08 a A | 10.25 ± 1.71 ab A | 10.81 ± 0.42 ab B |
U-120 | (n.d.) c B | 10.82 ± 0.87 ab A | 9.63 ± 2.34 b A | 12.87 ± 0.18 a A | |
S-120 | (n.d.) c B | 11.05 ± 0.25 a A | 8.93 ± 0.82 b A | 9.36 ± 0.50 b C |
Type of Pitaya | Extraction Mode | Free Quercetin (μg/g DP) and Extraction Time | |||
---|---|---|---|---|---|
5 min | 10 min | 15 min | 60 min | ||
WFP | U-40 | 4.92 ± 0.43 b A | 5.51 ± 0.53 ab AB | 8.69 ± 3.40 a A | 7.17 ± 0.27 ab AB |
U-120 | 5.55 ± 0.58 b A | 4.84 ± 0.90 b B | 5.82 ± 0.68 b A | 7.67 ± 0.45 a A | |
S-120 | 4.93 ± 0.45 c A | 6.24 ± 0.13 a A | 5.58 ± 0.44 b A | 6.79 ± 0.21 a B | |
RFP | U-40 | (n.d.) c | (n.d.) c | 2.26 ± 0.57 b A | 3.25 ± 0.37 a A |
U-120 | (n.d.) c | (n.d.) c | 2.41 ± 0.33 b A | 3.00 ± 0.40 a AB | |
S-120 | (n.d.) b | (n.d.) b | (n.d.) b B | 2.42 ± 0.40 a B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lian, W.-T.; Yang, C.-Y. Effect of Ultrasonic Frequencies on the Aqueous Extraction of Polyphenols, Chlorogenic Acid, and Quercetin from the Whole Fruit of Pitaya (Hylocereus spp.). Molecules 2025, 30, 3253. https://doi.org/10.3390/molecules30153253
Lian W-T, Yang C-Y. Effect of Ultrasonic Frequencies on the Aqueous Extraction of Polyphenols, Chlorogenic Acid, and Quercetin from the Whole Fruit of Pitaya (Hylocereus spp.). Molecules. 2025; 30(15):3253. https://doi.org/10.3390/molecules30153253
Chicago/Turabian StyleLian, Wei-Ting, and Chun-Yao Yang. 2025. "Effect of Ultrasonic Frequencies on the Aqueous Extraction of Polyphenols, Chlorogenic Acid, and Quercetin from the Whole Fruit of Pitaya (Hylocereus spp.)" Molecules 30, no. 15: 3253. https://doi.org/10.3390/molecules30153253
APA StyleLian, W.-T., & Yang, C.-Y. (2025). Effect of Ultrasonic Frequencies on the Aqueous Extraction of Polyphenols, Chlorogenic Acid, and Quercetin from the Whole Fruit of Pitaya (Hylocereus spp.). Molecules, 30(15), 3253. https://doi.org/10.3390/molecules30153253