Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = graphene-nitrogen doped carbon nanotubes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 7142 KiB  
Article
Zeolitic Imidazolate Framework-67-Derived NiCoMn-Layered Double Hydroxides Nanosheets Dispersedly Grown on the Conductive Networks of Single-Walled Carbon Nanotubes for High-Performance Hybrid Supercapacitors
by Yingying Li, Qin Zhou and Yongfu Lian
Nanomaterials 2025, 15(7), 481; https://doi.org/10.3390/nano15070481 - 23 Mar 2025
Viewed by 643
Abstract
A supercapacitor’s energy storage capability is greatly dependent on electrode materials. Layered double hydroxides (LDHs) were extensively studied as battery-type electrodes because of their 2D structure and quick intercalation/deintercalation of electrolyte ions. However, the energy storage capability for pristine LDHs is limited by [...] Read more.
A supercapacitor’s energy storage capability is greatly dependent on electrode materials. Layered double hydroxides (LDHs) were extensively studied as battery-type electrodes because of their 2D structure and quick intercalation/deintercalation of electrolyte ions. However, the energy storage capability for pristine LDHs is limited by their large aggregation tendency and poor electrical conductivity. Herein, a novel NiCoMn-LDH/SWCNTs (single-walled carbon nanotubes) composite electrode material, with ultrathin NiCoMn-LDH nanosheets dispersedly grown among the highly conductive networks of SWCNTs, was prepared via a facile zeolitic imidazolate framework-67 (ZIF-67)-derived in situ etching and deposition procedure. The NiCoMn-LDH/SWCNTs electrode demonstrates a specific capacitance as large as 1704.3 F g−1 at 1 A g−1, which is ascribed to its exposure of more active sites than NiCoMn-LDH. Moreover, the assembled NiCoMn-LDH/SWCNTs//BGA (boron-doped graphene aerogel) hybrid supercapacitor exhibits a superior capacitance of 167.9 F g−1 at 1.0 A g−1, an excellent energy density of 45.7 Wh kg−1 with a power density of 700 W kg−1, and an outstanding cyclic stability with 82.3% incipient capacitance maintained when subjected to 5000 charge and discharge cycles at the current density of 10 A g−1, suggesting the significant potential of NiCoMn-LDH/SWCNTs as the electrode material applicable in supercapacitors. Full article
Show Figures

Graphical abstract

13 pages, 3394 KiB  
Article
Enhanced Diclofenac Removal from Constructed Wetland Effluent Using a Photoelectrocatalytic System with N-TiO2 Nanocrystal-Modified TiO2 Nanotube Anode and Graphene Oxide/Activated Carbon Photocathode
by Xiongwei Liang, Shaopeng Yu, Bo Meng, Xiaodi Wang, Chunxue Yang, Chuanqi Shi and Junnan Ding
Catalysts 2024, 14(12), 954; https://doi.org/10.3390/catal14120954 - 23 Dec 2024
Viewed by 825
Abstract
This investigation reports on the efficacy of a photoelectrocatalysis (PEC) system enhanced by a nitrogen-doped TiO2 nanocrystal-modified TiO2 nanotube array (N-TiO2 NCs/TNTAs) anode paired with a graphene oxide/activated carbon (GO/AC) photocathode for diclofenac removal from effluent. The FE-SEM and EDX [...] Read more.
This investigation reports on the efficacy of a photoelectrocatalysis (PEC) system enhanced by a nitrogen-doped TiO2 nanocrystal-modified TiO2 nanotube array (N-TiO2 NCs/TNTAs) anode paired with a graphene oxide/activated carbon (GO/AC) photocathode for diclofenac removal from effluent. The FE-SEM and EDX analyses validated the elemental composition of the anode—27.56% C, 30.81% N, 6.03% O, and 26.49% Ti. The XRD results confirmed the anatase phase and nitrogen integration, essential for photocatalytic activity enhancement. Quantum chemical simulations provided a comprehensive understanding of the red-shifted absorption bands in N-TiO2, and UV-vis DRS demonstrated a red-shift in absorption to the visible spectrum, indicating improved light utilization. The PEC configuration achieved a photocurrent density of 9.8 mA/dm2, significantly higher than the unmodified and solely nitrogen-doped counterparts at 4.8 mA/dm2 and 6.1 mA/dm2, respectively. Notably, this system reduced diclofenac concentrations by 58% within 75 min, outperforming standard photocatalytic setups. These findings underscore the potential of N-TiO2 NCs/TNTAs-AC-GO/PTFE composite material for advanced environmental photoelectrocatalytic applications. Full article
(This article belongs to the Special Issue Nanomaterials in Environmental Catalysis)
Show Figures

Figure 1

20 pages, 5158 KiB  
Article
Thermal Stability and Purity of Graphene and Carbon Nanotubes: Key Parameters for Their Thermogravimetric Analysis (TGA)
by Markus Martincic, Stefania Sandoval, Judith Oró-Solé and Gerard Tobías-Rossell
Nanomaterials 2024, 14(21), 1754; https://doi.org/10.3390/nano14211754 - 31 Oct 2024
Cited by 5 | Viewed by 3055
Abstract
Thermal analysis is widely employed for the characterization of nanomaterials. It encompasses a variety of techniques that allow the evaluation of the physicochemical properties of a material by monitoring its response under controlled temperature. In the case of carbon nanomaterials, such as carbon [...] Read more.
Thermal analysis is widely employed for the characterization of nanomaterials. It encompasses a variety of techniques that allow the evaluation of the physicochemical properties of a material by monitoring its response under controlled temperature. In the case of carbon nanomaterials, such as carbon nanotubes and graphene derivatives, thermogravimetric analysis (TGA) is particularly useful to determine the quality and stability of the sample, the presence of impurities and the degree of functionalization or doping after post-synthesis treatments. Furthermore, TGA is widely used to evaluate the thermal stability against oxidation by air, which can be, for instance, enhanced by the purification of the material and by nitrogen doping, finding application in areas where a retarded combustion of the material is required. Herein, we have evaluated key parameters that play a role in the data obtained from TGA, namely, gas flow rate, sample weight and temperature rate, used during the analysis. We found out that the heating rate played the major role in the process of combustion in the presence of air, inducing an increase in the temperature at which the oxidation of CNTs starts to occur, up to ca. 100 °C (from 1 °C min−1 to 50 °C min−1). The same trend was observed for all the evaluated systems, namely N-doped CNTs, graphene produced by mechanical exfoliation and N-doped reduced graphene samples. Other aspects, like the presence of impurities or structural defects in the evaluated samples, were analyzed by TGA, highlighting the versatility and usefulness of the technique to provide information of structural aspects and properties of carbon materials. Finally, a set of TGA parameters are recommended for the analysis of carbon nanomaterials to obtain reliable data. Full article
(This article belongs to the Section Inorganic Materials and Metal-Organic Frameworks)
Show Figures

Figure 1

15 pages, 4110 KiB  
Review
Formation, Structure, Electronic, and Transport Properties of Nitrogen Defects in Graphene and Carbon Nanotubes
by Yoshitaka Fujimoto
Micromachines 2024, 15(9), 1172; https://doi.org/10.3390/mi15091172 - 22 Sep 2024
Cited by 2 | Viewed by 1550
Abstract
The substitutional doping of nitrogen is an efficient way to modulate the electronic properties of graphene and carbon nanotubes (CNTs). Therefore, it could enhance their physical and chemical properties as well as offer potential applications. This paper provides an overview of the experimental [...] Read more.
The substitutional doping of nitrogen is an efficient way to modulate the electronic properties of graphene and carbon nanotubes (CNTs). Therefore, it could enhance their physical and chemical properties as well as offer potential applications. This paper provides an overview of the experimental and theoretical investigations regarding nitrogen-doped graphene and CNTs. The formation of various nitrogen defects in nitrogen-doped graphene and CNTs, which are identified by several observations, is reviewed. The electronic properties and transport characteristics for nitrogen-doped graphene and CNTs are also reviewed for the development of high-performance electronic device applications. Full article
(This article belongs to the Special Issue Advances in Carbon-Based Nanomaterials Applied Innovations)
Show Figures

Figure 1

17 pages, 3703 KiB  
Article
Hybrids Composed of an Fe-Containing Wells–Dawson Polyoxometalate and Carbon Nanomaterials as Promising Electrocatalysts for the Oxygen Reduction Reaction
by Hugo C. Novais, Bruno Jarrais, Israël-Martyr Mbomekallé, Anne-Lucie Teillout, Pedro de Oliveira, Cristina Freire and Diana M. Fernandes
Inorganics 2023, 11(10), 388; https://doi.org/10.3390/inorganics11100388 - 29 Sep 2023
Cited by 4 | Viewed by 2188
Abstract
The oxygen reduction reaction (ORR) is a key cathodic reaction in energy-converting systems, such as fuel cells (FCs). Thus, it is of utmost importance to develop cost-effective and efficient electrocatalysts (ECs) without noble metals to substitute the Pt-based ones. This study focuses on [...] Read more.
The oxygen reduction reaction (ORR) is a key cathodic reaction in energy-converting systems, such as fuel cells (FCs). Thus, it is of utmost importance to develop cost-effective and efficient electrocatalysts (ECs) without noble metals to substitute the Pt-based ones. This study focuses on polyoxometalate (POM)-based ECs for ORR applications. A Wells–Dawson POM salt K7 [P2W17(FeOH2)O61].·20H2O was immobilised onto graphene flakes and multiwalled carbon nanotubes doped with nitrogen, denominated as P2W17Fe@GF_N8 and P2W17Fe@MWCNT_N8. The successful preparation of the composites was proved with various characterisation techniques, including FTIR, XPS and SEM. Both materials showed good ORR performance in an alkaline medium with similar potential onset values of ~0.84 V vs. RHE and diffusion-limiting current densities of −3.9 and −3.3 mA cm−2 for P2W17Fe@MWCNT_N8 and P2W17Fe@GF_N8, respectively. Furthermore, both composites presented low Tafel slopes (48–58 mV dec−1). Chronoamperometric tests revealed that the as-prepared nanocomposites rendered a significant improvement achieving between 90 and 94% of current retention in tolerance to methanol in comparison with Pt/C, and moderate to good long-term electrochemical stability with current retentions comprised between 68 and 88%. This work reinforces the use of POMs as important electroactive species for the preparation of alternative ORR electrocatalysts, exhibiting good activity, stability and selectivity towards the ORR in the presence of methanol. Full article
(This article belongs to the Special Issue Polyoxometalate Chemistry for Smart Materials)
Show Figures

Graphical abstract

21 pages, 11312 KiB  
Review
A Review of Nitrogen-Doped Graphene Aerogel in Electromagnetic Wave Absorption
by Ze Wu, Xinke Yao and Youqiang Xing
Micromachines 2023, 14(9), 1762; https://doi.org/10.3390/mi14091762 - 12 Sep 2023
Cited by 8 | Viewed by 2702
Abstract
Graphene aerogels (GAs) possess a remarkable capability to absorb electromagnetic waves (EMWs) due to their favorable dielectric characteristics and unique porous structure. Nevertheless, the introduction of nitrogen atoms into graphene aerogels can result in improved impedance matching. In recent years, nitrogen-doped graphene aerogels [...] Read more.
Graphene aerogels (GAs) possess a remarkable capability to absorb electromagnetic waves (EMWs) due to their favorable dielectric characteristics and unique porous structure. Nevertheless, the introduction of nitrogen atoms into graphene aerogels can result in improved impedance matching. In recent years, nitrogen-doped graphene aerogels (NGAs) have emerged as promising materials, particularly when combined with magnetic metals, magnetic oxides, carbon nanotubes, and polymers, forming innovative composite systems with excellent multi-functional and broadband absorption properties. This paper provides a comprehensive summary of the synthesis methods and the EMW absorption mechanism of NGAs, along with an overview of the absorption properties of nitrogen-doped graphene-based aerogels. Furthermore, this study sheds light on the potential challenges that NGAs may encounter. By highlighting the substantial contribution of NGAs in the field of EMW absorption, this study aims to facilitate the innovative development of NGAs toward achieving broadband absorption, lightweight characteristics, and multifunctionality. Full article
Show Figures

Figure 1

14 pages, 3337 KiB  
Article
Electrochemical Determination of Hazardous Herbicide Diuron Using MWCNTs-CS@NGQDs Composite-Modified Glassy Carbon Electrodes
by Jin Zhu, Yi He, Lijun Luo, Libo Li and Tianyan You
Biosensors 2023, 13(8), 808; https://doi.org/10.3390/bios13080808 - 11 Aug 2023
Cited by 9 | Viewed by 2077
Abstract
Diuron (DU) abuse in weed removal and shipping pollution prevention always leads to pesticide residues and poses a risk to human health. In the current research, an innovative electrochemical sensor for DU detection was created using a glassy carbon electrode (GCE) that had [...] Read more.
Diuron (DU) abuse in weed removal and shipping pollution prevention always leads to pesticide residues and poses a risk to human health. In the current research, an innovative electrochemical sensor for DU detection was created using a glassy carbon electrode (GCE) that had been modified with chitosan-encapsulated multi-walled carbon nanotubes (MWCNTs-CS) combined with nitrogen-doped graphene quantum dots (NGQDs). The NGQDs were prepared by high-temperature pyrolysis, and the MWCNTs-CS@NGQDs composite was further prepared by ultrasonic assembly. TEM, UV-Vis, and zeta potential tests were performed to investigate the morphology and properties of MWCNTs-CS@NGQDs. CV and EIS measurements revealed that the assembly of MWCNTs and CS improved the electron transfer ability and effective active area of MWCNTs. Moreover, the introduction of NGQDs further enhanced the detection sensitivity of the designed sensor. The MWCNTs-CS@NGQDs/GCE electrochemical sensor exhibited a wide linear range (0.08~12 μg mL−1), a low limit of detection (0.04 μg mL−1), and high sensitivity (31.62 μA (μg mL−1)−1 cm−2) for DU detection. Furthermore, the sensor demonstrated good anti-interference performance, reproducibility, and stability. This approach has been effectively employed to determine DU in actual samples, with recovery ranges of 99.4~104% in river water and 90.0~94.6% in soil. The developed electrochemical sensor is a useful tool to detect DU, which is expected to provide a convenient and easy analytical technique for the determination of various bioactive species. Full article
(This article belongs to the Special Issue Nanomaterials for Biosensors)
Show Figures

Figure 1

16 pages, 6377 KiB  
Article
Effect of Carbon Nanoparticles on the Porous Texture of ι-Carrageenan-Based N-Doped Nanostructured Porous Carbons and Implications for Gas Phase Applications
by Samantha K. Samaniego Andrade, Alfréd Menyhárd, Szilvia Klébert, Miklós Mohai, Balázs Nagy and Krisztina László
C 2023, 9(3), 68; https://doi.org/10.3390/c9030068 - 12 Jul 2023
Cited by 3 | Viewed by 2592
Abstract
S and N double-doped high surface area biomass-derived carbons were obtained from marine biomass-derived ι-carrageenan. Adding carbon nanoparticles (CNPs), namely graphene oxide (GO) or carbon nanotubes (CNTs), in the early stage of the synthesis leads to a modified porous texture and surface chemistry. [...] Read more.
S and N double-doped high surface area biomass-derived carbons were obtained from marine biomass-derived ι-carrageenan. Adding carbon nanoparticles (CNPs), namely graphene oxide (GO) or carbon nanotubes (CNTs), in the early stage of the synthesis leads to a modified porous texture and surface chemistry. The porous textures were characterized by N2 (−196.15 °C) and CO2 (0 °C) isotherms. The best GO- and CNT-added carbons had an apparent surface area of 1780 m2/g and 1170 m2/g, respectively, compared to 1070 m2/g for the CNP-free matrix. Analysis of the Raman spectra revealed that CNT was more efficient in introducing new defects than GO. Based on XPS, the carbon samples contain 2–4.5 at% nitrogen and 1.1 at% sulfur. The Dubinin–Radushkevich (DR) and Henry models were used to assess the strength of the interactions between various gases and the surface. The N2/H2 and CO2/CH4 selectivities were estimated with ideal adsorbed solution theory (IAST). While the CNPs, particularly GO, had a remarkable influence on the porous texture and affected the surface chemistry, their influence on the separation selectivity of these gases was more modest. Full article
(This article belongs to the Special Issue Carbons for Health and Environmental Protection)
Show Figures

Figure 1

13 pages, 5515 KiB  
Article
Preparation of Spiral Nitrogen-Doped Macroscopic Graphene Tube and Tuning the Activity of Oxygen Catalysis by Twisted Ferrum (Fe) Wires
by Yongfeng Li, Yanzhen Liu, Shuai Chen, Xiaoming Li and Shengguo Ma
Metals 2022, 12(12), 2050; https://doi.org/10.3390/met12122050 - 29 Nov 2022
Cited by 1 | Viewed by 1721
Abstract
A FeNx-C-based catalyst is considered one of the most promising candidates for the highest oxygen reduction reaction (ORR) activities among nonprecious metal-based electrocatalysts. In this work, a unique catalyst of nitrogen-doped twisted macroscopic graphene tubes decorated with Fe-Nx and bamboo-like carbon nanotubes (CNT) [...] Read more.
A FeNx-C-based catalyst is considered one of the most promising candidates for the highest oxygen reduction reaction (ORR) activities among nonprecious metal-based electrocatalysts. In this work, a unique catalyst of nitrogen-doped twisted macroscopic graphene tubes decorated with Fe-Nx and bamboo-like carbon nanotubes (CNT) was prepared by using twisted iron wire as a template and cyanamide as a carbon source. The microstructure and physicochemical natures of the samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopic (XPS), X-ray diffraction (XRD), and nitrogen adsorption/desorption measurements. Torsion can promote the dislocation of the iron wire lattice, and activate the surface Fe atoms, thus leading to the growth of bamboo-like carbon nanotubes and forming iron nitride. The product has a graphene-like macroscopic tube structure and exhibits excellent ORR activity. Such excellent ORR performance may be ascribed to the synergistic effect, including high ORR catalytic sites caused by the dislocation of the iron wire lattice, nitrogen heteroatoms doping, favorable reactant transport channels provided by macroscopic tube structure, and fast electron transfer rate induced by 3D continuous networks. Full article
(This article belongs to the Section Metal Failure Analysis)
Show Figures

Figure 1

9 pages, 1676 KiB  
Article
Secondary-Heteroatom-Doping-Derived Synthesis of N, S Co-Doped Graphene Nanoribbons for Enhanced Oxygen Reduction Activity
by Bing Li, Tingting Xiang, Yuqi Shao, Fei Lv, Chao Cheng, Jiali Zhang, Qingchao Zhu, Yifan Zhang and Juan Yang
Nanomaterials 2022, 12(19), 3306; https://doi.org/10.3390/nano12193306 - 23 Sep 2022
Cited by 6 | Viewed by 2300
Abstract
The rareness and weak durability of Pt-based electrocatalysts for oxygen reduction reactions (ORRs) have hindered the large-scale application of fuel cells. Here, we developed an efficient metal-free catalyst consisting of N, S co-doped graphene nanoribbons (N, S-GNR-2s) for ORRs. GNRs were firstly synthesized [...] Read more.
The rareness and weak durability of Pt-based electrocatalysts for oxygen reduction reactions (ORRs) have hindered the large-scale application of fuel cells. Here, we developed an efficient metal-free catalyst consisting of N, S co-doped graphene nanoribbons (N, S-GNR-2s) for ORRs. GNRs were firstly synthesized via the chemical unzipping of carbon nanotubes, and then N, S co-doping was conducted using urea as the primary and sulfourea as the secondary heteroatom sources. The successful incorporation of nitrogen and sulfur was confirmed by elemental mapping analysis as well as X-ray photoelectron spectroscopy. Electrochemical testing revealed that N, S-GNR-2s exhibited an Eonset of 0.89 V, E1/2 of 0.79 V and an average electron transfer number of 3.72, as well as good stability and methanol tolerance. As a result, N, S-GNR-2s displayed better ORR property than either N-GNRs or N, S-GNRs, the control samples prepared with only a primary heteroatom source, strongly clarifying the significance of secondary-heteroatom-doping on enhancing the catalytic activity of carbon-based nanomaterials. Full article
(This article belongs to the Special Issue Advances in Nano-Electrochemical Materials and Devices)
Show Figures

Graphical abstract

13 pages, 2993 KiB  
Article
Carbon-Based Transducers for Solid-Contact Calcium Ion-Selective Electrodes: Mesopore and Nitrogen-Doping Effects
by Yirong Zhang, Yitian Tang, Rongfeng Liang, Lijie Zhong, Jiexian Xu, Huici Lu, Xiaofeng Xu, Tingting Han, Yu Bao, Yingming Ma, Shiyu Gan and Li Niu
Membranes 2022, 12(9), 903; https://doi.org/10.3390/membranes12090903 - 19 Sep 2022
Cited by 9 | Viewed by 4245
Abstract
Solid-contact ion-selective electrodes (SC-ISEs) exhibit great potential in the detection of routine and portable ions which rely on solid-contact (SC) materials for the transduction of ions to electron signals. Carbon-based materials are state-of-the-art SC transducers due to their high electrical double-layer (EDL) capacitance [...] Read more.
Solid-contact ion-selective electrodes (SC-ISEs) exhibit great potential in the detection of routine and portable ions which rely on solid-contact (SC) materials for the transduction of ions to electron signals. Carbon-based materials are state-of-the-art SC transducers due to their high electrical double-layer (EDL) capacitance and hydrophobicity. However, researchers have long searched for ways to enhance the interfacial capacitance in order to improve the potential stability. Herein, three representative carbon-based SC materials including nitrogen-doped mesoporous carbon (NMC), reduced graphene oxide (RGO), and carbon nanotubes (CNT) were compared. The results disclose that the NMC has the highest EDL capacitance owing to its mesopore structure and N-doping while maintaining high hydrophobicity so that no obvious water-layer effect was observed. The Ca2+-SC-ISEs based on the SC of NMC exhibited high potential stability compared with RGO and CNT. This work offers a guideline for the development of carbon-material-based SC-ISEs through mesoporous and N-doping engineering to improve the interfacial capacitance. The developed NMC-based solid-contact Ca2+-SC-ISE exhibited a Nernstian slope of 26.3 ± 3.1 mV dec−1 ranging from 10 μM to 0.1 M with a detection limit of 3.2 μM. Finally, a practical application using NMC-based SC-ISEs was demonstrated through Ca2+ ion analysis in mineral water and soil leaching solutions. Full article
(This article belongs to the Special Issue Sensing Membranes)
Show Figures

Figure 1

17 pages, 5164 KiB  
Article
Effect of Modifying Carbon Materials with Metal Phthalocynines and Palladium on Their Catalytic Activity in ORR
by Andzhela Vladimirovna Bulanova, Roman Vladimirovich Shafigulin, Kirill Yurievich Vinogradov, Elena Olegovna Tokranova, Evgenia Andreevna Martynenko, Sergey Vladimirovich Vostrikov and Vladimir Vladimirovich Podlipnov
Catalysts 2022, 12(9), 1013; https://doi.org/10.3390/catal12091013 - 7 Sep 2022
Cited by 7 | Viewed by 2309
Abstract
Bimetallic catalysts based on multi-walled carbon nanotubes (MWCNT), graphene oxide (GO) and ultradispersed diamonds (UDD) supports for the process of electroreduction of oxygen from alkaline electrolyte were obtained using high-temperature synthesis. The materials were characterized by low-temperature nitrogen adsorption, Raman spectroscopy, scanning electron [...] Read more.
Bimetallic catalysts based on multi-walled carbon nanotubes (MWCNT), graphene oxide (GO) and ultradispersed diamonds (UDD) supports for the process of electroreduction of oxygen from alkaline electrolyte were obtained using high-temperature synthesis. The materials were characterized by low-temperature nitrogen adsorption, Raman spectroscopy, scanning electron microscopy and X-ray structure analysis. The synthesized bimetallic catalysts contain meso- and micropores. Based on the study by Raman spectroscopy, it is shown that high-temperature synthesis of MWCNT with metal phthalocyanines leads to doping of this material with nitrogen and the appearance of significant defects in the structure. Carbon nanotube-based catalysts showed enhanced activity compared to other carbon materials. Moreover, bimetallic catalysts based on cobalt phthalocyanine and palladium (MWCNT_CoPc_Pd) are characterized by higher activity on all carbon supports compared to materials contain on copper and palladium. The specific current density in the diffusion region of the MWCNT_CoPc_Pd catalyst is comparable to a commercial platinum electrode (Pt(20%)/C) and equals to 2.65 mA/cm2. The area of the electrochemically active surface of all the obtained catalysts was calculated from the CV data in a nitrogen atmosphere. The MWCNT_CoPc_Pd catalyst is characterized by high corrosivity: after 2500 revolutions, the current density in the diffusion region decreases by 7%, and, also, an increase in the values of E1/2 and Eonset is observed. Full article
Show Figures

Figure 1

12 pages, 1992 KiB  
Communication
Electrochemical Immunosensor Modified with Nitrogen-Doped Reduced Graphene Oxide@Carboxylated Multi-Walled Carbon Nanotubes/Chitosan@Gold Nanoparticles for CA125 Detection
by Yingying Gu, Guoao Gong, Yuting Jiang, Jiangyang Qin, Yong Mei and Jun Han
Chemosensors 2022, 10(7), 272; https://doi.org/10.3390/chemosensors10070272 - 12 Jul 2022
Cited by 15 | Viewed by 2757
Abstract
Lung cancer is one of the malignant tumors with the highest mortality rate, and the detection of its tumor marker carcinoma antigen 125 (CA125) is significant. Here, an electrochemical immunoassay for CA125 was described. Nitrogen-doped reduced graphene oxide (N-rGO), carboxylated multi-walled carbon nanotubes [...] Read more.
Lung cancer is one of the malignant tumors with the highest mortality rate, and the detection of its tumor marker carcinoma antigen 125 (CA125) is significant. Here, an electrochemical immunoassay for CA125 was described. Nitrogen-doped reduced graphene oxide (N-rGO), carboxylated multi-walled carbon nanotubes (CMWCNTs) and gold nanoparticles (AuNPs) were applied to co-modify glassy carbon electrode (GCE), after incubation with Anti-CA125, the modified electrode was employed for the specific detection of CA125. The N-rGO@CMWCNTs (Nitrogen-doped reduced graphene oxide@carboxylated multi-walled carbon nanotubes) were used as a matrix, while CS@AuNPs (Chitosan@gold nanoparticles) with high conductivity and biocompatibility was immobilized on it through the reaction between carboxyl groups from CMWCNTs and amino groups, hydroxyl groups from chitosan (CS), resulting in the effect of double signal amplification. The immunosensor demonstrated excellent electrochemical performance with a linear detection range of 0.1 pg mL−1–100 ng mL−1, and the detection limit was as low as 0.04 pg mL−1 (S/N = 3). It had been verified that this method had good precision and high accuracy, and the immunosensor could remain stable for 10 days. This research provided a new method for the detection of CA125 in serum. Full article
(This article belongs to the Section (Bio)chemical Sensing)
Show Figures

Figure 1

25 pages, 6024 KiB  
Article
Photocatalytic Reduction of CO2 with N-Doped TiO2-Based Photocatalysts Obtained in One-Pot Supercritical Synthesis
by Óscar R. Andrade, Verónica Rodríguez, Rafael Camarillo, Fabiola Martínez, Carlos Jiménez and Jesusa Rincón
Nanomaterials 2022, 12(11), 1793; https://doi.org/10.3390/nano12111793 - 24 May 2022
Cited by 33 | Viewed by 3096
Abstract
The objective of this work was to analyze the effect of carbon support on the activity and selectivity of N-doped TiO2 nanoparticles. Thus, N-doped TiO2 and two types of composites, N-doped TiO2/CNT and N-doped TiO2/rGO, were prepared [...] Read more.
The objective of this work was to analyze the effect of carbon support on the activity and selectivity of N-doped TiO2 nanoparticles. Thus, N-doped TiO2 and two types of composites, N-doped TiO2/CNT and N-doped TiO2/rGO, were prepared by a new environmentally friendly one-pot method. CNT and rGO were used as supports, triethylamine and urea as N doping agents, and titanium (IV) tetraisopropoxide and ethanol as Ti precursor and hydrolysis agent, respectively. The as-prepared photocatalysts exhibited enhanced photocatalytic performance compared to TiO2 P25 commercial catalyst during the photoreduction of CO2 with water vapor. It was imputed to the synergistic effect of N doping (reduction of semiconductor band gap energy) and carbon support (enlarging e-h+ recombination time). The activity and selectivity of catalysts varied depending on the investigated material. Thus, whereas N-doped TiO2 nanoparticles led to a gaseous mixture, where CH4 formed the majority compared to CO, N-doped TiO2/CNT and N-doped TiO2/rGO composites almost exclusively generated CO. Regarding the activity of the catalysts, the highest production rates of CO (8 µmol/gTiO2/h) and CH4 (4 µmol/gTiO2/h) were achieved with composite N1/TiO2/rGO and N1/TiO2 nanoparticles, respectively, where superscript represents the ratio mg N/g TiO2. These rates are four times and almost forty times higher than the CO and CH4 production rates observed with commercial TiO2 P25. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Graphical abstract

35 pages, 3773 KiB  
Review
Successful Manufacturing Protocols of N-Rich Carbon Electrodes Ensuring High ORR Activity: A Review
by Malgorzata Skorupska, Anna Ilnicka and Jerzy P. Lukaszewicz
Processes 2022, 10(4), 643; https://doi.org/10.3390/pr10040643 - 25 Mar 2022
Cited by 16 | Viewed by 2965
Abstract
The exploration and development of different carbon nanomaterials happening over the past years have established carbon electrodes as an important electrocatalyst for oxygen reduction reaction. Metal-free catalysts are especially promising potential alternatives for replacing Pt-based catalysts. This article describes recent advances and challenges [...] Read more.
The exploration and development of different carbon nanomaterials happening over the past years have established carbon electrodes as an important electrocatalyst for oxygen reduction reaction. Metal-free catalysts are especially promising potential alternatives for replacing Pt-based catalysts. This article describes recent advances and challenges in the three main synthesis manners (i.e., pyrolysis, hydrothermal method, and chemical vapor deposition) as effective methods for the production of metal-free carbon-based catalysts. To improve the catalytic activity, heteroatom doping the structure of graphene, carbon nanotubes, porous carbons, and carbon nanofibers is important and makes them a prospective candidate for commercial applications. Special attention is paid to providing an overview on the recent major works about nitrogen-doped carbon electrodes with various concentrations and chemical environments of the heteroatom active sites. A detailed discussion and summary of catalytic properties in aqueous electrolytes is given for graphene and porous carbon-based catalysts in particular, including recent studies performed in the authors’ research group. Finally, we discuss pathways and development opportunities approaching the practical use of mainly graphene-based catalysts for metal–air batteries and fuel cells. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

Back to TopTop