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Abstract: S and N double-doped high surface area biomass-derived carbons were obtained from
marine biomass-derived ι-carrageenan. Adding carbon nanoparticles (CNPs), namely graphene
oxide (GO) or carbon nanotubes (CNTs), in the early stage of the synthesis leads to a modified porous
texture and surface chemistry. The porous textures were characterized by N2 (−196.15 ◦C) and CO2

(0 ◦C) isotherms. The best GO- and CNT-added carbons had an apparent surface area of 1780 m2/g
and 1170 m2/g, respectively, compared to 1070 m2/g for the CNP-free matrix. Analysis of the Raman
spectra revealed that CNT was more efficient in introducing new defects than GO. Based on XPS,
the carbon samples contain 2–4.5 at% nitrogen and 1.1 at% sulfur. The Dubinin–Radushkevich (DR)
and Henry models were used to assess the strength of the interactions between various gases and
the surface. The N2/H2 and CO2/CH4 selectivities were estimated with ideal adsorbed solution
theory (IAST). While the CNPs, particularly GO, had a remarkable influence on the porous texture
and affected the surface chemistry, their influence on the separation selectivity of these gases was
more modest.

Keywords: carbon cryogel; heteroatoms; carbon nanotubes; graphene oxide; gas adsorption

1. Introduction

High surface area porous carbon materials have proved to be excellent media for
gas phase-related applications, including separation and storage. High surface area and
porosity are strongly associated. Carbon materials from renewable biomass provide a
sustainable solution for the ever-increasing need for novel porous carbon precursors. While
lignocellulosic biomass has long been used as a carbon precursor [1–6], crustacean waste,
e.g., crab shells rich in chitosan [7], or plants of marine origin, e.g., seaweed [8], still
represent an under-exploited area.

The versatility of porous carbon manufacturing allows the custom making of porous
carbons for CO2 enrichment from gas mixtures with CO2 content of wide concentration
range. Porous carbon materials are competitive adsorbents for the capture of low concen-
tration (~400 ppm) CO2 from air [9] as well as from flue gas or biogas [10,11] where the
CO2 concentration can be as high as 10–15% and 35–45%, respectively. In the latter case,
biomethane (55–65%) is generally the main target of the separation.

Considering porous materials for adsorption-based gas storage or gas separation
applications, pores having dimensions similar to the gas molecules of interest are the
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most efficient. The diameters of H2, CO2, O2, N2 and CH4 are 0.289, 0.33, 0.346, 0.362
and 0.38 nm, respectively [12]. The optimum ratio of pore size to adsorbate molecule
size should be in the range of 1.7–3.0 [13], while in membranes, carbon molecular sieves
with ultramicropores exhibit enhanced selectivity [14]. Although high micropore volume
assures greater gas uptake [15,16], wider pores are not negligible either, as they enhance
the dynamics of the transport processes. Physical or chemical activation methods are used
to optimize the porous structure [3,17].

In addition to the physical interactions operating in the confinement of the pores, the
surface chemistry of the carbon also plays a substantial role in surface interactions and thus
in the selectivity. Heteroatoms, e.g., oxygen, nitrogen or sulfur that decorate the entrance
and/or the pore walls, tune the hydrophobic/hydrophilic nature of the surface [18], modify
the charge distribution of the neighboring carbon atoms [19–21], and thus provide a means
to tune the selectivity of the porous carbon. As an example, Lewis basic functionalities
(nitrogen and oxygen) present on the carbon surface may attract acidic CO2 molecules,
enhancing their uptake [22,23]. Sevilla et al. reported the synthesis of N-doping activated
carbons with high surface area and large CO2 capture capacity (7.4 mmol/g at 0 ◦C and
1 bar) [24]. Dual S and N doping results in a large number of carbon atom active sites
through the redistribution of spin and charge densities as revealed by density functional
theory (DFT) calculations [25].

Carbon nanoparticles (CNPs), like graphene derivatives or carbon nanotubes (CNTs)
incorporated into the carbon matrices, may not only tune the porous texture but may create
further defects that affect the selective interactions between the gas molecules and the
surface. Alhwaige et al. reported that in chitosan–graphene oxide (GO) hybrid aerogels
GO affects the apparent surface area and pore size distribution depending on the amount
of GO added. An important result was an enhancement of the CO2 capture capacity of the
material with the addition of 20 wt% GO, due to increased surface area and pore volume.
In addition, the chitosan-GO hybrid carbon showed enhanced attraction towards CO2
molecules: -COOH, -OH, -NH2, -NO2, -CH3 groups decorating the surface enhance the
CO2 adsorption by binding to CO2 due to its quadrupole moment [7]. The computational
studies of Bucior et al. found that the high separation selectivity and permeance of carbon
nanotubes (CNTs) in the case of H2/CH4, CO2/CH4 mixtures can be attributed to CH4 size
exclusion [26]. CNP incorporation may also enhance the heat conductivity of the carbon
matrix, thus contributing to faster removal of the heat escorting the adsorption process.
Earlier, we studied the synthesis of a red algae-based heteroatom-doped carbon. Following
the method of Li et al. [27], a highly porous carbon with an apparent surface area close
to 1100 m2/g was obtained. Due to the intrinsic S content of the marine biomass-based
carrageenan and the N added with urea during the synthesis, a carbon with 5 at% O,
4.6 at% N and at 1% S was obtained. The gas separation and electric energy storage
potential of this carbon was recently tested [28]. Here we report the effect of graphene oxide
(GO) and multiwalled carbon nanotubes (MWCNT) on the porous texture and surface
chemistry of that carrageenan–urea-based carbon matrix. The CNPs were added in the
early stage, prior to the gelation of the parent matrix, and are thus expected to tune both
the porous texture and the chemistry of the carbons obtained. After characterizing the
morphology and surface chemistry, the N2/H2 and CO2/CH4 selectivity was estimated
using ideal adsorbed solution theory (IAST) [29].

2. Materials and Methods

ι-carrageenan powder and urea pearls (98%) were purchased from Sigma Aldrich
(Budapest, Hungary). The aqueous GO suspension (0.96 wt%) was prepared from natural
graphite (Graphite Týn, Týn nad Vltavou, Czech Republic) following an improved Hum-
mers’ method [30,31]. The MWCNT was obtained from Chengdu Organic Chemicals Co.,
Ltd. (Chengdu, China). The as-received CNTs were oxidized in cc. HNO3 (65%) for 3 h
at 80 ◦C, washed with aqueous NaOH and reprotonated with 1.0 M HCl before use [32].
All other chemicals were used without further purification. Hydrogel matrices were ob-
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tained by mixing 2 g urea and 2 g ι-carrageenan with a 100 mL aqueous CNP suspension
(containing 50, 100 and 200 mg of the corresponding nanoparticles, respectively) at 80 ◦C.
The freeze-dried polymer cryogels were pyrolyzed in a rotary quartz reactor at 700 ◦C
(20 ◦C/min) in dry N2 flow (25 L/h) for 1 h. The remaining inorganic impurities were
removed by washing with 1.0 M HCl prior to annealing in Ar flow for 1 h at 1000 ◦C. The
dry polymer and carbon cryogels were labelled PA and CA, respectively. The sample labels
also refer to the incorporated CNP (as GO or CNT) and their incorporated mass (50, 100 or
200), respectively. CNP-free polymer and carbon gels were prepared for comparison [28].

2.1. Characterization Methods

Thermogravimetric analysis was performed on 2–10 mg polymer samples using a
TGA 6 (Perkin Elmer, Waltham, MA, USA) thermogravimetric analyzer following a heating
rate of 1.5 ◦C/min from room temperature up to 300 ◦C, and then 10 ◦C/min from 300 ◦C
to 900 ◦C in nitrogen (20 mL/min).

Scanning electron micrographs were taken by a Zeiss Sigma 300 field emission scan-
ning electron microscope (FESEM) (Carl Zeiss QEC GmbH, Oberkochen, Germany). Low
temperature (−196.15 ◦C) nitrogen adsorption measurements were performed after 24 h de-
gassing at 110 ◦C in a NOVA 2000 e (Quantachrome, Boynton Beach, FL, USA) instrument.
The apparent surface area SBET was determined using the Brunauer–Emmett–Teller (BET)
model [33]. The pore volume V0.98 was estimated from the amount of vapor adsorbed at
p/p0 = 0.98, assuming that the adsorbed gas fills the corresponding pores as liquid. The
Dubinin–Radushkevich (DR) model [34] was used to calculate the micropore volume W0.
The slope of the DR plots as well as the Henry constant (the initial slope of the isotherms)
were used to characterize the interaction between the carbon surface and the adsorbate.
The pore size distributions were computed using quenched solid density functional theory
(QSDFT) for slit/cylindrical pore geometry [35]. Carbon dioxide adsorption was measured
at 0 ◦C up to atmospheric pressure with an AUTOSORB-1 (Quantachrome, USA) analyzer.
The pore size distribution in the ultramicropore range was derived by nonlinear density
functional theory (NLDFT). Evaluation of the primary adsorption data was performed
with the Quantachrome ASiQwin software (version 3.0). Raman spectra were obtained
using a LabRAM (Horiba Jobin Yvon, Palaiseau, France) instrument. The laser source was a
λ = 532 nm Nd-YAG (15 mW laser power at the focal point). A 0.6 OD filter was used to
reduce the power of the beam. Parameter optimization and data analysis were performed
by LabSpec 5 software.

X-ray photoelectron spectra were recorded on a Kratos XSAM 800 spectrometer op-
erating in fixed analyzer transmission mode, using Mg Kα1,2 (1253.6 eV) excitation. The
analysis chamber pressure was below 1 × 10−7 Pa. Survey spectra were recorded in the
range 150–1300 eV in 0.5 eV steps. The photoelectron lines of C1s, O1s, N1s and S2p
were measured in 0.1 eV steps with 1 s dwell time. The spectra were referenced to the
energy of the C1s line of sp2 type graphitic carbon, set at 284.3 ± 0.1 eV binding energy
(BE). Peak decomposition was performed after Shirley-type background removal using a
Gaussian–Lorentzian peak shape with 70:30 ratio as reported elsewhere [36]. Quantitative
analysis, based on integrated peak intensity, was performed by the XPS MultiQuant pro-
gram [37], applying the conventional infinitely thick layer model using the experimentally
determined photoionization cross-section data of Evans et al. [38] and the asymmetry
parameters of Reilman et al. [39]. Attenuated total reflectance Fourier transform infrared
(FTIR-ATR) spectra were recorded on powdered carbons in the range 4000–400 cm−1 at a
resolution of 4 cm−1 by 64 scans using a Tensor 27 (Bruker Optik GmbH, Leipzig, Germany)
spectrophotometer equipped with a Platinum ATR unit A225. For the background signal,
the measured medium was air. Since the absorption of the powders was very strong, a
moderate polynomial baseline correction and smoothing were applied.
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2.2. Adsorption with Probe Gases

Nitrogen (−196.15 ◦C), carbon dioxide and methane (both at 0 ◦C) isotherms were
measured up to atmospheric pressure in a NOVA 2000 e (Quantachrome, USA) volumetric
instrument. An Autosorb 1C (Quantachrome, Boynton Beach, FL, USA) volumetric in-
strument was used to perform hydrogen sorption experiments with high purity hydrogen
(99.999%) at −196.15 ◦C. IAST [29] was used to assess the gas separation selectivity of the
carbons studied.

3. Results and Discussion
3.1. Effect of the CNPs on the Morphology and Chemistry of the Samples

Figure 1 presents the thermogravimetric curve of the CNP-free and the 50 mg GO-
and CNT-loaded polymer samples. The TG curves have multistep behavior with weight
losses at similar temperatures, indicating that the thermal decomposition is governed by
the pristine polymer. GO and CNT have little influence at these concentrations. The slightly
different effect of the CNPs may stem from their dissimilar oxygen content (30 at% and
5 at% for GO and CNT, respectively).
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Figure 1. TG (a) and DTG (b) curves of the undoped polymer cryogel (PA), and the 50 mg CNP-doped
polymer (PAGO50 and PACNT50) samples.

Figure 2 reveals the porous morphology of the carbon cryogels. Both CNPs seem well
dispersed in the carbon matrix. The thermal treatment certainly reduces the GO that is
incorporated into the carbon framework in the typical sheet-like form (Figure 2b). Similarly,
CNTs added to the carbon cryogel kept their tubular shape (Figure 2c).

Low temperature N2 adsorption isotherms and the respective pore size distribution
curves for the GO- and CNT-doped carbons are shown in Figure 3. The numerical data
deduced from these isotherms are presented in Table 1. According to the latest IUPAC
classification, all the isotherms are a composite of Type II and IV, indicating the presence
of micro-, meso- and macropores [40]. The H4 hysteresis loop having a sharp step-down
around p/p0 = 0.45 implies an interconnected pore network. Since the macropores are not
totally filled with condensed nitrogen, the liquid equivalent volume V0.98 was determined
at p/p0 = 0.98. According to Figure 3a, the surface-related properties of the carbon cryogel
in the CAGO100 sample were most affected by addition of GO, both in the micro- and
macropore regions, and 200 mg GO proved to be destructive due to the high amount
of oxygen released by the GO during the heat treatment processes. The influence of
CNT is more modest and slightly different. Adding only 50 mg CNT had an enhancing
effect, but further addition of CNT gradually decreased both the apparent surface area
and the pore volumes. The initial section of the CO2 isotherms was utilized to reveal the
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ultramicropore range, which is hardly accessible to the nitrogen molecules in cryogenic
conditions. Figure 3b,d combines the pore size distributions in the ultramicropore and
the micro-mesopore ranges. While in samples CAGO50 and CAGO100, GO increased the
contribution of mesopores in the wider region (>10 nm), CNT had a widening effect in the
narrow mesopore range. The distinctive impact of the GO and CNT may be related to their
considerably different oxygen content as well as to their dissimilar geometry.
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Figure 2. SEM image of the pristine carbon CA (a), GO-doped carbon CAGO50 (b) and CNT-doped
carbon CACNT50 (c) samples.
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carbon samples and their pore size distributions from 0 ◦C CO2 adsorption (nonlinear density
functional theory) and −196.15 ◦C N2 adsorption data (quenched solid density functional theory,
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Table 1. Data deduced from the low temperature N2 and 0 ◦C CO2 isotherms *.

from N2 from CO2

Sample SBET V0.98 W0 Vmeso Vumicro,DR Vumicro,DFT

m2/g cm3/g cm3/g % cm3/g cm3/g cm3/g

CA 1070 0.83 0.40 48 0.43 0.057 0.037

CAGO50 1408 0.95 0.56 59 0.39 0.049 0.027

CAGO100 1779 1.72 0.64 37 1.08 0.050 0.027

CAGO200 933 0.71 0.34 48 0.37 0.040 0.022

CACNT50 1169 1.07 0.43 40 0.64 0.032 0.018

CACNT100 880 0.79 0.32 41 0.47 0.028 0.016

CACNT200 727 0.62 0.26 42 0.36 0.020 0.013

* Apparent surface area from BET model; V0.98 is the liquid volume of the gas adsorbed at p/p0 = 0.98; W0
micropore volume from DR model; Vmeso = V0.98 − W0 mesopore volume; Vumicro,DR: ultramicropore volume
(<0.7 nm) from DR model; Vumicro,DFT: ultramicropore volume (<0.7 nm) from quenched solid density functional
theory (QSDFT, CO2 adsorbed on carbon at 0 ◦C).

The Raman spectra in Figure 4 show the iconic D (~1350 cm−1; defects, edges and
disordered carbon sites) and G (~1580 cm−1, E2g vibration of sp2-hybridized graphitic
carbon) band regions typical of carbon materials [41]. Addition of either CNP enhanced
the formation of defects, as demonstrated by the increasing ID/IG ratio with increasing
amounts of additive. The effect is systematic and more pronounced in the CNT series.
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Figure 5 shows an example of the composite photoelectron lines (C1s, O1s, N1s and 
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Figure 4. Raman spectra of the GO- (a) and CNT- (b) doped carbons.

The effect of the incorporated CNPs on the surface composition was studied by XPS
(Table 2). In the CAGO samples, the C content increases in CAGO50 and then decreases for
the two other GO concentrations, while for the CACNT samples the C content increases
slightly but systematically. Regarding the nitrogen content, its concentration decreases in
both sets of samples but most notably for the CACNT samples. In contrast, the S content
does not significantly change among the samples. While the incorporation of GO—except
the CAGO50 sample—has no effect on the total heteroatom ratio, CNT addition gradually
decreases the (O + N + S)/C ratio.
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Table 2. Surface composition (atomic %) measured by XPS.

Sample C O N S O/C N/C S/C O+N+S
C S/N

CA 90.6 3.3 5.1 1.0 0.036 0.056 0.011 0.104 0.196

CAGO50 92.0 3.1 3.7 1.3 0.034 0.039 0.014 0.087 0.361

CAGO100 90.7 4.1 4.1 1.2 0.045 0.045 0.013 0.104 0.293

CAGO200 90.4 3.7 4.4 1.4 0.041 0.049 0.015 0.105 0.318

GO 67.4 32.1 - 0.5 0.476 - 0.007 0.484 -

CACNT50 91.6 4.0 3.1 1.2 0.044 0.034 0.013 0.091 0.387

CACNT100 91.8 3.7 3.4 1.1 0.040 0.037 0.012 0.089 0.323

CACNT200 92.2 4.6 1.9 1.2 0.050 0.021 0.013 0.084 0.632

CNT 94.9 5.1 - - 0.054 - - 0.054 -

Figure 5 shows an example of the composite photoelectron lines (C1s, O1s, N1s and
S2p) and their decomposition into the different chemical states. The binding energy ranges
of the various states and their concentration are listed in Tables 3 and 4. Three different
states of carbon, oxygen and nitrogen and two states of sulfur were distinguished in all
the samples.

As XPS characterizes only the upper few nm of the samples, FTIR was also performed
to reveal the composition in the deeper regions. The spectra for both sets of carbons are
shown in Figure 6. The lines used for assignment are shown in Table 5 and the relative
intensity ratios compared to the C=C signal are listed in Table 6. A systematic increase
in the C=O/C=C and OH/C=C ratios was observed for both sets of samples, which may
suggest that the thermal decomposition of both GO and the CNTs caused a relative increase
in the oxygen functionalities C=O and OH with increasing CNP content. This agrees well
with the chemical composition obtained from XPS.
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Table 3. Decomposition of C1s and O1s regions of photoelectron spectra: binding energy ranges,
chemical state assignations and surface compositions (atomic %) [36].

C1s O1s

C1 C2 C3 O1 O2 O3

Chemical state sp2 C=C
C–O
C–N
C–S

C=O
O–C–O
N–C–O

S–O
C–O–C
C–OH
C=O

OC–O–CO
(H2O)

Binding
energy [eV] 284.3–284.4 285.7–285.8 287.5–287.9 530.2–530.6 532.1–532.5 533.9–534.3

CA 74.0 10.9 5.4 1.5 1.7 n.d.

CAGO50 78.8 7.4 5.5 1.9 1.3 n.d.

CAGO100 74.7 11.0 4.8 1.8 1.7 0.7

CAGO200 75.9 9.4 4.8 1.8 1.6 0.5

CACNT50 78.6 7.8 5.1 1.6 1.9 0.7

CACNT100 80.5 7.4 4.5 1.3 2.0 0.7

CACNT200 75.7 10.8 5.5 1.7 2.3 0.9

Table 4. Decomposition of N1s and S2p regions of photoelectron spectra: binding energy ranges,
chemical state assignations and surface compositions (atomic %) [36].

N1s S2p

N1 N2 N3 S1 S2

Chemical
state C–N OO–C–N C–N+ C–S C–SO3

Binding
energy [eV] 397.8–398.0 400.4–400.5 402.4–402.7 164.9–165.0 168.3–168.6

CA 2.3 2.3 0.8 0.9 0.2

CAGO50 1.6 1.7 0.6 1.2 n.d.

CAGO100 1.9 1.9 0.4 1.0 0.2

CAGO200 2.0 2.0 0.7 1.1 0.3

CACNT50 1.1 1.0 1.1 1.0 0.2

CACNT100 0.9 0.7 0.9 1.0 0.2

CACNT200 0.6 0.5 0.8 0.9 0.4

Table 5. Assignation of the FTIR peaks [42].

Wavenumber [cm−1] Assignation

1750–1705 aromatic (1730–1705) and aliphatic (1750–1730) C=O stretching

1600–1400 C=C bond stretching in the aromatic ring

1350 ± 50 OH in-plane bending of phenol and alcohol groups

1260–1200 C–O stretching in phenols

1060–1035 C-O stretching in noncyclic acid anhydrides
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Figure 6. FTIR spectra of GO-doped carbons (a) and CNT-doped carbons (b).

Table 6. Intensity ratios of FTIR signal.

Sample C=O/C=C OH/C=C C-O(H)/C=C C-O-C/C=C

CA 0.19 0.50 1.33 1.69

CAGO50 0.53 0.62 1.10 1.17

CAGO100 0.93 0.78 1.31 1.51

CAGO200 1.17 1.02 1.55 1.60

CACNT50 0.53 0.81 1.50 1.86

CACNT100 0.91 1.00 1.73 2.68

CACNT200 1.33 1.33 1.72 1.89

3.2. Gas Storage and Separation Results

The potential of these carbons in gas separation was based on single gas adsorption
measurements. The N2, CO2, H2 and CH4 adsorption isotherms of the various GO-doped
carbon samples are presented in Figure 7. For easier comparison, only the adsorption
branches are plotted and the gas uptakes are expressed in mmol/g. It should be noted
that the effect of the incorporated GO varies from adsorbate to adsorbate. Incorporation
of GO in the early stage of the synthesis affects not only the gel formation, but even more
the porous texture and the surface chemistry in a sophisticated way. On comparing the N2
and H2 uptakes at −196.15 ◦C, it is clear that all the samples adsorb significantly more N2
than H2, as the boiling point of H2, −252.9 ◦C, is much lower than the temperature of the
uptake measurements. The almost tenfold difference indicates the potential of these carbon
samples for N2/H2 separation at the temperature of these measurements. It is known that
narrow micropores decorated with oxygen and nitrogen functional groups enhance CO2
uptake [22]. The isotherms of CO2 and CH4 adsorption (0 ◦C) show that all samples adsorb
more than twice as much CO2 as CH4 and CAGO50 attains the highest uptake for both
gases at atmospheric pressure. This could indicate the potential of the GO-doped samples
for CO2/CH4 separation.
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Figure 7. Adsorption isotherms of GO-doped carbon cryogels. N2 and H2 were measured at −196.15 

°C, while CO2 and CH4 isotherms were measured at 0 °C. 
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Figure 7. Adsorption isotherms of GO-doped carbon cryogels. N2 and H2 were measured at
−196.15 ◦C, while CO2 and CH4 isotherms were measured at 0 ◦C.

Similarly, Figure 8 presents the N2, H2, CO2 and CH4 adsorption isotherms of the
annealed CNT-doped carbons. Here, the sequence of the overall uptakes is similar at
the two temperatures, respectively. Generally, the CNT-doped samples display a poorer
adsorption performance (proportional to the incorporated CNT) than the undoped CA
carbon. Only sample CACNT50 has somewhat higher uptakes for both gases measured at
−196.15 ◦C.

In order to compare the interaction between the carbon surface and the probe gases,
we used the corresponding fitting parameters of the DR and the Henry models. On the
one hand, the slope of the linearized DR plot was used as follows,

ln W = ln W0 −
(

RT
E

)2
ln2 p0

p
(1)

where W is the actual filling of the micropore volume W0, E is the characteristic energy
of the given system, p is the equilibrium pressure and p0 is the saturation pressure of the
probe gas at the temperature T of the measurement. On the other hand, the Henry constant
KH was determined, where the initial section of the isotherm was fitted to the Henry model
as follows,

n = KH
p
p0

(2)
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Figure 8. Adsorption isotherms of CNT-doped carbon cryogels. N2 and H2 were measured at −196.15 
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Figure 8. Adsorption isotherms of CNT-doped carbon cryogels. N2 and H2 were measured at
−196.15 ◦C, while CO2 and CH4 isotherms were measured at 0 ◦C.

Here, n is the amount of gas adsorbed (mmol/g) at the corresponding relative pressure.
The numerical data are given in Table 7.

Table 7. Interaction-related parameters and their ratios from the probe gas isotherms in Figures 7 and 8.

CA CAGO50 CAGO100 CAGO200 CACNT50 CACNT100 CACNT200

−196 ◦C

N2
(

RT
E

)2 0.0236 0.0254 0.0271 0.0278 0.0297 0.0292 0.0298

KH * 0.151 0.284 0.338 0.156 0.213 0.152 0.140

H2
(

RT
E

)2 0.0978 0.106 0.108 0.0988 0.0842 0.116 0.0870

KH 0.543 0.661 0.541 0.437 0.430 0.329 0.241

0 ◦C CO2
(

RT
E

)2 0.212 0.196 0.182 0.163 0.197 0.198 0.201

KH 0.0186 0.0166 0.0190 0.0148 0.00950 0.00890 0.00620

CH4
(

RT
E

)2 0.551 0.239 0.195 0.251 0.236 0.239 0.220

KH 0.00210 0.00300 0.00210 0.00240 0.00140 0.00120 0.000900

* Expressed in mmol/(g·mbar).
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The relative interactions were characterized by the ratio of the corresponding
characteristic energies derived from the DR slopes and by the ratio of the KH values
(Figures 9 and 10). Comparison of the DR interactions reveals that the energy ratio
governing the N2/H2 separation is higher than that of the CO2/CH4 separation. The ad-
dition of the nanoparticles does not enhance the energy ratios, but leads to a ca. 25% loss
in the case of CO2/CH4 separation.
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where n is the adsorbed quantity at equilibrium pressure p, nsat is the saturation capacity, 

K is the equilibrium constant of the Langmuir model and m (>1) is the Freundlich expo-

nent. The selectivity curves for the N2/H2 system are shown in Figure 10, and those corre-

sponding to the CO2/CH4 system are shown in Figure 11. In all the cases studied, the se-

lectivity gradually reduces with increasing pressure. As expected, all the carbons adsorb 
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all the selectivity curves lie close to that of the CA carbon, which indicates that the inclu-
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Figure 9. Comparison of characteristic parameters of gas/surface interactions.

The trend revealed of the Henry constant ratios are slightly different, as KH is a more
complex parameter, characterizing the distribution rather than the interaction itself. The
Henry ratios are about ten times higher in the CO2/CH4 separation than in that of the
N2/H2. While the CNPs, particularly the nanotubes, have an enhancing effect for the latter,
they do not improve this ratio for CO2/CH4.
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As in the work of Kamran et al. [43], IAST [29] was also used with the fitted adsorption
data to determine and compare the N2/H2 and CO2/CH4 selectivity of the GO- and
CNT-doped carbon samples. The N2 adsorption isotherms were fitted to polynomial
curves, while the CO2, CH4 and H2 adsorption isotherms were fitted to the single-site
Langmuir–Freundlich model [44,45] as follows,

n =
nsatKpm

1 + Kpm (3)

where n is the adsorbed quantity at equilibrium pressure p, nsat is the saturation capacity, K
is the equilibrium constant of the Langmuir model and m (>1) is the Freundlich exponent.
The selectivity curves for the N2/H2 system are shown in Figure 10, and those correspond-
ing to the CO2/CH4 system are shown in Figure 11. In all the cases studied, the selectivity
gradually reduces with increasing pressure. As expected, all the carbons adsorb nitrogen
preferentially to hydrogen at −196 ◦C. The GO-doped carbons display a selectivity that
is also influenced by the added GO. The CAGO100 sample is significantly better than the
pristine CA carbon over the whole pressure range. For the CNT-doped carbons, all the
selectivity curves lie close to that of the CA carbon, which indicates that the inclusion of
CNTs did not affect the N2/H2 selectivity.

In CO2/CH4 separation at 0 ◦C (Figure 10), all the CNP-incorporated samples per-
formed less well than the undoped CA carbon. Only sample CAGO100 reached a selectivity
similar to CA in the lower pressure range. Apart from this case, the CNT-doped samples
exhibited better selectivity than the GO family.

The trends observed from the three sets of comparisons confirm that relative adsorp-
tion and thus selectivity are a trade-off between multiple kinetics and diffusion-controlled
processes (neither being independent of pore morphology and surface interactions). The
most complex information is delivered by selectivity curves, but even they are only esti-
mates that ignore any time-dependent and technical aspect of the separation.
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4. Conclusions

N, S double-doped porous carbon samples incorporating GO and CNT were suc-
cessfully obtained from ι-carrageenan by applying urea as a nitrogen source during the
synthesis. The carbon nanoparticles conserved their characteristic shape and were dis-
tributed homogeneously in the precursor gel. Their addition yielded a modified porous
texture, particularly with GO with its significantly higher oxygen content. The highest
apparent surface area and pore volume was found in the case of GO (sample CAGO100
possesses 1780 m2/g and 1.72 cm3/g, respectively), while with CNT a more modest im-
provement was achieved (CACNT50: 1169 m2/g and 1.07 cm3/g, respectively). The overall
heteroatom concentration decorating the surface was slightly higher after the GO incor-
poration, as the nitrogen content was conserved more efficiently. The CNPs introduced
further disorder into the matrix, as revealed by Raman spectroscopy. We can conclude that
CNP, particularly GO incorporation, is more efficient in tuning the porous texture than the
surface chemistry. Nitrogen and hydrogen isotherms measured at −196.15 ◦C and CO2
and CH4 isotherms at 0 ◦C were used to assess the effect of the CNPs on the selectivity of
these carbons. The three different approaches applied to assess selectivity show different
trends. The most complex method, IAST, revealed that incorporation of CNPs reduced
rather than improved selectivity compared to neat CA itself in all the cases. The only
exception was CAGO100, the best of the GO samples, which displayed enhanced selectivity
in N2/H2 separation and a performance similar to CA for CO2/CH4. The estimates given
here are based on the individual equilibrium isotherms and thus exclude any kinetic or
diffusion-related mechanisms.
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