Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (400)

Search Parameters:
Keywords = graft angle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 42729 KiB  
Article
Sustainable and Functional Polymeric Coating for Wood Preservation
by Ramona Marina Grigorescu, Rodica-Mariana Ion, Lorena Iancu, Sofia Slamnoiu-Teodorescu, Anca Irina Gheboianu, Elvira Alexandrescu, Madalina Elena David, Mariana Constantin, Iuliana Raut, Celina Maria Damian, Cristian-Andi Nicolae and Bogdan Trica
Coatings 2025, 15(8), 875; https://doi.org/10.3390/coatings15080875 - 25 Jul 2025
Viewed by 184
Abstract
The development of sustainable and functional nanocomposites has attracted considerable attention in recent years due to their broad spectrum of potential applications, including wood preservation. Also, a global goal is to reuse the large volumes of waste for environmental issues. In this context, [...] Read more.
The development of sustainable and functional nanocomposites has attracted considerable attention in recent years due to their broad spectrum of potential applications, including wood preservation. Also, a global goal is to reuse the large volumes of waste for environmental issues. In this context, the aim of the study was to obtain soda lignin particles, to graft ZnO nanoparticles onto their surface and to apply these hybrids, embedded into a biodegradable polymer matrix, as protection/preservation coating for oak wood. The organic–inorganic hybrids were characterized in terms of compositional, structural, thermal, and morphological properties that confirm the efficacy of soda lignin extraction and ZnO grafting by physical adsorption onto the decorating support and by weak interactions and coordination bonding between the components. The developed solution based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and lignin-ZnO was applied to oak wood specimens by brushing, and the improvement in hydrophobicity (evaluated by water absorption that decreased by 48.8% more than wood, humidity tests where the treated sample had a humidity of 4.734% in comparison with 34.911% for control, and contact angle of 97.8° vs. 80.5° for untreated wood) and UV and fungal attack protection, while maintaining the color and aspect of specimens, was sustained. L.ZnO are well dispersed into the polymer matrix, ensuring a smooth and less porous wood surface. According to the results, the obtained wood coating using both a biodegradable polymeric matrix and a waste-based preservative can be applied for protection against weathering degradation factors, with limited water uptake and swelling of the wood, UV shielding, reduced wood discoloration and photo-degradation, effective protection against fungi, and esthetic quality. Full article
Show Figures

Figure 1

16 pages, 10544 KiB  
Article
Development and Performance Evaluation of Hydrophobically Modified Nano-Anti-Collapsing Agents for Sustainable Deepwater Shallow Drilling
by Jintang Wang, Zhijun He, Haiwei Li, Jian Guan, Hao Xu and Shuqiang Shi
Sustainability 2025, 17(15), 6678; https://doi.org/10.3390/su17156678 - 22 Jul 2025
Viewed by 282
Abstract
Sustainable deepwater drilling for oil and gas offers significant potential. In this work, we synthesized a nanoscale collapse-prevention agent by grafting didecyldimethylammonium chloride onto spherical nano-silica and characterized it using Fourier-transform infrared spectroscopy, thermogravimetric analysis, zeta-potential, and particle-size measurements, as well as SEM [...] Read more.
Sustainable deepwater drilling for oil and gas offers significant potential. In this work, we synthesized a nanoscale collapse-prevention agent by grafting didecyldimethylammonium chloride onto spherical nano-silica and characterized it using Fourier-transform infrared spectroscopy, thermogravimetric analysis, zeta-potential, and particle-size measurements, as well as SEM and TEM. Adding 1 wt% of this agent to a bentonite slurry only marginally alters its rheology and maintains acceptable low-temperature flow properties. Microporous-membrane tests show filtrate passing through 200 nm pores drops to 55 mL, demonstrating excellent plugging. Core-immersion studies reveal that shale cores retain integrity with minimal spalling after prolonged exposure. Rolling recovery assays increase shale-cutting recovery to 68%. Wettability tests indicate the water contact angle rises from 17.1° to 90.1°, and capillary rise height falls by roughly 50%, reversing suction to repulsion. Together, these findings support a synergistic plugging–adsorption–hydrophobization mechanism that significantly enhances wellbore stability without compromising low-temperature rheology. This work may guide the design of high-performance collapse-prevention additives for safe, efficient deepwater drilling. Full article
(This article belongs to the Special Issue Sustainability and Challenges of Underground Gas Storage Engineering)
Show Figures

Figure 1

12 pages, 1214 KiB  
Article
Quadruple Fenestrated Stentgrafts for Complex Aortic Aneurysms: Outcomes of Non-Stented Celiac Artery Fenestrations
by Daniela Toro, Kim Bredahl, Katarina Björses, Tomas Ohrlander, Katja Vogt and Timothy Resch
J. Clin. Med. 2025, 14(15), 5189; https://doi.org/10.3390/jcm14155189 - 22 Jul 2025
Viewed by 215
Abstract
Background: Fenestrated stentgrafting has become a first-line treatment for juxtarenal aneurysms, and the incorporation of all renovisceral vessels with fenestrations has become common to increase the proximal sealing zone. This increases the complexity of the repair compared to using fewer fenestrations, and [...] Read more.
Background: Fenestrated stentgrafting has become a first-line treatment for juxtarenal aneurysms, and the incorporation of all renovisceral vessels with fenestrations has become common to increase the proximal sealing zone. This increases the complexity of the repair compared to using fewer fenestrations, and stenting of the celiac artery (CA), in particular, can be technically challenging. Objective: This study evaluates the mid-term outcomes of leaving the celiac artery unstented during quadruple fenestrated stentgrafting for complex aortic aneurysms. Additionally, it explores the clinical and anatomical factors that influence the decision to not stent the celiac artery. Methods: A retrospective review was conducted of patients with complex aortic aneurysms who underwent elective fenestrated endovascular aneurysm repair (FEVAR) between 2018 and 2023. Custom Cook Zenith grafts were used, and all patients underwent preoperative computed tomography angiography (CTA) as well as follow-up CTA to assess the celiac artery. This study evaluated celiac artery anatomic factors, such as proximal and distal diameter; presence of stenosis (<50% or >50%) and patency; length of any CA stenosis; CA takeoff angulation, CA tortuosity, early CA division; calcification; and presence of CA aneurysm or ectasia anatomical abnormalities. Recorded outcomes of CA instability included any stent stenosis, target vessel occlusion, reintervention, or endoleak (types 1C and 3). Results: A total of 101 patients underwent FEVAR, with 72 receiving a stent in the celiac artery and 29 not receiving it. Rates of technical success (96.5% vs. 100%), intervention times (256 min vs. 237 min), and lengths of hospital stay (5.1 vs. 4.7 days) were similar between unstented vs. stented groups. At one year, no significant difference in celiac artery instability was noted (17.2 vs. 5.5%; p = 0.06). Risk factors for CA occlusion on univariate analysis included a steep takeoff angle (≥140°), length of stenosis >6.5 mm, proximal diameter ≤6.5 mm, preoperative stenosis ≥50%, and celiac artery tortuosity. Conclusions: Anatomical features of the CA impact the ability to achieve routine CA stenting during FEVAR. Selectively not stenting the celiac artery during FEVAR might simplify the procedure without compromising patient safety and mid-term outcomes. Full article
(This article belongs to the Special Issue Aortic Aneurysms: Recent Advances in Diagnosis and Treatment)
Show Figures

Figure 1

13 pages, 3561 KiB  
Article
Preparing Surface-Functionalized Polymer Films with Hierarchically Ordered Structure by a Combination of Nanoimprinting and Controlled Graft Polymerization
by Masahiko Minoda, Daichi Shimizu, Tatsuya Nohara and Jin Motoyanagi
Surfaces 2025, 8(3), 48; https://doi.org/10.3390/surfaces8030048 - 11 Jul 2025
Viewed by 248
Abstract
It is widely recognized that fine surface structures found in nature contribute to surface functionality, and studies on the design of functional materials based on biomimetics have been actively conducted. In this study, polymer thin films with hierarchically ordered surface structure were prepared [...] Read more.
It is widely recognized that fine surface structures found in nature contribute to surface functionality, and studies on the design of functional materials based on biomimetics have been actively conducted. In this study, polymer thin films with hierarchically ordered surface structure were prepared by combining both nanoimprinting using anodically oxidized porous alumina (AAO) as a template and surface-initiated atom transfer radical polymerization (SI-ATRP). To prepare such polymer films, we designed a new copolymer (poly{[2-(4-methyl-2-oxo-2H-chromen-7-yloxy)ethyl methacrylate]-co-[2-(2-bromo-2-methylpropionyloxy)ethyl methacrylate]}; poly(MCMA-co-HEMABr)) with coumarin moieties and α-haloester moieties in the pendants. The MCMA repeating units function to fix the pillar structure by photodimerization, and the HEMABr ones act as the polymerization initiation sites for SI-ATRP on the pillar surfaces. Surface structures consisting of vertically oriented multiple pillars were fabricated on the spin-coated poly(MCMA-co-HEMABr) thin films by nanoimprinting using an AAO template. Then, the coumarin moieties inside each pillar were crosslinked by UV light irradiation to fix the pillar structure. SEM observation confirmed that the internally crosslinked pillar structures were maintained even when immersed in organic solvents such as 1,2-dichloroethane and anisole, which are employed as solvents under SI-ATRP conditions. Finally, poly(2,2,2-trifluoroethyl methacrylate) and poly(N-isopropylacrylamide) chains were grafted onto the thin film by SI-ATRP, respectively, to prepare the hierarchically ordered surface structure. Furthermore, in this study, the surface properties as well as the thermoresponsive hydrophilic/hydrophobic switching of the obtained polymer films were investigated. The surface morphology and chemistry of the films with and without pillar structures were compared, especially the interfacial properties expressed as wettability. Grafting poly(TFEMA) increased the static contact angle for both flat and pillar films, and the con-tact angle of the pillar film surface increased from 104° for the flat film sample to 112°, suggesting the contribution of the pillar structure. Meanwhile, the pillar film surface grafted with poly(NIPAM) brought about a significant change in wettability when changing the temperature between 22 °C and 38 °C. Full article
(This article belongs to the Special Issue Surface Science: Polymer Thin Films, Coatings and Adhesives)
Show Figures

Graphical abstract

12 pages, 3805 KiB  
Article
Preparation of Graft-Functionalized SBS/SBS Composite Latex Modifier and Its Effect on Emulsified Asphalt Properties
by Kunyu Wang, Yifan Liu, Zhenhao Cao, Yanyan Zhang, Jia Wang and Xue Li
Processes 2025, 13(7), 2125; https://doi.org/10.3390/pr13072125 - 3 Jul 2025
Viewed by 336
Abstract
To broaden clean asphalt modification methods, this study employs a composite polymer of maleic anhydride-grafted styrene-butadiene-styrene (MA-g-SBS) and styrene-butadiene-styrene (SBS) as a modifier. The composite is formulated into polymer latex and used to modify emulsified asphalt. Routine performance tests were conducted on MA-g-SBS/SBS [...] Read more.
To broaden clean asphalt modification methods, this study employs a composite polymer of maleic anhydride-grafted styrene-butadiene-styrene (MA-g-SBS) and styrene-butadiene-styrene (SBS) as a modifier. The composite is formulated into polymer latex and used to modify emulsified asphalt. Routine performance tests were conducted on MA-g-SBS/SBS composite latex-modified emulsified asphalt (MSMEA) with varying ratios to determine the optimal composition. The ideal ratio was found to be MA-g-SBS:SBS = 1:4. Subsequently, conventional property tests, rheological analyses, microphase structure observations, and bending beam creep tests were conducted on MSMEA with the optimal ratio to assess the impact of the composite latex on asphalt performance. Findings indicated that increasing the latex content significantly enhanced the softening point and ductility while reducing penetration. These macroscopic improvements were notably superior to those achieved with single SBS latex modification. Fluorescence microscopy revealed that at low dosages, the MA-g-SBS/SBS composite dispersed uniformly as point-like structures within the asphalt. At higher dosages (above 5%), a distinct network structure emerged. The addition of the composite latex raised the complex shear modulus and rutting factor while reducing the phase angle, with pronounced fluctuations observed between 4% and 5% dosages. This suggests a substantial enhancement in the high-temperature performance of the emulsified asphalt, attributed to the formation of the network structure. FT-IR results confirmed that a chemical reaction occurred during the modification process. Additionally, the bending beam creep test demonstrated that the composite latex reduced asphalt brittleness and improved its low-temperature performance. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

14 pages, 4074 KiB  
Article
Synthesis and Characterization of Biodegradable Polymer Blends Based on Chitosan
by Lyazzat Bekbayeva, Grigoriy A. Mun, Bayana B. Yermukhambetova, El-Sayed Negim, Galiya Irmukhametova, Khaldun M. Al Azzam, Sergey V. Nechipurenko, Sergey A. Efremov, Mubarak Yermaganbetov and Moshera Samy
Polymers 2025, 17(13), 1853; https://doi.org/10.3390/polym17131853 - 2 Jul 2025
Viewed by 404
Abstract
Despite its broad application due to its affordability, biodegradability, and natural antimicrobial and antioxidant activities, chitosan (CS) still exhibits limitations in mechanical strength and barrier effectiveness. Owing to its unique chemical characteristics, itaconic acid (IT) presents potential as a compatibilizing agent in polymeric [...] Read more.
Despite its broad application due to its affordability, biodegradability, and natural antimicrobial and antioxidant activities, chitosan (CS) still exhibits limitations in mechanical strength and barrier effectiveness. Owing to its unique chemical characteristics, itaconic acid (IT) presents potential as a compatibilizing agent in polymeric blend formulations. Biodegradable polymers composed of chitosan (CS), itaconic acid (IT), and starch (S) were synthesized using two polymerization methods. The first method involved grafting IT onto CS at varying ratios of IT (4%, 6%, and 8% wt.), using 1% v/v acetic acid/water as the solvent and potassium persulfate as the initiator. In the second approach, starch (S) was blended with the copolymer P(CS-g-IT) at concentrations of 1%, 3%, and 5%, utilizing water as the solvent and glacial acetic acid as a catalyst. The resulting biodegradable films underwent characterization through FTIR, TGA, SEM, and mechanical property analysis. To further explore the effects of combining IT, starch, and carbon black, the blends, referred to as P[(CS-g-IT)-b-S], were also loaded with carbon black. This allowed for the evaluation of the materials’ physicomechanical properties, such as viscosity, tensile strength, elongation, and contact angle. The findings demonstrated that the presence of IT, starch, and carbon black collectively improved the films’ mechanical performance, physical traits, and biodegradability. Among the samples, the blended copolymer with 1% starch exhibited the highest mechanical properties, followed by the grafted copolymer with 8% IT and the blended copolymer mixed with carbon black at 7%. In contrast, the blended copolymer with 5% starch showed the highest hydrophilicity and the shortest degradation time compared to the grafted copolymer with 8% IT and the blended copolymer mixed with 7% carbon black. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

19 pages, 3933 KiB  
Article
Effects of Artificial Achilles Tendon on Hindlimb Movement Biomechanics and Muscle Morphology in Rabbits
by Obinna P. Fidelis, Katrina L. Easton, Madison Smith, Gabriela Bastos, Kristin Bowers, David E. Anderson and Dustin L. Crouch
Biomechanics 2025, 5(3), 47; https://doi.org/10.3390/biomechanics5030047 - 1 Jul 2025
Viewed by 233
Abstract
Background/Objectives: Artificial tendons offer an alternative to biological tendon grafts and may restore normative biomechanical functions in humans and animals suffering segmental or complete tendon loss. The aim of this study was to quantify movement biomechanics during hopping gait and muscle properties of [...] Read more.
Background/Objectives: Artificial tendons offer an alternative to biological tendon grafts and may restore normative biomechanical functions in humans and animals suffering segmental or complete tendon loss. The aim of this study was to quantify movement biomechanics during hopping gait and muscle properties of New Zealand White rabbits with a polyester silicone-coated (PET-SI) artificial tendon. Methods: In five rabbits, the biological Achilles tendon of the left hindlimb was surgically replaced with a PET-SI artificial tendon; five operated control rabbits underwent complete surgical excision of the biological Achilles tendon in the left hindlimb with no replacement (TE). Results: Across both groups at 2 and 8 weeks post-surgery compared to baseline, the maximum ankle angle during stance and swing phases of stride was significantly lower (i.e., more dorsiflexed) (p < 0.001), the peak vertical force was significantly higher (p < 0.001), and the average ground contact area was significantly lower (p < 0.001). At 8 weeks post-surgery, the muscle cross-sectional area of the lateral gastrocnemius was significantly higher in the PET-SI group than in the TE group (p = 0.006). Muscle mass and length were lower in the operated limb compared to the non-operated limb across the two groups (TE and PET-SI), with no significant differences between groups. Conclusions: The artificial Achilles tendon did not appear to provide superior biomechanical support during hopping compared to the TE group. However, the artificial tendon preserved muscle structural properties that correspond to the muscle’s capacity to generate force. Future studies should optimize the tendon–tissue interface. Full article
(This article belongs to the Section Injury Biomechanics and Rehabilitation)
Show Figures

Figure 1

19 pages, 4975 KiB  
Article
Bio-Based Flame Retardant Superhydrophobic Coatings by Phytic Acid/Polyethyleneimine Layer-by-Layer Assembly on Nylon/Cotton Blend Fabrics
by Yue Shen, Haiyan Zheng, Jiqiang Cao and Xinyun Guo
Coatings 2025, 15(6), 699; https://doi.org/10.3390/coatings15060699 - 10 Jun 2025
Viewed by 617
Abstract
The inherent flammability and hydrophilicity of nylon/cotton (NC) blend fabrics limit their practical applications. Traditional hydrophobic treatments often involve fluorinated compounds or nanomaterials, which raise environmental concerns and exhibit poor durability. To address these issues, this study developed a sustainable multifunctional finishing strategy. [...] Read more.
The inherent flammability and hydrophilicity of nylon/cotton (NC) blend fabrics limit their practical applications. Traditional hydrophobic treatments often involve fluorinated compounds or nanomaterials, which raise environmental concerns and exhibit poor durability. To address these issues, this study developed a sustainable multifunctional finishing strategy. Initially, the nylon/cotton blended fabric was pretreated with 3-glycidyloxypropyltrimethoxy silane (GPTMS). An intumescent flame retardant coating based on bio-derived phytic acid (PA) and polyethyleneimine (PEI) was constructed on NC fabrics via a layer-by-layer (LBL) self-assembly process. Subsequently, polydimethylsiloxane (PDMS) was grafted to reduce surface energy, imparting synergistic flame retardancy and superhydrophobicity. The treated fabric (C-3) showed excellent flame retardant and self-extinguishing behavior, with no afterflame or afterglow during vertical burning and a char length of only 35 mm. Thermogravimetric analysis revealed a residual char rate of 43.9%, far exceeding that of untreated fabric (8.6%). After PDMS modification, the fabric reached a water contact angle of 157.8°, indicating superior superhydrophobic and self-cleaning properties. Durability tests showed that the fabric maintained its flame retardancy (no afterflame or afterglow) and superhydrophobicity (WCA > 150°) after 360 cm of abrasion and five laundering cycles. This fluorine-free, nanoparticle-free, and environmentally friendly approach offers a promising route for developing multifunctional NC fabrics for applications in firefighting clothing and self-cleaning textiles. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Graphical abstract

16 pages, 4117 KiB  
Article
Surface Modification of Poly(ethylene-alt-tetrafluoroethylene) by Atmospheric Pressure Dielectric Barrier Discharge Plasma
by Xiaoshan Yan, Zuohui Ji, Xiaopeng Li, Yue Zhao, Zhen Li, Zhai Chen and Heguo Li
Polymers 2025, 17(11), 1519; https://doi.org/10.3390/polym17111519 - 29 May 2025
Viewed by 482
Abstract
The fluororesin membrane emerges as an ideal chemical-protective clothing material due to its excellent permeation resistance. However, using a fluororesin membrane with a low surface energy for compounding fabrics is very challenging. Herein, we demonstrate a strategy to modify the surface of a [...] Read more.
The fluororesin membrane emerges as an ideal chemical-protective clothing material due to its excellent permeation resistance. However, using a fluororesin membrane with a low surface energy for compounding fabrics is very challenging. Herein, we demonstrate a strategy to modify the surface of a poly(ethylene-alt-tetrafluoroethylene) (ETFE) membrane by the atmospheric pressure dielectric barrier discharge (DBD) of plasma under different working voltages, processing times, and concentrations of acrylic acid (AA) in a helium (He) atmosphere. The increase in the hydrophilicity of the ETFE membrane is confirmed by the wettability test, which shows a significant decrease in the water contact angle, from 96° to 50°, after plasma modification. The interfacial T-peel strength of an ETFE membrane composited with polyester fabric increased from 0.53 N/cm to 13.64 N/cm after plasma modification. Significantly, the T-peel strength of the composite using a modified ETFE membrane with ultrasonic washing could still reach 11.75 N/cm. Various characterization methods clearly disclosed the physical and chemical changes on the ETFE membrane surface, such as introducing the polar -COOH group at a nano-level, improving the roughness, decreasing the ratios of the F/C element, and increasing the ratios of the O/C element, suggesting using nano-level grafted polyacrylic acid (g-PAA) on the surface of the membrane by DBD. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

10 pages, 1268 KiB  
Article
Optimal Tunnel Positioning and Graft Diameter to Minimize Impingement in Single-Bundle ACL Reconstruction: A 3D CT Simulation Analysis
by Sang-Woo Jeon, Sung-Hwan Kim and Kang-Il Kim
Medicina 2025, 61(6), 946; https://doi.org/10.3390/medicina61060946 - 22 May 2025
Viewed by 441
Abstract
Background and Objectives: Graft impingement against the intercondylar notch has been identified as a significant contributor to graft deterioration and suboptimal outcomes following anterior cruciate ligament (ACL) reconstruction. This study aimed to (1) identify the optimal combination of tunnel positions that minimizes impingement [...] Read more.
Background and Objectives: Graft impingement against the intercondylar notch has been identified as a significant contributor to graft deterioration and suboptimal outcomes following anterior cruciate ligament (ACL) reconstruction. This study aimed to (1) identify the optimal combination of tunnel positions that minimizes impingement between the ACL graft and femoral intercondylar notch. Materials and Methods: Three-dimensional models of nine normal knees were reconstructed using computed tomography scans obtained at four knee flexion angles (0°, 45°, 90°, and 120°). Virtual ACL grafts with diameters of 7 mm and 9 mm were modeled as cylinders. Nine graft configurations were investigated by varying femoral and tibial footprint locations (anteromedial, central, and posterolateral) in all possible combinations. For each configuration, impingement volume was quantified by measuring the overlap between the intercondylar notch and the virtual graft using Boolean operators in 3D simulation software. The effects of graft diameter, footprint location, and knee flexion angle on impingement volume were analyzed. Results: Maximum impingement volumes were observed at 0° knee extension, with significant reductions at 45° flexion (p < 0.01) and negligible impingement at 90° and 120° flexion. The 9 mm diameter grafts demonstrated significantly greater impingement volumes than 7 mm grafts (p < 0.01). Impingement volumes increased progressively as footprint locations shifted from posterolateral to anteromedial positions in both femoral and tibial components. However, statistically significant differences in impingement volume across footprint locations were observed only for tibial positioning (p < 0.001), not for femoral positioning (p > 0.05). The femoral anteromedial-tibial anteromedial configuration exhibited the highest impingement volume (577.8 ± 171.3 mm3 for 9 mm grafts), while the femoral posterolateral-tibial posterolateral configuration showed the lowest (73.5 ± 85.6 mm3). Conclusions: Tunnel position, graft diameter, and knee flexion angle significantly influence impingement risk in ACL reconstruction. Tibial tunnel position appears more critical than femoral position in minimizing graft impingement. Posterolateral positioning of tunnels, particularly on the tibial side, may reduce impingement volume. Clinical Relevance: This study provides quantitative evidence to guide surgeons in optimizing tunnel placement and graft selection for anatomical single-bundle ACL reconstruction, potentially reducing the risk of graft deterioration and failure due to mechanical impingement. Full article
(This article belongs to the Special Issue Anterior Cruciate Ligament (ACL) Injury)
Show Figures

Figure 1

20 pages, 5255 KiB  
Article
YOLOv8-SDC: An Improved YOLOv8n-Seg-Based Method for Grafting Feature Detection and Segmentation in Melon Rootstock Seedlings
by Lixia Li, Kejian Gong, Zhihao Wang, Tingna Pan and Kai Jiang
Agriculture 2025, 15(10), 1087; https://doi.org/10.3390/agriculture15101087 - 17 May 2025
Viewed by 669
Abstract
To address the multi-target detection problem in the automatic seedling-feeding procedure of vegetable-grafting robots from dual perspectives (top-view and side-view), this paper proposes an improved YOLOv8-SDC detection segmentation model based on YOLOv8n-seg. The model improves rootstock seedlings’ detection and segmentation accuracy by SAConv [...] Read more.
To address the multi-target detection problem in the automatic seedling-feeding procedure of vegetable-grafting robots from dual perspectives (top-view and side-view), this paper proposes an improved YOLOv8-SDC detection segmentation model based on YOLOv8n-seg. The model improves rootstock seedlings’ detection and segmentation accuracy by SAConv replacing the original Conv c2f_DWRSeg module, replacing the c2f module, and adding the CA mechanism. Specifically, the SAConv module dynamically adjusts the receptive field of convolutional kernels to enhance the model’s capability in extracting seedling shape features. Additionally, the DWR module enables the network to more flexibly adapt to the perception accuracy of different cotyledons, growth points, stem edges, and contours. Furthermore, the incorporated CA mechanism helps the model eliminate background interference for better localization and identification of seedling grafting characteristics. The improved model was trained and validated using preprocessed data. The experimental results show that YOLOv8-SDC achieves significant accuracy improvements over the original YOLOv8n-seg model, YOLACT, Mask R-CNN, YOLOv5, and YOLOv11 in both object detection and instance segmentation tasks under top-view and side-view conditions. The mAP of Box and Mask for cotyledon (leaf1, leaf2, leaf), growing point (pot), and seedling stem (stem) assays reached 98.6% and 99.1%, respectively. The processing speed reached 200 FPS. The feasibility of the proposed method was further validated through grafting features, such as cotyledon deflection angles and stem–cotyledon separation points. These findings provide robust technical support for developing an automatic seedling-feeding mechanism in grafting robotics. Full article
Show Figures

Figure 1

11 pages, 3669 KiB  
Article
Grafting of Zwitterionic Polymers on Zirconia Surfaces: An XPS Investigation
by Clément Dezanet, Diana Dragoe, Arnaud Fouchet, Jérôme Lecourt, Christelle Harnois, Jacques Rouden, Jérôme Baudoux and Bénédicte Lepoittevin
Materials 2025, 18(10), 2279; https://doi.org/10.3390/ma18102279 - 14 May 2025
Viewed by 451
Abstract
Colonization of surfaces by bacteria followed by biofilm formation is a cause of wound infections associated with the use of medical devices as stents, catheters, implants, etc. For prevention of such infections, the preparation of surfaces with antifouling, anti-adhesive and antibacterial properties is [...] Read more.
Colonization of surfaces by bacteria followed by biofilm formation is a cause of wound infections associated with the use of medical devices as stents, catheters, implants, etc. For prevention of such infections, the preparation of surfaces with antifouling, anti-adhesive and antibacterial properties is of great interest. In this context, four zwitterionic (styrenic or methacrylic) monomers bearing a pyridinium, imidazolium or ammonium cationic group linked to a sulfonate anionic group were chosen and polymerized on ceramic for implant technology. Zwitterionic polymers were successfully grafted onto zirconia pellets through surface-initiated radical polymerization with blue-light photoactivation (“grafting from”). Wettability measurements showed the formation of hydrophilic surfaces with water contact angles in the range of 35–40°. Detailed X-ray photoelectron spectroscopy analysis revealed a surface where the zirconia pellets exhibited zwitterionic polymer brushes with high coverage. The core-level spectra of C1s, N1s and S2p were separated into many components, allowing their attribution to the different atoms in the monomer unit and confirming that zwitterionic polymers were successfully grafted from zirconia surfaces. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

12 pages, 5075 KiB  
Article
Stabilization of Styrene Pickering Emulsions Using SiO2 Derived from Waste Cement
by Guomei Xu, Jihua Zhang, Defei Long, Huayang Wang, Hanjie Ying and Hongxue Xie
Materials 2025, 18(10), 2281; https://doi.org/10.3390/ma18102281 - 14 May 2025
Viewed by 395
Abstract
The initial focus of this study was placed on the conversion of waste into valuable substances. Waste cement was systematically processed to extract silica powder, which was subsequently functionalized with γ-aminopropyl-trimethoxy-silane (KH550) via covalent grafting. The surface-modified silica particles demonstrated optimized amphiphilicity for [...] Read more.
The initial focus of this study was placed on the conversion of waste into valuable substances. Waste cement was systematically processed to extract silica powder, which was subsequently functionalized with γ-aminopropyl-trimethoxy-silane (KH550) via covalent grafting. The surface-modified silica particles demonstrated optimized amphiphilicity for interfacial stabilization, as confirmed by contact angle measurements. When employed in styrene/water Pickering emulsions, these modified silica particles exhibited exceptional stabilization efficiency, enabling the synthesis of core–shell polystyrene/silica composite microspheres visualized by SEM. It was demonstrated by the results that the Pickering emulsions could be stabilized by SiO2 when the appropriate polarity and concentration were achieved. XRD revealed successful silica integration without crystalline phase alteration. Thermogravimetric analysis demonstrated significantly enhanced thermal stability (50.6% residual mass at 800 °C), indicating substantial flame retardancy potential. This waste-to-functional-material strategy not only addresses environmental concerns but also provides an economically viable pathway for advanced polymer composites. Full article
(This article belongs to the Special Issue Recovered or Recycled Materials for Composites and Other Materials)
Show Figures

Figure 1

12 pages, 2632 KiB  
Article
Comparison of a New Radiographic Technique with MRI Measurements for Tibial Tunnel Evaluation in ACL Reconstruction
by Mücahid Osman Yücel, Raşit Emin Dalaslan, Sönmez Sağlam, Zekeriya Okan Karaduman, Mehmet Arıcan, Bedrettin Akar and Volkan Tural
Diagnostics 2025, 15(10), 1237; https://doi.org/10.3390/diagnostics15101237 - 14 May 2025
Cited by 1 | Viewed by 481
Abstract
Background/Objectives: The correct angular placement of the tibial tunnel is crucial to ensure graft tension, maintain knee stability, and ensure optimal clinical outcomes after anterior cruciate ligament (ACL) reconstruction. While 3D imaging methods such as MRI and CT are the gold standard [...] Read more.
Background/Objectives: The correct angular placement of the tibial tunnel is crucial to ensure graft tension, maintain knee stability, and ensure optimal clinical outcomes after anterior cruciate ligament (ACL) reconstruction. While 3D imaging methods such as MRI and CT are the gold standard for evaluating tunnel positioning, their routine use is limited by cost, availability, and time constraints. In clinical practice, 2D radiographs are more accessible but lack established reliability in accurately estimating tunnel angles. The aim of this study was to convert 2D radiographic angular measurements used in the evaluation of patients undergoing anterior cruciate ligament reconstruction into 3D values with a simple method and to compare these measurements with three-dimensional angles calculated using conventional MRI and CT. Methods: This retrospective study included 38 patients who underwent anatomic anterior cruciate ligament reconstruction. Postoperative radiographs and MR images were analyzed to determine the tibial tunnel angles. The angles calculated from 2D radiographs were statistically analyzed for their correlation with the actual 3D angles measured by MRI. Results: The analysis showed a strong correlation between tibial tunnel angles from radiographs and MRI, with minimal, non-significant differences. This suggests that radiographs can provide a reliable estimate of tibial tunnel angles. Conclusions: These findings suggest that radiographs can predict tibial tunnel angles in ACL reconstruction as accurately as MRI. This method can guide the correct tunnel angle and facilitate postoperative evaluation. Further studies are needed to confirm these results across various populations and techniques. Full article
(This article belongs to the Special Issue Advances in Musculoskeletal Imaging: From Diagnosis to Treatment)
Show Figures

Figure 1

13 pages, 719 KiB  
Article
Impact of Hamstring Graft on Hamstring Peak Torque and Maximum Effective Angle After Anterior Cruciate Ligament Reconstruction: An Exploratory and Preliminary Study
by Ismail Bouzekraoui Alaoui, Ayrton Moiroux-Sahraoui, Jean Mazeas, Georgios Kakavas, Maciej Biały, Maurice Douryang and Florian Forelli
Bioengineering 2025, 12(5), 465; https://doi.org/10.3390/bioengineering12050465 - 28 Apr 2025
Viewed by 791
Abstract
Purpose: Anterior cruciate ligament reconstruction (ACLR) using the hamstring graft is commonly performed to restore knee stability; however, it induces significant neuromuscular and biomechanical changes, particularly in the hamstring. This study aimed to evaluate the changes in maximum effective angle, hamstring strength, and [...] Read more.
Purpose: Anterior cruciate ligament reconstruction (ACLR) using the hamstring graft is commonly performed to restore knee stability; however, it induces significant neuromuscular and biomechanical changes, particularly in the hamstring. This study aimed to evaluate the changes in maximum effective angle, hamstring strength, and hamstring-to-quadriceps (H/Q) strength ratio at 3 and 6 months post-ACLR and compare these outcomes to a control group. Methods: This prospective controlled study included 20 ACLR patients and 20 age- and gender-matched controls. Hamstring peak torque, maximum effective angle (MEA), and the H/Q ratio were assessed using isokinetic dynamometry at 60°/s. The ACLR group was evaluated postoperatively at 3 and 6 months, while the control group underwent a single evaluation. Results: At 3 and 6 months, the ACLR group exhibited significantly lower MEA (26.3° ± 8.2 and 28.2° ± 9.4) compared to the control group (36.4° ± 12.0; p < 0.01). Hamstring peak torque and H/Q ratios were also lower in the ACLR group but showed slight improvements over time. The H/Q ratio increased significantly between 3 and 6 months (51% to 56%; p = 0.041). Conclusion: The use of hamstring graft in ACLR leads to persistent MEA and strength deficits despite rehabilitation. Advanced, targeted rehabilitation protocols are essential to address these deficits, optimize recovery, and reduce the risk of reinjury. Full article
(This article belongs to the Special Issue Advances in Physical Therapy and Rehabilitation)
Show Figures

Figure 1

Back to TopTop