Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (983)

Search Parameters:
Keywords = green bond

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2272 KB  
Article
Regulation of Microstructure and Properties of Konjac Glucomannan Gels via Ethanol Under Low-Alkali Conditions
by Meiqiu Xu, Hongtao Du, Solairaj Dhanasekaran, Yin Jia, Yange Ren, Hong Chen and Wei Xu
Gels 2026, 12(1), 83; https://doi.org/10.3390/gels12010083 (registering DOI) - 17 Jan 2026
Viewed by 35
Abstract
Despite their potential, alkali-treated konjac glucomannan (KGM) gels are limited by excessive brittleness and a lack of eco-friendly synthesis methods, creating an urgent need for more durable and ‘green’ alternatives. In this study, highly stable KGM gels were constructed under low-alkali conditions by [...] Read more.
Despite their potential, alkali-treated konjac glucomannan (KGM) gels are limited by excessive brittleness and a lack of eco-friendly synthesis methods, creating an urgent need for more durable and ‘green’ alternatives. In this study, highly stable KGM gels were constructed under low-alkali conditions by adjusting the ethanol content. The results showed that intermolecular hydrogen bonding and hydrophobic interactions were enhanced with increasing ethanol concentration (0–20% v/v) under low-alkaline conditions. The physicochemical properties of KGM gels showed dynamic improvement, with denser micro-network morphology and simultaneous enhancement of thermal stability. However, the addition of a high ethanol concentration (20% v/v) tended to trigger local aggregation, disrupting the gel network structure. At an ethanol addition of 15%, the hydrogen bonding and hydrophobic interactions of KGM gels reached an optimal equilibrium, exhibiting the most compact gel network and excellent resistance to deformation. This study reveals the regulation of the microstructure and macroscopic properties of KGM gels by ethanol, which provides theoretical support for the construction of high-performance KGM gels under low-alkali conditions. Full article
(This article belongs to the Special Issue Application of Composite Gels in Food Processing and Engineering)
30 pages, 751 KB  
Hypothesis
Bonded Green Exercise: A One Health Framework for Shared Nature-Based Physical Activity in the Human–Dog Dyad
by Krista B. Halling, Mark Bowden, Jules Pretty and Jennifer Ogeer
Animals 2026, 16(2), 291; https://doi.org/10.3390/ani16020291 - 16 Jan 2026
Viewed by 109
Abstract
Modern lifestyles are increasingly plagued by physical inactivity, social disconnection, digital addiction, and excessive time indoors—factors that negatively impact the health and well-being of both humans and their companion dogs (Canis familiaris). Evidence shows that nature exposure, physical activity, and human–animal [...] Read more.
Modern lifestyles are increasingly plagued by physical inactivity, social disconnection, digital addiction, and excessive time indoors—factors that negatively impact the health and well-being of both humans and their companion dogs (Canis familiaris). Evidence shows that nature exposure, physical activity, and human–animal bond (HAB) each enhance physical, mental, and social well-being, yet these domains have rarely been examined together as an integrated therapeutic triad. We introduce a new conceptual framework of bonded green exercise, defined as shared physical activity between a bonded human and dog in natural environments. Synthesizing existing evidence across human and canine sciences into a testable conceptual integration, we posit that bonded green exercise may plausibly activate evolutionarily conserved, synergistic mechanisms of physiological, behavioural, and affective co-regulation. Four testable hypotheses are proposed: (H1) triadic synergy: combined domains produce greater benefits than additive effects; (H2) heterospecific benefit: parallel health gains occur in both species; (H3) behavioural amplification: dogs acts as catalysts to drive human participation in nature-based activity; and (H4) scalable health promotion: bonded green exercise represents a low-cost, accessible, One Health approach with population-level potential. This framework highlights how intentional, shared physical activity in nature may potentially offer a novel low-cost and accessible model for enhancing health, lifespan, welfare, and ecological stewardship across species. Full article
(This article belongs to the Special Issue Second Edition: Research on the Human–Companion Animal Relationship)
52 pages, 2962 KB  
Review
Sustainable Polyurethane Systems: Integrating Green Synthesis and Closed-Loop Recovery
by Tae Hui Kim, Hyeong Seo Kim and Sang-Ho Lee
Polymers 2026, 18(2), 246; https://doi.org/10.3390/polym18020246 - 16 Jan 2026
Viewed by 110
Abstract
Polyurethanes (PUs) are indispensable polymeric materials widely employed across diverse industrial sectors due to their excellent thermal stability, chemical resistance, adhesion, and mechanical durability. However, the intrinsic three-dimensional crosslinked network that underpins their performance also presents a fundamental barrier to reprocessing and recycling. [...] Read more.
Polyurethanes (PUs) are indispensable polymeric materials widely employed across diverse industrial sectors due to their excellent thermal stability, chemical resistance, adhesion, and mechanical durability. However, the intrinsic three-dimensional crosslinked network that underpins their performance also presents a fundamental barrier to reprocessing and recycling. Consequently, most end-of-life PU waste is currently managed through landfilling or incineration, resulting in significant resource loss and environmental impact. To address these challenges, this review presents an integrated perspective on sustainable PU systems by unifying green synthesis strategies with closed-loop recovery approaches. First, recent advances in bio-based polyols and phosgene-free isocyanate synthesis derived from renewable resources—such as plant oils, carbohydrates, and lignin—are discussed as viable means to reduce dependence on petrochemical feedstocks and mitigate toxicity concerns. Next, emerging chemical recycling methodologies, including acidolysis and aminolysis, are reviewed with a focus on the selective recovery of high-purity monomers. Finally, PU vitrimers and dynamic covalent polymer networks (DCPNs) based on urethane bond exchange reactions are examined as reprocessable architectures that combine thermoplastic-like processability with the mechanical robustness of thermosets. By integrating synthesis, recovery, and reuse within a unified framework, this review aims to outline a coherent pathway toward establishing a sustainable circular economy for PU materials. Full article
(This article belongs to the Special Issue Advanced Cross-Linked Polymer Network)
21 pages, 5291 KB  
Article
Green Surface Engineering of Spun-Bonded Nonwovens Using Polyphenol-Rich Berry Extracts for Bioactive and Functional Applications
by Karolina Gzyra-Jagieła, Bartosz Kopyciński, Piotr Czarnecki, Sławomir Kęska, Natalia Słabęcka, Anna Bednarowicz, Nina Tarzyńska, Dorota Zielińska, Longina Madej-Kiełbik and Patryk Śniarowski
Eng 2026, 7(1), 49; https://doi.org/10.3390/eng7010049 - 16 Jan 2026
Viewed by 228
Abstract
In response to the growing demand for environmentally friendly and sustainable yet functional technical textiles, this research developed a spun-bonded nonwoven from the biodegradable thermoplastic starch-based biopolymer BIOPLAST®, incorporating fruit extracts as natural sources of polyphenolic compounds and surface-active additives. Extracts [...] Read more.
In response to the growing demand for environmentally friendly and sustainable yet functional technical textiles, this research developed a spun-bonded nonwoven from the biodegradable thermoplastic starch-based biopolymer BIOPLAST®, incorporating fruit extracts as natural sources of polyphenolic compounds and surface-active additives. Extracts from Vaccinium myrtillus L. and Sambucus nigra L. were applied onto a nonwoven’s surface via aerographic spraying using a water/ethanol system. The resulting materials were characterized in terms of morphology, physicochemical and mechanical behavior, surface characteristics, and stability under accelerated ageing and hydrolytic conditions. Treatment with the extracts increased the tensile strength by roughly 38% and elongation at break by about 50%, and it changed the surface from hydrophobic (contact angle of 115°) to hydrophilic, with contact angles of 83° for the blueberry-modified nonwoven and 55° for the elderberry-modified nonwoven. The modified nonwovens also showed sustained release of polyphenolic compounds over 72 h, which is beneficial for biomedical, healthcare, and cosmetic applications, where short-term use, controlled release of active compounds, and bioactivity are more important than long-term durability. Overall, the results indicate that BIOPLAST®-based spun-bonded nonwovens can serve as fully bio-based carriers for fruit extracts in MedTech-related technical textiles, offering a straightforward way to introduce additional functionality into biodegradable nonwovens. Full article
Show Figures

Figure 1

22 pages, 2752 KB  
Review
Capric Acid-Based Therapeutic Deep Eutectic Systems: A Focused Review Within the Framework of Deep Eutectic Solvents
by Faisal Al-Akayleh, Ahmed S. A. Ali Agha, Ali R. Olaimat and Giuseppe Biagini
Pharmaceuticals 2026, 19(1), 159; https://doi.org/10.3390/ph19010159 - 15 Jan 2026
Viewed by 180
Abstract
Background/Objectives: Capric acid (CA)–therapeutic deep eutectic systems (THEDES) are emerging as a distinct class of biofunctional matrices capable of reshaping drug solubilization, permeability, and bioactivity. Methods: Relevant studies on CA–THEDES were identified through targeted database searches and screened for evidence on [...] Read more.
Background/Objectives: Capric acid (CA)–therapeutic deep eutectic systems (THEDES) are emerging as a distinct class of biofunctional matrices capable of reshaping drug solubilization, permeability, and bioactivity. Methods: Relevant studies on CA–THEDES were identified through targeted database searches and screened for evidence on their design, mechanisms, and pharmaceutical performance. Results: This review synthesizes current evidence on their structural design, mechanistic behavior, and pharmaceutical performance, revealing several unifying principles. Across multiple drug classes, CA consistently drives strong, directional hydrogen bonding and drug amorphization, resulting in marked solubility enhancement and stabilization of non-crystalline or supersaturated states relative to crystalline drugs or conventional solvent systems. Its amphiphilic C10 chain further contributes to membrane fluidization, which explains the improved transdermal and transmucosal permeation repeatedly observed in CA-THEDES. Additionally, synergistic antimicrobial and anticancer effects reported in several systems confirm that CA acts not only as a solvent component but as a bioactive co-therapeutic. Collectively, the reviewed data show that CA serves as a structurally determinant element whose dual hydrogen-bonding and membrane-interacting roles underpin the high pharmaceutical performance of these systems. However, gaps remain in long-term stability, toxicological profiling, and regulatory classification. Emerging Artificial Intelligence (AI) and Machine Learning (ML)-guided predictive approaches offer promising solutions by enabling rational selection of eutectic partners, optimal ratios, and property optimization through computational screening. Conclusions: Overall, CA-THEDES represent a rationally designable platform for next-generation drug delivery, where solvent functionality and therapeutic activity converge within a single, green formulation system. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Figure 1

27 pages, 1407 KB  
Systematic Review
Green Bonds and Green Banking Loans: A Systematic Literature Review
by Paulo Alcarva, João Pinto, Luis Pacheco, Mara Madaleno and Teresa Barros
Sustainability 2026, 18(2), 898; https://doi.org/10.3390/su18020898 - 15 Jan 2026
Viewed by 156
Abstract
The main purpose of this research is to examine the significance of green bonds and green banking loans as financing tools for ecologically sustainable projects in the face of increasing worldwide environmental issues. This research seeks to uncover the determinants of both instruments’ [...] Read more.
The main purpose of this research is to examine the significance of green bonds and green banking loans as financing tools for ecologically sustainable projects in the face of increasing worldwide environmental issues. This research seeks to uncover the determinants of both instruments’ issuance and the obstacles to their acceptance. A thorough systematic literature review will be conducted to assess the efficacy of these tools in improving company financial performance and cost of debt, advancing environmental sustainability, and influencing investor behavior. This methodology guarantees a comprehensive and impartial examination of peer-reviewed publications from reputable sources such as Web of Science and Scopus. Although issues such as greenwashing, market liquidity, and regulatory discrepancies still exist, both tools are growing steadily in the sustainable financing spectrum. The results also suggest that both instruments are influenced by several factors, often overlapping due to their common focus on financing sustainable projects. The credit rating, financial health, and overall environmental performance of the issuing entity significantly influence the attractiveness and pricing of green bonds, as do the market conditions, regulatory frameworks, and certification. The environmental profile and creditworthiness of the borrower are key determinants for green banking loans. The review enhances the current body of knowledge by presenting a theoretical structure for comprehending the dynamics of green debt markets and proposing practical recommendations for policymakers and financial institutions. Furthermore, it emphasizes the deficiencies in existing research, including the need for further longitudinal investigations into green bank loans and a more thorough examination of the notion of ‘greenium’. We searched Web of Science and Scopus up to 26 April 2024. Eligibility criteria included peer-reviewed English-language studies on green bonds or green banking loans. After screening, 128 studies were found to have met the inclusion criteria. Full article
(This article belongs to the Collection Sustainability in Financial Industry)
Show Figures

Figure 1

23 pages, 1257 KB  
Article
Solvatochromic Polarity, Physicochemical Properties, and Spectral Analysis of New Triple NADES-Based on Urea–Glycerol
by Sezan Ahmed, Dimitar Bojilov, Ginka Exner, Soleya Dagnon, Stanimir Manolov and Iliyan Ivanov
Molecules 2026, 31(2), 233; https://doi.org/10.3390/molecules31020233 - 9 Jan 2026
Viewed by 200
Abstract
In the present study, ten type-V natural deep eutectic solvents (NADESs) were synthesized and comprehensively characterized, based on urea as a hydrogen-bond acceptor and three different groups of donors—glycerol, organic carboxylic acids, and carbohydrates. Their physicochemical parameters, spectral characteristics (FTIR), surface tension, and [...] Read more.
In the present study, ten type-V natural deep eutectic solvents (NADESs) were synthesized and comprehensively characterized, based on urea as a hydrogen-bond acceptor and three different groups of donors—glycerol, organic carboxylic acids, and carbohydrates. Their physicochemical parameters, spectral characteristics (FTIR), surface tension, and solvatochromic properties were determined using Nile Red, betaine 30, and Kamlet–Taft parameters. The densities of the systems (1.243–1.361 g/cm3) and the high values of molar refraction and polarizability indicate the formation of highly organized hydrogen-bonded networks, with the incorporated carboxyl and hydroxyl groups enhancing the structural compactness of the NADES. Surface tension varied significantly (46.9–80.3 mN/m), defining systems with low, medium, and high polarity. Solvatochromic analysis revealed high ENR, ET(30), and ETN values, positioning all NADES as highly polar media, comparable or close to water, but with distinguishable H-bond donating/accepting ability depending on the third component. The normalized Kamlet–Taft parameters show that the NADES cover a broad solvent spectrum—from highly H-bond accepting to strongly H-bond donating or dipolar systems—highlighting the potential for fine-tuning the solvent according to target applications. The obtained results highlight the applicability of these NADESs as green, tunable media for the extraction and solvation of bioactive compounds. Full article
Show Figures

Figure 1

19 pages, 2890 KB  
Article
Direct Valorization of Biogas Residue: A Comparative Study on Facile Chemical Modifications for Superior Adsorption of Anionic Dyes
by Xin Luo, Wenxia Zhao, Lin Fu, Yun Deng, Weijie Xue, Changbo Zhang, Ian Beadham, Zhongyan Lu, Yuyao Liu, Fanshu Bi and Qingshuai Wang
Toxics 2026, 14(1), 64; https://doi.org/10.3390/toxics14010064 - 9 Jan 2026
Viewed by 224
Abstract
This study aims to develop a cost-effective and scalable modification strategy for valorizing lignin-rich biogas residue (BR) into high-performance adsorbents for anionic dye removal. To screen the optimal modification pathway, three distinct reagents, L-cysteine-based amino acid ionic liquids (AAILs, as green alternatives), conventional [...] Read more.
This study aims to develop a cost-effective and scalable modification strategy for valorizing lignin-rich biogas residue (BR) into high-performance adsorbents for anionic dye removal. To screen the optimal modification pathway, three distinct reagents, L-cysteine-based amino acid ionic liquids (AAILs, as green alternatives), conventional hydrochloric acid (HCl) and sodium hydroxide (NaOH, as traditional modification reagents), were compared in modifying non-carbonized BR for Congo Red (CR) adsorption. Comprehensive characterizations and adsorption tests revealed that each modifier exerted unique effects: NaOH only caused mild surface etching with limited performance improvement; AAILs achieved moderate adsorption capacity via a green, mild route; while HCl modification (BR-HCl) stood out with the most superior performance through a “selective dissolution-pore reconstruction” mechanism. Notably, despite a modest specific surface area increase to 12.05 m2/g, BR-HCl’s high CR adsorption capacity (120.21 mg/g at 45 °C) originated from the synergy of chemical bonding and enhanced electrostatic attraction—its isoelectric point (pHPZC ≈ 9.02) was significantly higher than that of AAIL- and NaOH-modified samples, enabling strong affinity for anionic CR across a wide pH range. BR-HCl attained over 99% CR removal at a dosage of 0.4 g/L, fitted well with Langmuir isotherm and pseudo-second-order kinetic models (confirming monolayer chemisorption), and retained 82% of its initial capacity after five regeneration cycles. These results demonstrate that while AAILs show promise as green modifiers and NaOH serves as a baseline, the facile, low-cost HCl modification offers the most pragmatic pathway to unlock BR’s potential for sustainable wastewater treatment. Full article
(This article belongs to the Section Agrochemicals and Food Toxicology)
Show Figures

Graphical abstract

17 pages, 2799 KB  
Article
Development and Multi-Scale Evaluation of a Novel Polyfluorosilicone Triple-Layer Anti-Seepage Coating for Hydraulic Concrete
by Nazim Hussain, Guoxin Zhang, Songhui Li, Xunan Liu, Xiangyu Luo and Junhua Hu
Coatings 2026, 16(1), 85; https://doi.org/10.3390/coatings16010085 - 9 Jan 2026
Viewed by 233
Abstract
The deterioration of concrete hydraulic structures caused by chemical factors, seepage, and environmental stress necessitates advanced protective coatings that enhance durability, flexibility, and environmental sustainability. Conventional protective systems often exhibit limited durability under combined hydraulic, thermal, and chemical stress. In this study, a [...] Read more.
The deterioration of concrete hydraulic structures caused by chemical factors, seepage, and environmental stress necessitates advanced protective coatings that enhance durability, flexibility, and environmental sustainability. Conventional protective systems often exhibit limited durability under combined hydraulic, thermal, and chemical stress. In this study, a novel polyfluorosilicone-based coating system is presented, which integrates a deep-penetrating nano-primer for substrate reinforcement, a crack-bridging polymer intermediate layer for impermeability, and a polyfluorosilicone topcoat providing UV and weather resistance. The multilayer architecture addresses the inherent trade-offs between adhesion, flexibility, and durability observed in conventional waterproofing systems. Informed by a mechanistic study of interfacial adhesion and failure modes, the coating exhibits outstanding high mechanical and performance characteristics, including a mean pull-off bond strength of 4.56 ± 0.14 MPa for the fully cured triple-layer coating system, with cohesive failure occurring within the concrete substrate, signifying a bond stronger than the material it protects. The system withstood 2.2 MPa water pressure and 200 freeze–thaw cycles with 87.2% modulus retention, demonstrating stable mechanical and environmental durability. The coating demonstrated excellent resilience, showing no evidence of degradation after 1000 h of UV aging, 200 freeze–thaw cycles, and exposure to alkaline solutions. This water-based formulation meets green-material standards, with low volatile organic compound (VOC) levels and minimal harmful chemicals. The results validate that a multi-scale, layered design strategy effectively decouples and addresses the distinct failure mechanisms in hydraulic environments, providing a robust and sustainable solution. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Figure 1

30 pages, 1428 KB  
Review
Greening the Bond: A Narrative and Systematic Literature Review on Advancing Sustainable and Non-Toxic Adhesives for the Fiberboard Industry
by Prosper Mensah, Rafael Rodolfo de Melo, Alexandre Santos Pimenta, James Amponsah, Gladys Tuo, Fernando Rusch, Edgley Alves de Oliveira Paula, Humphrey Danso, Juliana de Moura, Márcia Ellen Chagas dos Santos Couto, Giorgio Mendes Ribeiro and Francisco Leonardo Gomes de Menezes
Adhesives 2026, 2(1), 2; https://doi.org/10.3390/adhesives2010002 - 8 Jan 2026
Viewed by 298
Abstract
The fiberboard industry remains heavily reliant on synthetic, formaldehyde-based adhesives, which, despite their cost-effectiveness and strong bonding performance, present significant environmental and human health concerns due to volatile organic compound (VOC) emissions. In response to growing sustainability imperatives and regulatory pressures, the development [...] Read more.
The fiberboard industry remains heavily reliant on synthetic, formaldehyde-based adhesives, which, despite their cost-effectiveness and strong bonding performance, present significant environmental and human health concerns due to volatile organic compound (VOC) emissions. In response to growing sustainability imperatives and regulatory pressures, the development of non-toxic, renewable, and high-performance bio-based adhesives has emerged as a critical research frontier. This review, conducted through both narrative and systematic approaches, synthesizes current advances in green adhesive technologies with emphasis on lignin, tannin, starch, protein, and hybrid formulations, alongside innovative synthetic alternatives designed to eliminate formaldehyde. The Evidence for Policy and Practice Information and Coordinating Centre (EPPI) framework was applied to ensure a rigorous, transparent, and reproducible methodology, encompassing the identification of research questions, systematic searching, keywording, mapping, data extraction, and in-depth analysis. Results reveal that while bio-based adhesives are increasingly capable of approaching or matching the mechanical strength and durability of urea–formaldehyde adhesives, challenges persist in terms of water resistance, scalability, cost, and process compatibility. Hybrid systems and novel crosslinking strategies demonstrate particular promise in overcoming these limitations, paving the way toward industrial viability. The review also identifies critical research gaps, including the need for standardized testing protocols, techno-economic analysis, and life cycle assessment to ensure the sustainable implementation of these solutions. By integrating environmental, economic, and technological perspectives, this work highlights the transformative potential of green adhesives in transitioning the fiberboard sector toward a low-toxicity, carbon-conscious future. It provides a roadmap for research, policy, and industrial innovation. Full article
(This article belongs to the Special Issue Advances in Bio-Based Wood Adhesives)
Show Figures

Figure 1

39 pages, 3073 KB  
Review
The Future of Green Chemistry: Evolution and Recent Trends in Deep Eutectic Solvents Research
by Veronika Jančíková and Michal Jablonský
Appl. Sci. 2026, 16(2), 654; https://doi.org/10.3390/app16020654 - 8 Jan 2026
Viewed by 425
Abstract
Deep eutectic solvents are a sustainable and chemically tunable class of solvents formed by strong hydrogen bonding between a hydrogen bond acceptor and a hydrogen bond donor. Their extreme versatility has established deep eutectic solvents in ten key applied areas, including the green [...] Read more.
Deep eutectic solvents are a sustainable and chemically tunable class of solvents formed by strong hydrogen bonding between a hydrogen bond acceptor and a hydrogen bond donor. Their extreme versatility has established deep eutectic solvents in ten key applied areas, including the green extraction of bioactive compounds, CO2 capture, electrochemistry, and the catalytic media. Research is shifting towards highly innovative frontier trends, such as the role of deep eutectic solvents in dynamic covalent chemistry and as templates for advanced photocatalytic nanomaterials. Other innovative directions include artificial organelles for bioremediation, thermoacoustic deep eutectic solvents for smart drug delivery, and their use as multifunctional interfaces for 2D materials. The future of deep eutectic solvents lies in process engineering and scale-up, supported by computational chemistry, confirming their position as a central pillar of the circular economy. This trajectory marks the transition of deep eutectic solvents from laboratory curiosities to a scalable industrial reality. Full article
(This article belongs to the Special Issue Technical Advances in Biomass Conversion)
Show Figures

Figure 1

13 pages, 3195 KB  
Article
Atomic Bond Strain: A New Strain Measure Displaying Nearly Perfect Linear Correlation with Stress Throughout Plastic Deformation of Single-Crystal FCC Metals
by Donghua Xu, Tittaya Thaiyanurak and Noushin Salsabil
Solids 2026, 7(1), 5; https://doi.org/10.3390/solids7010005 - 6 Jan 2026
Viewed by 195
Abstract
Atomic-scale strain is the basis of a material’s macroscopic deformation behavior. The current measure of atomic-scale strain in the form of the Green–Lagrange tensor loses its physical meaning beyond the yield point, as atomic neighborhoods undergo significant reconstructions. We have recently introduced a [...] Read more.
Atomic-scale strain is the basis of a material’s macroscopic deformation behavior. The current measure of atomic-scale strain in the form of the Green–Lagrange tensor loses its physical meaning beyond the yield point, as atomic neighborhoods undergo significant reconstructions. We have recently introduced a new atomic-scale strain measure, namely, atomic bond strain, through our study of bond behavior in multicomponent metallic glasses. Here, we apply this new strain measure to uniaxial tensile tests (simulated using molecular dynamics) of several representative single-crystal FCC (face-centered cubic) metals under varied strain rates. We show that this new strain measure displays remarkable near-linear correlation with stress, not only in the elastic regime, but also in the plastic regime where complex dislocation dynamics (nucleation, bursting, motion, annihilation, regeneration) and stress fluctuations take place. This suggests that the overall stress of the materials even in the plastic regime is predominantly determined by the degree of bond stretching among all atoms. This appears to contradict the common conceptions that the plastic flow stress of a crystalline material is governed by dislocation events involving only a small fraction of atoms around dislocations, and that the stress–strain relationship is highly non-linear for plastic deformation. The contradictions can be reconciled by considering the causal sequence: dislocation events alter bond stretching, and bond stretching directly determines the stress. This brings a novel insight into the nature of plastic deformation, owing to the newly introduced atomic bond strain. How well the near-linear correlation between the stress and the atomic bond strain holds in other materials (e.g., non-FCC single crystals, polycrystals, quasicrystals, elements, alloys, and compounds) is an intriguing and important topic for future investigation, following the example of this work. Full article
Show Figures

Figure 1

26 pages, 2071 KB  
Article
Do Green Credit Bonds Enhance Green Total Factor Productivity? Evidence from China
by Mingxu Li, Guanqi Wang, Yixuan Song, Ruijing Luo and Nianyong Wang
Sustainability 2026, 18(1), 493; https://doi.org/10.3390/su18010493 - 4 Jan 2026
Viewed by 330
Abstract
Green finance is increasingly expected to support decarbonization while enhancing productivity, yet evidence on whether green credit bonds raise green total factor productivity (GTFP) remains limited. Using panel data for 29 provincial-level regions in China from 2016 to 2023, we compute GTFP using [...] Read more.
Green finance is increasingly expected to support decarbonization while enhancing productivity, yet evidence on whether green credit bonds raise green total factor productivity (GTFP) remains limited. Using panel data for 29 provincial-level regions in China from 2016 to 2023, we compute GTFP using a slacks-based measure Malmquist–Luenberger (SBM–ML) index and estimate two-way fixed-effects models. To address endogeneity, we employ a Bartik shift–share instrumental-variable strategy. We found that green credit bonds significantly increase GTFP, with gains driven mainly by technological change (TC) rather than efficiency change (EC). The effect is stronger in eastern and western regions, in provinces that are not low-carbon pilot areas, and in regions with stronger low-carbon governance orientation. Public environmental attention directly improves GTFP but dampens the marginal effect of green credit bonds. Mechanism analyses further indicate that the low-carbon transition of the energy mix (LCEM) is an important transmission channel. Overall, these findings suggest that scaling up and better targeting green credit bonds, alongside complementary governance and public scrutiny, can accelerate China’s transition toward higher green productivity. This provides sustainability-relevant evidence that market-based green finance can support decarbonization while sustaining productivity growth, contributing to long-term sustainable development. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

16 pages, 8898 KB  
Article
Carrier-Free Supramolecular Hydrogel Self-Assembled from Triterpenoid Saponins from Traditional Chinese Medicine: Preparation, Characterization, and Evaluation of Anti-Inflammatory Activity
by Qiongxue Huang, Mingzhen Liu, Tingting Ye, Dandan Mo, Haifeng Wu, Guoxu Ma and Xiaolei Zhou
Gels 2026, 12(1), 52; https://doi.org/10.3390/gels12010052 - 2 Jan 2026
Viewed by 381
Abstract
Inflammation is the body’s natural immune response to invasion by foreign pathogens and is closely linked to many diseases. Chronic inflammation, if not properly controlled, can pose serious health risks and even threaten life. Currently, the main anti-inflammatory drugs are classified into steroidal [...] Read more.
Inflammation is the body’s natural immune response to invasion by foreign pathogens and is closely linked to many diseases. Chronic inflammation, if not properly controlled, can pose serious health risks and even threaten life. Currently, the main anti-inflammatory drugs are classified into steroidal and non-steroidal anti-inflammatory drugs, but both have significant side effects that limit their clinical applications. α-Hederin, a pentacyclic triterpenoid saponin, is derived from various plants, including Pulsatilla chinensis, Hedera helix, and Nigella sativa. It has been reported that α-hederin can be used to treat both acute and chronic inflammatory diseases. However, it has poor water solubility and low bioavailability. This study shows that α-hederin can directly self-assemble into a hydrogel through hydrogen bonds and van der Waals forces, called He-Gel. The mechanical properties of He-Gel were further characterized using rheological and microrheological methods. Its self-assembly mechanism was comprehensively elucidated through a combination of spectroscopic analyses and computational chemistry. Furthermore, in vitro experiments showed that He-Gel exhibits lower cytotoxicity and more excellent anti-inflammatory activity compared to free α-hederin. In conclusion, this research provides a solution for the further development of α-hederin. Unlike conventional approaches that rely on polymers as drug carriers, this preparation method is both green and economical. More importantly, it highlights that direct self-assembly of natural small molecules represents a promising strategy for anti-inflammatory therapy. Full article
(This article belongs to the Section Gel Analysis and Characterization)
Show Figures

Figure 1

30 pages, 3551 KB  
Article
Research on Bayesian Hierarchical Spatio-Temporal Model for Pricing Bias of Green Bonds
by Yiran Liu and Hanshen Li
Sustainability 2026, 18(1), 455; https://doi.org/10.3390/su18010455 - 2 Jan 2026
Viewed by 217
Abstract
Driven by carbon neutrality policies, the cumulative issuance volume of the global green bond market has surpassed $2.5 trillion over the past five years, with China, as the second largest issuer, accounting for 15%. However, there exists a yield difference of up to [...] Read more.
Driven by carbon neutrality policies, the cumulative issuance volume of the global green bond market has surpassed $2.5 trillion over the past five years, with China, as the second largest issuer, accounting for 15%. However, there exists a yield difference of up to 0.8% for bonds with the same credit rating across different policy regions, and the premium level fluctuates dramatically with market cycles, severely restricting the efficiency of green resource allocation. This study innovatively constructs a Bayesian hierarchical spatiotemporal model framework to systematically analyze pricing deviations through a three-level data structure: the base level quantifies the impact of bond micro-characteristics (third-party certification reduces financing costs by 0.15%), the temporal level captures market dynamics using autoregressive processes (premium volatility increases by 50% during economic recessions), and the spatial level reveals policy regional dependencies using conditional autoregressive models (carbon trading pilot provinces and cities form premium sinkholes). The core breakthroughs are: 1. Designing spatiotemporal interaction terms to explicitly model the policy diffusion process, with empirical evidence showing that the green finance reform pilot zone policy has a radiation radius of 200 km within three years, leading to a 0.10% increase in premiums in neighboring provinces; 2. Quantifying the posterior distribution of parameters using the Markov Chain Monte Carlo algorithm, demonstrating that the posterior mean of the policy effect in pilot provinces is −0.211%, with a half-life of 0.75 years, and the residual effect in non-pilot provinces is only −0.042%; 3. Establishing a hierarchical shrinkage prior mechanism, which reduces prediction error by 41% compared to traditional models in out-of-sample testing. Key findings include: the contribution of policy pilots is −0.192%, surpassing the effect of issuer credit ratings, and a 10 yuan/ton increase in carbon price can sustainably reduce premiums by 0.117%. In 2021, the “dual carbon” policy contributed 32% to premium changes through spatiotemporal interaction channels. The research results provide quantitative tools for issuers to optimize financing timing, investors to identify cross-regional arbitrage, and regulators to assess policy coordination, promoting the transformation of the green bond market from an efficiency priority to equitable allocation paradigm. Full article
Show Figures

Figure 1

Back to TopTop