Abstract
Despite their potential, alkali-treated konjac glucomannan (KGM) gels are limited by excessive brittleness and a lack of eco-friendly synthesis methods, creating an urgent need for more durable and ‘green’ alternatives. In this study, highly stable KGM gels were constructed under low-alkali conditions by adjusting the ethanol content. The results showed that intermolecular hydrogen bonding and hydrophobic interactions were enhanced with increasing ethanol concentration (0–20% v/v) under low-alkaline conditions. The physicochemical properties of KGM gels showed dynamic improvement, with denser micro-network morphology and simultaneous enhancement of thermal stability. However, the addition of a high ethanol concentration (20% v/v) tended to trigger local aggregation, disrupting the gel network structure. At an ethanol addition of 15%, the hydrogen bonding and hydrophobic interactions of KGM gels reached an optimal equilibrium, exhibiting the most compact gel network and excellent resistance to deformation. This study reveals the regulation of the microstructure and macroscopic properties of KGM gels by ethanol, which provides theoretical support for the construction of high-performance KGM gels under low-alkali conditions.