Surface Modification of Poly(ethylene-alt-tetrafluoroethylene) by Atmospheric Pressure Dielectric Barrier Discharge Plasma
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Chemicals
2.2. Experimental Device
2.3. Plasma Modification of ETFE Membranes
2.4. Characterization
3. Results and Discussion
3.1. ATR-FTIR and IR PiFM Analysis
3.2. XPS Analysis
3.3. Surface Morphology Analysis
3.4. Hydrophilicity of ETFE Membrane
3.5. Effect of Adhesion Strength of ETFE Membrane
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, Y.; Wang, X.; Wang, D.; Li, H.; Li, L.; Zhang, S.; Zhou, C.; Zheng, X.; Men, Q.; Zhong, J.; et al. Preparation and Chemical Protective Clothing Application of PVDF Based Sodium Sulfonate Membrane. Membranes 2020, 10, 190. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, S.; Joshi, R.; Chughtai, A.A.; Macintyre, C.R. Graphene Modified Multifunctional Personal Protective Clothing. Adv. Mater. Interfaces 2019, 6, 1900622. [Google Scholar] [CrossRef] [PubMed]
- Bhuiyan, M.A.R.; Wang, L.; Shaid, A.; Shanks, R.A.; Ding, J. Advances and applications of chemical protective clothing system. J. Ind. Text. 2018, 49, 97–138. [Google Scholar] [CrossRef]
- Qian, J.; Fu, C.; Wang, X.; Li, W.; Chu, H.; Ran, X.; Nie, W. The formation of cross-linking networks in a fluorinated polymer composite system by electron beam irradiation. Adv. Polym. Technol. 2018, 37, 3159–3170. [Google Scholar] [CrossRef]
- Shojaei, A.; Gholamalipour, S. Effect of chemical treatment of Teflon powder on the properties of polyamide 66/Teflon composites prepared by melt mixing. Macromol. Res. 2011, 19, 613–621. [Google Scholar] [CrossRef]
- Qiang, Q.; Qin, J.; Ma, Y.; Wang, Z.; Zhao, C. Robust Conductive Micropatterns on PTFE Achieved via Selective UV-Induced Graft Copolymerization for Flexible Electronic Applications. ACS Appl. Mater. Interfaces 2019, 11, 5517–5525. [Google Scholar] [CrossRef]
- Primc, G. Recent Advances in Surface Activation of Polytetrafluoroethylene (PTFE) by Gaseous Plasma Treatments. Polymers 2020, 12, 2295. [Google Scholar] [CrossRef]
- Feng, S.; Zhong, Z.; Wang, Y.; Xing, W.; Drioli, E. Progress and perspectives in PTFE membrane: Preparation, modification, and applications. J. Membr. Sci. 2018, 549, 332–349. [Google Scholar] [CrossRef]
- Pino-Ramos, V.; Ramos-Ballesteros, A.; López-Saucedo, F.; López-Barriguete, J.; Varca, G.; Bucio, E. Radiation Grafting for the Functionalization and Development of Smart Polymeric Materials. Top. Curr. Chem. 2016, 374, 63. [Google Scholar] [CrossRef]
- Wang, J.S.; Chen, X.; Reis, R.; Chen, Z.Q.; Milne, N.; Winther-Jensen, B.; Kong, L.X.; Dumee, L.F. Plasma Modification and Synthesis of Membrane Materials-A Mechanistic Review. Membranes 2018, 8, 56. [Google Scholar] [CrossRef]
- Peran, J.; Razic, S.E. Application of atmospheric pressure plasma technology for textile surface modification. Text. Res. J. 2020, 90, 1174–1197. [Google Scholar] [CrossRef]
- Sciarratta, V.; Vohrer, U.; Hegemann, D.; Müller, M.; Oehr, C. Plasma functionalization of polypropylene with acrylic acid. Surf. Coat. Technol. 2003, 174-175, 805–810. [Google Scholar] [CrossRef]
- Chen, X.; Huang, G.; An, C.; Feng, R.; Yao, Y.; Zhao, S.; Huang, C.; Wu, Y. Plasma-induced poly(acrylic acid)-TiO2 coated polyvinylidene fluoride membrane for produced water treatment: Synchrotron X-Ray, optimization, and insight studies. J. Clean. Prod. 2019, 227, 772–783. [Google Scholar] [CrossRef]
- Valerio, J.K.C.; Nakajima, H.; Vasquez, M.R. Grafting of acrylic acid onto microwave plasma-treated polytetrafluoroethylene (PTFE) substrates. Jpn. J. Appl. Phys. 2019, 58, SEEA01. [Google Scholar] [CrossRef]
- Abu-Saied, M.; Fahmy, A.; Morgan, N.; Qutop, W.; Abdelbary, H.; Friedrich, J.F. Enhancement of Poly(vinyl chloride) Electrolyte Membrane by Its Exposure to an Atmospheric Dielectric Barrier Discharge Followed by Grafting with Polyacrylic Acid. Plasma Chem. Plasma Process. 2019, 39, 1499–1517. [Google Scholar] [CrossRef]
- Demaude, A.; Poleunis, C.; Goormaghtigh, E.; Viville, P.; Lazzaroni, R.; Delcorte, A.; Gordon, M.; Reniers, F. Atmospheric Pressure Plasma Deposition of Hydrophilic/Phobic Patterns and Thin Film Laminates on Any Surface. Langmuir 2019, 35, 9677–9683. [Google Scholar] [CrossRef]
- Yin, M.; Huang, J.; Yu, J.; Chen, G.; Qu, S.; Wang, X.; Li, C. The polypropylene membrane modified by an atmospheric pressure plasma jet as a separator for lithium-ion button battery. Electrochim. Acta 2018, 260, 489–497. [Google Scholar] [CrossRef]
- Dhakar, A.K.; Rai, S.K.; Saini, V.K.; Sharma, S.K.; Pal, U.N. Simplified High-Voltage Short-Pulse Power Modulator for DBD Plasma Application. IEEE Trans. Plasma Sci. 2021, 49, 1422–1427. [Google Scholar] [CrossRef]
- Schuman, T.; Wolf, R.A. Effects of a DBD plasma discharge on bond strength. Surf. Interfaces 2020, 18, 100461. [Google Scholar] [CrossRef]
- Ward, L.J.; Schofield, W.; Badyal, J.; Goodwin, A.J.; Merlin, P.J. Atmospheric Pressure Plasma Deposition of Structurally Well-Defined Polyacrylic Acid Films. Chem. Mater. 2003, 15, 1466–1469. [Google Scholar] [CrossRef]
- Tompkins, B.D.; Fisher, E.R. Evaluation of polymer hydrophobic recovery behavior following H2O plasma processing. J. Appl. Polym. Sci. 2015, 132, 41978. [Google Scholar] [CrossRef]
- Basarir, F.; Choi, E.; Moon, S.; Song, K.; Yoon, T. Electrochemical properties of PP membranes with plasma polymer coatings of acrylic acid. J. Membr. Sci. 2005, 260, 66–74. [Google Scholar] [CrossRef]
- Pandiyaraj, K.N.; Ramkumar, M.C.; Kumar, A.A.; Padmanabhan, P.V.A.; Pichumani, M.; Bendavid, A.; Cools, P.; De Geyter, N.; Morent, R.; Kumar, V.; et al. Evaluation of surface properties of low density polyethylene (LDPE) films tailored by atmospheric pressure non-thermal plasma (APNTP) assisted co-polymerization and immobilization of chitosan for improvement of antifouling properties. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 94, 150–160. [Google Scholar] [CrossRef] [PubMed]
- Hori, K.; Fujimoto, S.; Togashi, Y.; Kuroki, T.; Okubo, M. Improvement in Molecular-Level Adhesive Strength of PTFE Film Treated by Atmospheric Plasma Combined Processing. IEEE Trans. Ind. Appl. 2019, 55, 825–832. [Google Scholar] [CrossRef]
- Cheng, C.-Y.; Chung, F.-Y.; Chou, P.-Y.; Huang, C. Surface Modification of Polytetrafluoroethylene by Atmospheric Pressure Plasma-Grafted Polymerization. Plasma Chem. Plasma Process. 2020, 40, 1507–1523. [Google Scholar] [CrossRef]
- Gu, K.L.; Zhou, Y.; Morrison, W.A.; Park, K.; Park, S.; Bao, Z. Nanoscale Domain Imaging of All-Polymer Organic Solar Cells by Photo-Induced Force Microscopy. ACS Nano 2018, 12, 1473–1481. [Google Scholar] [CrossRef]
- Chen, G.; He, S.; Shi, G.; Ma, Y.; Ruan, C.; Jin, X.; Chen, Q.; Liu, X.; Dai, H.; Chen, X.; et al. In-situ immobilization of ZIF-67 on wood aerogel for effective removal of tetracycline from water. Chem. Eng. J. 2021, 423, 130184. [Google Scholar] [CrossRef]
- Nasef, M.M.; Saidi, H.; Ahmad, A.; Ali, A.A. Optimization and kinetics of phosphoric acid doping of poly(1-vinylimidazole)-graft-poly(ethylene-co-tetrafluorethylene) proton conducting membrane precursors. J. Membr. Sci. 2013, 446, 422–432. [Google Scholar] [CrossRef]
- Schmidt, C.; Schmidt-Naake, G. Proton Conducting Membranes Obtained by Doping Radiation-Grafted Basic Membrane Matrices with Phosphoric Acid. Macromol. Mater. Eng. 2007, 292, 1164–1175. [Google Scholar] [CrossRef]
- Badiei, Y.M.; Traba, C.; Rosales, R.; Rojas, A.L.; Amaya, C.; Shahid, M.; Vera-Rolong, C.; Concepcion, J.J. Plasma-Initiated Graft Polymerization of Acrylic Acid onto Fluorine-Doped Tin Oxide as a Platform for Immobilization of Water-Oxidation Catalysts. ACS Appl. Mater. Interfaces 2021, 13, 14077–14090. [Google Scholar] [CrossRef]
- Qiu, J.; Zhai, M.; Chen, J.; Wang, Y.; Peng, J.; Xu, L.; Li, J.; Wei, G. Performance of vanadium redox flow battery with a novel amphoteric ion exchange membrane synthesized by two-step grafting method. J. Membr. Sci. 2009, 342, 215–220. [Google Scholar] [CrossRef]
- Fahmy, A.; Abu-Saied, M.; Morgan, N.; Qutop, W.; Abdelbary, H.; Salama, T. Surface modification of polyvinyl chloride by polyacrylic acid graftas a polyelectrolyte membrane using Ar plasma. Turk. J. Chem. 2019, 43, 1686–1696. [Google Scholar] [CrossRef]
- Świtała-Żeliazkow, M. Thermal degradation of copolymers of styrene with dicarboxylic acidsI. Alternating styrene-maleic acid copolymer. Polym. Degrad. Stab. 2001, 74, 579–584. [Google Scholar] [CrossRef]
- Wang, L.; Jakob, D.S.; Wang, H.; Apostolos, A.; Pires, M.M.; Xu, X.G. Generalized Heterodyne Configurations for Photoinduced Force Microscopy. Anal. Chem. 2019, 91, 13251–13259. [Google Scholar] [CrossRef]
- Almajhadi, M.A.; Uddin, S.M.A.; Wickramasinghe, H.K. Observation of nanoscale opto-mechanical molecular damping as the origin of spectroscopic contrast in photo induced force microscopy. Nat. Commun. 2020, 11, 5691. [Google Scholar] [CrossRef]
- Kim, B.; Jahng, J.; Sifat, A.; Lee, E.S.; Potma, E.O. Monitoring Fast Thermal Dynamics at the Nanoscale through Frequency Domain Photoinduced Force Microscopy. J. Phys. Chem. C 2021, 125, 7276–7286. [Google Scholar] [CrossRef]
- Nowak, D.; Morrison, W.; Wickramasinghe, H.K.; Jahng, J.; Park, S. Nanoscale chemical imaging by photoinduced force microscopy. Sci. Adv. 2016, 2, e1501571. [Google Scholar] [CrossRef]
- Youcef, H.B.; Gubler, L.; Foelske-Schmitz, A.; Scherer, G.G. Improvement of homogeneity and interfacial properties of radiation grafted membranes for fuel cells using diisopropenylbenzene crosslinker. J. Membr. Sci. 2011, 381, 102–109. [Google Scholar] [CrossRef]
- Ramkumar, M.C.; Pandiyaraj, K.N.; Kumar, A.A.; Padmanabhan, P.V.A.; Kumar, S.U.; Gopinath, P.; Bendavid, A.; Cools, P.; De Geyter, N.; Morent, R.; et al. Evaluation of mechanism of cold atmospheric pressure plasma assisted polymerization of acrylic acid on low density polyethylene (LDPE) film surfaces: Influence of various gaseous plasma pretreatment. Appl. Surf. Sci. 2018, 439, 991–998. [Google Scholar] [CrossRef]
- Wang, Y.; Qiu, J.; Peng, J.; Xu, L.; Li, J.; Zhai, M. Study on the chemical stability of the anion exchange membrane of grafting dimethylaminoethyl methacrylate. J. Membr. Sci. 2011, 376, 70–77. [Google Scholar] [CrossRef]
- Inagaki, N.; Narushima, K.; Amano, T. Introduction of carboxylic groups on ethylene-co-tetra fluoroethylene (ETFE) film surfaces by CO2 plasma. J. Adhes. Sci. Technol. 2006, 20, 1443–1462. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Higashi, S.; Yamamoto, K. XPS-depth analysis using C60ion sputtering of buried interface in plasma-treated ethylene-tetrafluoroethylene-copolymer (ETFE) film. Surf. Interface Anal. 2008, 40, 1631–1634. [Google Scholar] [CrossRef]
- Thompson, R.; Austin, D.; Wang, C.; Neville, A.; Lin, L. Low-frequency plasma activation of nylon 6. Appl. Surf. Sci. 2021, 544, 148929. [Google Scholar] [CrossRef]
- Fahmy, A.; Mix, R.; Schönhals, A.; Friedrich, J.F. Structure of Plasma-Deposited Poly(acrylic acid) Films. Plasma Process. Polym. 2011, 8, 147–159. [Google Scholar] [CrossRef]
- Velasco, S.; Román, F.L.; White, J.A. On the Clausius–Clapeyron Vapor Pressure Equation. J. Chem. Educ. 2009, 86, 106–111. [Google Scholar] [CrossRef]
- Mohammadzadeh, S.; Zahedi, G. A New Vapor Pressure Equation for Pure Substances. Korean J. Chem. Eng. 2008, 25, 1514–1517. [Google Scholar] [CrossRef]
- Smith, C.; Sloan, E.D.; Sum, A.K. Helium substitution of natural gas hydrocarbons in the analysis of their hydrate, Journal of Natural Gas Science and Engineering. J. Nat. Gas Sci. Eng. 2016, 35, 1293–1300. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, X.; Ji, Z.; Li, X.; Zhao, Y.; Li, Z.; Chen, Z.; Li, H. Surface Modification of Poly(ethylene-alt-tetrafluoroethylene) by Atmospheric Pressure Dielectric Barrier Discharge Plasma. Polymers 2025, 17, 1519. https://doi.org/10.3390/polym17111519
Yan X, Ji Z, Li X, Zhao Y, Li Z, Chen Z, Li H. Surface Modification of Poly(ethylene-alt-tetrafluoroethylene) by Atmospheric Pressure Dielectric Barrier Discharge Plasma. Polymers. 2025; 17(11):1519. https://doi.org/10.3390/polym17111519
Chicago/Turabian StyleYan, Xiaoshan, Zuohui Ji, Xiaopeng Li, Yue Zhao, Zhen Li, Zhai Chen, and Heguo Li. 2025. "Surface Modification of Poly(ethylene-alt-tetrafluoroethylene) by Atmospheric Pressure Dielectric Barrier Discharge Plasma" Polymers 17, no. 11: 1519. https://doi.org/10.3390/polym17111519
APA StyleYan, X., Ji, Z., Li, X., Zhao, Y., Li, Z., Chen, Z., & Li, H. (2025). Surface Modification of Poly(ethylene-alt-tetrafluoroethylene) by Atmospheric Pressure Dielectric Barrier Discharge Plasma. Polymers, 17(11), 1519. https://doi.org/10.3390/polym17111519