Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (198)

Search Parameters:
Keywords = geostationary meteorological satellite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2913 KB  
Article
Emissivity-Driven Directional Biases in Geostationary Satellite Land Surface Temperature: Integrated Comparison and Parametric Analysis Across Complex Terrain in Hunan, China
by Jiazhi Fan, Qinzhe Han, Bing Sui, Leishi Chen, Luping Yang, Guanru Lv, Bi Zhou and Enguang Li
Remote Sens. 2026, 18(2), 284; https://doi.org/10.3390/rs18020284 - 15 Jan 2026
Viewed by 87
Abstract
Land surface temperature (LST) is fundamental for monitoring surface energy balance and environmental dynamics, with remote sensing providing the primary means of acquisition. However, directional anisotropy (DA) introduces systematic bias in satellite-derived LST products, particularly over complex landscapes. This study examines the impact [...] Read more.
Land surface temperature (LST) is fundamental for monitoring surface energy balance and environmental dynamics, with remote sensing providing the primary means of acquisition. However, directional anisotropy (DA) introduces systematic bias in satellite-derived LST products, particularly over complex landscapes. This study examines the impact of angular effects on LST retrievals from three leading East Asian geostationary satellites (FengYun 4A, FengYun 4B, and Himawari 9) across Hunan Province, China, using integrated comparison with in situ measurements and reanalysis data. Results show that all products exhibit a systematic cold bias, with FY4B achieving the highest accuracy. Diurnal retrieval precision increases with higher solar zenith angles (SZA), while no consistent relationship is observed between viewing zenith angle (VZA) and retrieval accuracy. Notably, the retrieval bias of the FY4 series increases significantly when the sun and sensor are aligned in azimuth, particularly when the relative azimuth angle (RAA) is less than or equal to 30°. Parametric modeling reveals that emissivity kernel-induced anisotropy is the principal driver of significant LST deviations in central Hunan, while solar kernel effects result in LST overestimation in mountainous regions and underestimation in plains. Increases in elevation or vegetation density reduce emissivity-induced errors but amplify errors caused by shadowing and sunlit effects. Emissivity anisotropy is thus identified as the primary source of LST DA. These findings deepen the understanding of LST DA in remote sensing and provide essential guidance for refining retrieval algorithms and improving the applicability of LST products in complex terrains. Full article
Show Figures

Figure 1

23 pages, 4663 KB  
Article
Element Evaluation and Selection for Multi-Column Redundant Long-Linear-Array Detectors Using a Modified Z-Score
by Xiaowei Jia, Xiuju Li and Changpei Han
Remote Sens. 2026, 18(2), 224; https://doi.org/10.3390/rs18020224 - 9 Jan 2026
Viewed by 160
Abstract
New-generation geostationary meteorological satellite radiometric imagers widely employ multi-column redundant long-linear-array detectors, for which the Best Detector Selection (BDS) strategy is crucial for enhancing the quality of remote sensing data. Addressing the limitation of current BDS methods that often rely on a single [...] Read more.
New-generation geostationary meteorological satellite radiometric imagers widely employ multi-column redundant long-linear-array detectors, for which the Best Detector Selection (BDS) strategy is crucial for enhancing the quality of remote sensing data. Addressing the limitation of current BDS methods that often rely on a single metric and thus fail to fully exploit the detector’s comprehensive performance, this paper proposes a detector evaluation method based on a modified Z-score. This method systematically categorizes detector metrics into three types: positive, negative, and uniformity. It introduces, for the first time, spectral response deviation (SRD) as an effective quantitative measure for the Spectral Response Function (SRF) and employs a robust normalization strategy using the Interquartile Range (IQR) instead of standard deviation, enabling multi-dimensional detector evaluation and selection. Validation using laboratory data from the FY-4C/AGRI long-wave infrared band demonstrates that, compared to traditional single-metric optimization strategies, the best detectors selected by our method show significant improvement across multiple performance indicators, markedly enhancing both data quality and overall system performance. The proposed method features low computational complexity and strong adaptability, supporting on-orbit real-time detector optimization and dynamic updates, thereby providing reliable technical support for high-quality processing of remote sensing data from geostationary meteorological satellites. Full article
(This article belongs to the Special Issue Remote Sensing Data Preprocessing and Calibration)
Show Figures

Figure 1

19 pages, 2460 KB  
Article
GeoAI in Temperature Correction for Rice Heat Stress Monitoring with Geostationary Meteorological Satellites
by Han Luo, Binyang Yang, Lei He, Yuxia Li, Dan Tang and Huanping Wu
ISPRS Int. J. Geo-Inf. 2026, 15(1), 31; https://doi.org/10.3390/ijgi15010031 - 8 Jan 2026
Viewed by 89
Abstract
To address the challenge of obtaining high-spatiotemporal-resolution and high-precision temperature grids for agricultural meteorological monitoring, this research focuses on rice heat stress monitoring with the China Meteorological Administration Land Data Assimilation System (CLDAS) and develops a temperature correction model that synergizes physical mechanisms [...] Read more.
To address the challenge of obtaining high-spatiotemporal-resolution and high-precision temperature grids for agricultural meteorological monitoring, this research focuses on rice heat stress monitoring with the China Meteorological Administration Land Data Assimilation System (CLDAS) and develops a temperature correction model that synergizes physical mechanisms with a data-driven strategy by introducing a GeoAI framework. Ensemble learning methods (XGBoost, LightGBM, and Random Forest) were utilized to process a comprehensive set of predictors, integrating dynamic surface features derived from FY-4 satellite’s high-frequency observation data. The data comprised surface thermal regime metrics, specifically the daily maximum land surface temperature (LSTmax) and its diurnal range (LSTmax_min), along with vegetation indices including the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI). Further, topographic attributes derived from a digital elevation model (DEM) were incorporated, such as slope, aspect, the terrain ruggedness index (TRI), and the topographic position index (TPI). The approach uniquely capitalized on the temporal resolution of geostationary data to capture the diurnal land surface dynamics crucial for bias correction. The proposed models not only enhanced temperature data quality but also achieved impressive accuracy. Across China, the root mean square error (RMSE) was reduced to 1.04 °C, mean absolute error (MAE) to 0.53 °C, and accuracy (ACC) to 0.97. Additionally, the most notable improvement was that the RMSE decreased by nearly 50% (from 2.17 °C to 1.11 °C), MAE dropped from 1.48 °C to 0.80 °C, and ACC increased from 0.72 to 0.96 in the southwestern region of China. The corrected rice heat stress data (2020–2023) indicated that significant negative correlations exist between yield loss and various heat stress metrics in the severely affected middle and lower Yangtze River region. The research confirms that embedding geostationary meteorological satellites within a GeoAI framework can effectively enhance the precision of agricultural weather monitoring and related impact assessments. Full article
(This article belongs to the Topic Geospatial AI: Systems, Model, Methods, and Applications)
Show Figures

Figure 1

17 pages, 6494 KB  
Article
Wide-Spectral-Range, Multi-Directional Particle Detection by the High-Energy Particle Detector on the FY-4B Satellite
by Qingwen Meng, Guohong Shen, Chunqin Wang, Qinglong Yu, Lin Quan, Huanxin Zhang and Ying Sun
Atmosphere 2026, 17(1), 48; https://doi.org/10.3390/atmos17010048 - 30 Dec 2025
Viewed by 171
Abstract
The FY-4B satellite, launched in June 2021 as China’s new-generation geostationary meteorological satellite, carries three identical High-Energy Particle Detectors (HEPDs) that enable multi-directional, wide-spectral measurements of energetic electrons. The three units are mounted in the zenith (−Z), flight (+X with a +Y offset [...] Read more.
The FY-4B satellite, launched in June 2021 as China’s new-generation geostationary meteorological satellite, carries three identical High-Energy Particle Detectors (HEPDs) that enable multi-directional, wide-spectral measurements of energetic electrons. The three units are mounted in the zenith (−Z), flight (+X with a +Y offset of 30°), and anti-flight (−X with a −Y offset of 30°) directions, allowing simultaneous observations from nine look directions over a field of view close to 180° in the 0.4–4 MeV energy range (eight energy channels). This paper systematically presents the design principles of the HEPD electron detector, the ground calibration scheme, and preliminary in-orbit validation results. The probe employs a multi-layer silicon semiconductor telescope technique to achieve high-precision measurements of electron energy spectra, fluxes, and directional anisotropy in the 0.4–4 MeV range. Ground synchrotron calibration shows that the energy resolution is better than 16% for energies above 1 MeV, and the angular resolution is about 20°, providing a solid basis for subsequent quantitative inversion. During in-orbit operation, HEPD remains stable under both quiet conditions and strong geomagnetic storms: the measured electron fluxes, differential energy spectra, and directional distributions show good agreement with GOES-16 observations in the same energy bands during quiet periods and for the first time provide from geostationary orbit pitch-angle-resolved images of the minute-scale evolution of electron enhancement events. These results demonstrate that HEPD is capable of long-term monitoring of the geostationary radiation environment and can supply high-quality, continuous, and reliable data to support studies of radiation-belt particle dynamics, data assimilation in space weather models, and radiation warnings for satellites in orbit. Full article
(This article belongs to the Section Upper Atmosphere)
Show Figures

Figure 1

20 pages, 16452 KB  
Article
Thinning Methods and Assimilation Applications for FY-4B/GIIRS Observations
by Shuhan Yao and Li Guan
Remote Sens. 2026, 18(1), 119; https://doi.org/10.3390/rs18010119 - 29 Dec 2025
Viewed by 232
Abstract
FY-4B/GIIRS (Geostationary Interferometric Infrared Sounder) is a new-generation infrared hyperspectral atmospheric vertical sounder onboard a Chinese geostationary meteorological satellite. Its observations with high spatial and temporal resolution play an important role in high-impact weather forecasts. The GIIRS data assimilation module is developed in [...] Read more.
FY-4B/GIIRS (Geostationary Interferometric Infrared Sounder) is a new-generation infrared hyperspectral atmospheric vertical sounder onboard a Chinese geostationary meteorological satellite. Its observations with high spatial and temporal resolution play an important role in high-impact weather forecasts. The GIIRS data assimilation module is developed in the GSI (Gridpoint Statistical Interpolation) assimilation system. Super Typhoon Doksuri in 2023 (No. 5) is taken as an example based on this module in this paper. Firstly, the sensitivity of analysis fields to five data thinning schemes at four daily assimilation times from 22 to 28 July 2023 is analyzed: the wavelet transform modulus maxima (WTMM) scheme, the grid-distance schemes of 30 km, 60 km, and 120 km in the GSI assimilation system, and a center field of view (FOV) scheme. Taking the ERA5 reanalysis fields as true, it is found that the mean error of temperature and humidity analysis for the WTMM scheme is the smallest, followed by the 120 km thinning scheme. Subsequently, a 72 h cycling assimilation and forecast experiments are conducted for the WTMM and 120 km thinning schemes. It is found that the root mean square error (RMSE) profiles of temperature and humidity forecast fields with no thinning scheme are the largest at all pressure levels and forecast times. The temperature forecast error decreases after data thinning at altitudes below 300 hPa. Since the WTMM scheme has assimilated more observations than the 120 km scheme, the accuracy of its temperature and humidity forecast fields gradually increases with the forecast time. In terms of typhoon track and intensity forecast, the typhoon intensities are underestimated before landfall and overestimated after landfall for all thinning schemes. As the forecast time increases, the advantage of the WTMM is increasingly evident, with both the forecast intensity and track being closest to the actual observations. Similarly, the forecasted 24 h accumulated precipitation over land is overestimated after typhoon landfall compared with the IMERG Final precipitation products. The location of precipitation simulated by no thinning scheme is more westward overall. The forecast accuracy of the locations and intensities of severe precipitation cores and the typhoon’s outer spiral rain bands over the South China Sea has been improved after thinning. The Equitable Threat Scores (ETSs) of the WTMM thinning scheme are the highest for most precipitation intensity thresholds. Full article
Show Figures

Figure 1

24 pages, 8257 KB  
Article
Multi-Satellite Image Matching and Deep Learning Segmentation for Detection of Daytime Sea Fog Using GK2A AMI and GK2B GOCI-II
by Jonggu Kang, Hiroyuki Miyazaki, Seung Hee Kim, Menas Kafatos, Daesun Kim, Jinsoo Kim and Yangwon Lee
Remote Sens. 2026, 18(1), 34; https://doi.org/10.3390/rs18010034 - 23 Dec 2025
Viewed by 463
Abstract
Traditionally, sea fog detection technologies have relied primarily on in situ observations. However, point-based observations suffer from limitations in extensive monitoring in marine environments due to the scarcity of observation stations and the limited nature of measurement data. Satellites effectively address these issues [...] Read more.
Traditionally, sea fog detection technologies have relied primarily on in situ observations. However, point-based observations suffer from limitations in extensive monitoring in marine environments due to the scarcity of observation stations and the limited nature of measurement data. Satellites effectively address these issues by covering vast areas and operating across multiple spectral channels, enabling precise detection and monitoring of sea fog. Despite the increasing adoption of deep learning in this field, achieving further improvements in accuracy and reliability necessitates the simultaneous use of multiple satellite datasets rather than relying on a single source. Therefore, this study aims to achieve higher accuracy and reliability in sea fog detection by employing a deep learning-based advanced co-registration technique for multi-satellite image fusion and autotuning-based optimization of State-of-the-Art (SOTA) semantic segmentation models. We utilized data from the Advanced Meteorological Imager (AMI) sensor on the Geostationary Korea Multi-Purpose Satellite 2A (GK2A) and the GOCI-II sensor on the Geostationary Korea Multi-Purpose Satellite 2B (GK2B). Swin Transformer, Mask2Former, and SegNeXt all demonstrated balanced and excellent performance across overall metrics such as IoU and F1-score. Specifically, Swin Transformer achieved an IoU of 77.24 and an F1-score of 87.16. Notably, multi-satellite fusion significantly improved the Recall score compared to the single AMI product, increasing from 88.78 to 92.01, thereby effectively mitigating the omission of disaster information. Ultimately, comparisons with the officially operational GK2A AMI Fog and GK2B GOCI-II Marine Fog (MF) products revealed that our deep learning approach was superior to both existing operational products. Full article
(This article belongs to the Section AI Remote Sensing)
Show Figures

Graphical abstract

20 pages, 4389 KB  
Article
A New Convective Initiation Definition and Its Characteristics in Central and Eastern China Based on Fengyun-4A Satellite Cloud Imagery
by Lili Peng, Yunying Li, Chengzhi Ye and Xiaofeng Ou
Remote Sens. 2025, 17(24), 4053; https://doi.org/10.3390/rs17244053 - 17 Dec 2025
Viewed by 381
Abstract
With the upgrading of geostationary meteorological satellites, their capabilities in Convective Initiation (CI) identification have been enhanced. To improve the applicability of the ARGI-based CI algorithm in central and eastern China, this study uses Fengyun-4A data, integrates radar and precipitation data to construct [...] Read more.
With the upgrading of geostationary meteorological satellites, their capabilities in Convective Initiation (CI) identification have been enhanced. To improve the applicability of the ARGI-based CI algorithm in central and eastern China, this study uses Fengyun-4A data, integrates radar and precipitation data to construct a True_CI dataset, and defines False_CI events (satellite-identified events without radar or precipitation signals) for comparative analysis. The results show that True_CI events tend to have longer durations, larger cloud cluster areas, and lower central cloud-top brightness temperature (BT) during development. They exhibit distinct features such as reduced differences between water vapor and infrared channels, increased cloud optical thickness, and ice-phase transformation 30 min before CI occurrence—features absent in most False_CI events. Based on these comparative findings, a new satellite-based CI definition is proposed with a set of reference thresholds, which should be adjusted for different latitudes and seasons. The evaluation of the Defined_CI events (defined using the CI definition) via True_CI events indicates that the CI definition on satellite cloud imagery proposed in this study is reliable, and suggests that further research on the pre-CI environmental conditions of weak convection is needed. Supported by hyperspectral data or numerical model products, such research will help clarify which cloud clusters are prone to developing into convective weather. Full article
Show Figures

Figure 1

22 pages, 8085 KB  
Article
Estimation of High-Temporal-Resolution PM2.5 Concentration from 2019 to 2023 Using an Interpretable Deep Learning Model
by Bo Li, Xiaoyang Chen, Wenhao Zhang, Tong Li, Meiling Xing, Jinyu Yang and Zhihua Han
Atmosphere 2025, 16(12), 1385; https://doi.org/10.3390/atmos16121385 - 8 Dec 2025
Viewed by 371
Abstract
The FY-4A satellite represents a new generation of geostationary platforms, providing high-temporal-resolution observations over China. However, challenges remain in effectively leveraging the FY-4A satellite data for high-temporal-resolution PM2.5 concentration estimation, particularly regarding the unclear key parameters required for accurate estimation and the [...] Read more.
The FY-4A satellite represents a new generation of geostationary platforms, providing high-temporal-resolution observations over China. However, challenges remain in effectively leveraging the FY-4A satellite data for high-temporal-resolution PM2.5 concentration estimation, particularly regarding the unclear key parameters required for accurate estimation and the limited interpretability of models. This study utilizes an interpretable deep learning framework that integrates FY-4A Top-of-Atmosphere (TOA) reflectance data, meteorological variables, and auxiliary data to estimate surface high-temporal-resolution PM2.5 concentrations from 2019 to 2023. A multicollinearity test was applied to optimize feature selection, while the SHapley Additive exPlanations (SHAP) method was used to enhance model interpretability. The results indicate that parameters such as TOA02, TOA03, TOA04, and boundary layer height (BLH) significantly influence model performance across years. The model demonstrates strong predictive ability in the Beijing–Tianjin–Hebei (BTH) region, achieving an average R2 of 0.83. Root mean square error (RMSE) values remained below 15 µg/m3, aligning well with ground-based monitoring data. These findings demonstrate that combining high temporal satellite data with interpretable deep learning provides a reliable approach for long-term, high-temporal-resolution PM2.5 monitoring in regions. Full article
Show Figures

Figure 1

21 pages, 5820 KB  
Article
Revisiting the Convective Like Boundary Layer Assumption in the Urban Option of AERMOD
by Jonathan Retter, Robert Christopher Owen, Annamarie Leske, Michelle Snyder, Rhett Sargent and David Heist
Atmosphere 2025, 16(12), 1342; https://doi.org/10.3390/atmos16121342 - 27 Nov 2025
Viewed by 468
Abstract
Urban areas and their surroundings feature unique, horizontally inhomogeneous spatial distributions of land use and land cover, leading to urban heat islands (UHIs) for both air and land surface temperature that complicate the estimation of urban sensible heat flux. The urban dispersion option [...] Read more.
Urban areas and their surroundings feature unique, horizontally inhomogeneous spatial distributions of land use and land cover, leading to urban heat islands (UHIs) for both air and land surface temperature that complicate the estimation of urban sensible heat flux. The urban dispersion option in AERMOD, the American Meteorological Society (AMS)/Environmental Protection Agency (EPA) Regulatory Model, incorporates this effect at night through a “convective like boundary layer” that modifies the single column meteorology based on a population number representative of the urban area. The model produces positive nighttime sensible heat flux values that often significantly overestimate observed values from the literature. This study re-examines the formulation of the AERMOD urban option assumptions, methodology, and original evaluation against a field study of a power plant in Indianapolis. We investigate replacing the population-based parameterizations of urban–surrounding temperature differences (ΔT) with observations of remotely sensed land surface temperature (LST) data from the Advanced Baseline Imager on the GOES-16/R/East geostationary satellite. We generated a monthly averaged, hourly, wind direction-dependent, clear sky land surface urban heat island ΔT database for 480 continental United States (CONUS) urban areas, as defined by the 2010 US Census. These ΔT values are used to advise city-specific horizontal advection corrections to sensible heat flux estimates that are neglected from simple energy balance models. The four cities of Cleveland, Amarillo, Atlanta, and Baltimore are highlighted, showing that the AERMOD predicted nighttime ΔT values are 794%, 416%, 1048%, and 758% higher, respectively, than the GOES-16 observations. These overestimated ΔT values in AERMOD lead to nighttime sensible heat flux values > 100 W/m2 that rival daytime values. However, using the GOES-16 observations as horizontal advection corrections to sensible heat flux results in trends that match the expected neutral to slightly positive nighttime values from observations recorded in the literature. The annual nighttime average in 2021 was −0.8 W/m2, 8.6 W/m2, 3.0 W/m2, and 3.1 W/m2 in Cleveland, Amarillo, Atlanta, and Baltimore, respectively, using this approach. Finally, reviewing the initial evaluation with the Indianapolis database against independent studies from the literature suggest that the AERMOD urban option inadvertently implements an urban heat island modeling approach to account for what was a low-level jet during the field study. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

22 pages, 5851 KB  
Article
A Multi-Stage Deep Learning Framework for Multi-Source Cloud Top Height Retrieval from FY-4A/AGRI Data
by Yinhe Cheng, Long Shen, Jiulei Zhang, Hongjian He, Xiaomin Gu, Shengxiang Wang and Tinghuai Ma
Atmosphere 2025, 16(11), 1288; https://doi.org/10.3390/atmos16111288 - 12 Nov 2025
Viewed by 595
Abstract
Cloud Top Height (CTH), defined as the altitude of the highest cloud layer above mean sea level, is a crucial geophysical parameter for quantifying cloud radiative effects, analyzing severe weather systems, and improving climate models. To enhance the accuracy of CTH retrieval from [...] Read more.
Cloud Top Height (CTH), defined as the altitude of the highest cloud layer above mean sea level, is a crucial geophysical parameter for quantifying cloud radiative effects, analyzing severe weather systems, and improving climate models. To enhance the accuracy of CTH retrieval from Fengyun-4A (FY-4A) satellite data, this study proposes a multi-stage deep learning framework that progressively refines cloud parameter estimation. The method utilizes cloud information from the FY-4A/AGRI (Advanced Geosynchronous Radiation Imager) Level 1 calibrated scanning imager radiance data product to construct a multi-source data fusion neural network model. The model inputs combine multi-channel radiance data with cloud parameters, including Cloud Top Temperature (CTT) and Cloud Top Pressure (CTP). We used the CTH measurement data from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite as a reference to verify the model output. Results demonstrate that the proposed multi-stage model significantly improves retrieval accuracy. Compared to the official FY-4A CTH product, the Mean Absolute Error (MAE) was reduced by 49.12% to 2.03 km, and the Pearson Correlation Coefficient (PCC) reached 0.85. To test the applicability of the model under complex weather conditions, we applied it to the CTH inversion of the double typhoon event on 10 August 2019. The model successfully characterized the spatial distribution of CTH within the typhoon regions. The results are consistent with the National Satellite Meteorological Centre (NSMC) reports and clearly reveal the different intensity evolutions of the two typhoons. This research provides an effective solution for high-precision retrieval of high-level cloud CTH at a large scale, using geostationary meteorological satellite remote sensing data. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

27 pages, 6822 KB  
Article
Generalized Variational Retrieval of Full Field-of-View Cloud Fraction and Precipitable Water Vapor from FY-4A/GIIRS Observations
by Gen Wang, Song Ye, Bing Xu, Xiefei Zhi, Qiao Liu, Yang Liu, Yue Pan, Chuanyu Fan, Tiening Zhang and Feng Xie
Remote Sens. 2025, 17(22), 3687; https://doi.org/10.3390/rs17223687 - 11 Nov 2025
Viewed by 661
Abstract
Owing to their high vertical resolution, remote sensing data from meteorological satellite hyperspectral infrared sounders are well-suited for the identification, monitoring, and early warning of high-impact weather events. The effective utilization of full field-of-view (FOV) observations from satellite infrared sounders in high-impact weather [...] Read more.
Owing to their high vertical resolution, remote sensing data from meteorological satellite hyperspectral infrared sounders are well-suited for the identification, monitoring, and early warning of high-impact weather events. The effective utilization of full field-of-view (FOV) observations from satellite infrared sounders in high-impact weather applications remains a major research focus and technical challenge worldwide. This study proposes a generalized variational retrieval framework to estimate full FOV cloud fraction and precipitable water vapor (PWV) from observations of the Geostationary Interferometric Infrared Sounder (GIIRS) onboard the Fengyun-4A (FY-4A) satellite. Based on this method, experiments are performed using high-frequency FY-4A/GIIRS observations during the landfall periods of Typhoon Lekima (2019) and Typhoon Higos (2020). A three-step channel selection strategy based on information entropy is first designed for FY-4A/GIIRS. A constrained generalized variational retrieval method coupled with a cloud cost function is then established. Cloud parameters, including effective cloud fraction and cloud-top pressure, are initially retrieved using the Minimum Residual Method (MRM) and used as initial cloud information. These parameters are iteratively optimized through cost-function minimization, yielding full FOV cloud fields and atmospheric profiles. Full FOV brightness temperature simulations are conducted over cloudy regions to quantitatively evaluate the retrieved cloud fractions, and the derived PWV is further applied to the identification and analysis of hazardous weather events. Experimental results demonstrate that incorporating cloud parameters as auxiliary inputs to the radiative transfer model improves the simulation of FY-4A/GIIRS brightness temperature in cloud-covered areas and reduces brightness temperature biases. Compared with ERA5 Total Column Water Vapour (TCWV) data, the PWV derived from full FOV profiles containing cloud parameter information shows closer agreement and, at certain FOVs, more effectively indicates the occurrence of high-impact weather events. The simplified methodology proposed in this study provides a robust basis for the future assimilation and operational utilization of infrared data over cloud-affected regions in numerical weather prediction models. Full article
Show Figures

Figure 1

22 pages, 3516 KB  
Article
Hurricane Precipitation Intensity as a Function of Geometric Shape: The Evolution of Dvorak Geometries
by Ivan Gonzalez Garcia, Alfonso Gutierrez-Lopez, Ana Marcela Herrera Navarro and Hugo Jimenez-Hernandez
ISPRS Int. J. Geo-Inf. 2025, 14(11), 443; https://doi.org/10.3390/ijgi14110443 - 8 Nov 2025
Viewed by 647
Abstract
The Dvorak technique has represented a fundamental tool for understanding the power of tropical cyclones based on their shape and geometric evolution. However, it should be noted that the Dvorak technique is purely morphological in nature and was developed for wind, not precipitation. [...] Read more.
The Dvorak technique has represented a fundamental tool for understanding the power of tropical cyclones based on their shape and geometric evolution. However, it should be noted that the Dvorak technique is purely morphological in nature and was developed for wind, not precipitation. The role of shape methods in precipitation prediction remains uncertain, particularly in the context of modern multi-sensor capabilities. This uncertainty forms the motivation for the present study. In an attempt to enrich Dvorak’s technique, this study proposes a novel hypothesis. This study tests the hypothesis that higher precipitation intensity is associated with more organized cloud-system morphology, as captured by simple geometric descriptors and indicative of dynamically coherent convection. A total of 3419 cloud-system objects (after size filter) were utilized to establish geometric relationships in each of them. For the case study of Hurricane Patricia over the Mexican coast in 2015, 3858 geometric shapes were processed. The cloud-system morphology was derived from geostationary imagery (GOES-13) and collocated with satellite precipitation estimates in order to isolate intense-rainfall objects (>50 mm/h). For each object, simple geometric descriptors were computed, and shape variability was summarised via Principal Component Analysis (PCA). The present study sought to evaluate the associations with rain-rate metrics (mean, mode, maximum) using rank correlations and k-means clustering. Furthermore, sensitivity analyses were conducted on the rain threshold and minimum object size. A Shape Descriptor: ratio between perimeter and diameter was identified as a promising tool to enhance early prediction models of extreme rainfall, contributing to enhanced meteorological risk management. The study indicates that cloud shape can serve as a valuable indicator in the classification and forecasting of intense cloud systems. Full article
(This article belongs to the Special Issue Cartography and Geovisual Analytics)
Show Figures

Figure 1

17 pages, 13144 KB  
Article
Performance Evaluation of Satellite Observation of Sand/Dust Weather and Its Application in Assessing the Accuracy of Numerical Models
by Pak Wai Chan, Ying Wa Chan, Chun Kit Ho, Yuzhao Ma, Wai Ho Tang, Ho Yi Wong and Xiaoxue Zhang
Appl. Sci. 2025, 15(21), 11745; https://doi.org/10.3390/app152111745 - 4 Nov 2025
Viewed by 448
Abstract
Air quality monitoring and forecasting has been a challenging problem for years. In addition to traditional ground-based observational stations, in recent years there have been more geostationary and polar orbiting satellite observations on air quality. However, evaluation of performance of these observations is [...] Read more.
Air quality monitoring and forecasting has been a challenging problem for years. In addition to traditional ground-based observational stations, in recent years there have been more geostationary and polar orbiting satellite observations on air quality. However, evaluation of performance of these observations is lacking, especially for the region of southern China, which is rarely affected by severe sand/dust weather. In the spring of 2025, two events of sand/dust weather, one case of sand/dust spreading to southern China in April and another case of sand/dust confining to northern China in May, provide a good opportunity for detailed case study and examination of the performance of the tools. The surface particulate matter (PM) concentration retrieved from a geostationary satellite, Geostationary Korea Multi-Purpose Satellite—2B (GEO-KOMPSAT-2B, or GK2B), is studied by checking consistency with the analysis of two numerical models: the Copernicus Atmosphere Monitoring Service model of the European Centre of Medium Range Weather Forecast (ECMWF-CAMS) and Chinese Unified Atmospheric Chemistry Environment model of the China Meteorological Administration (CMA-CUACE). The former shows comparable PM concentration with satellite observations, while overestimation is found with the latter. It is also found that there may be latitude dependence of the quality of the satellite-based data. To further validate the satellite observation data, it is directly compared with the ground-based station measurements in Hong Kong for the event in mid-April 2025, the performance of satellite data points near Hong Kong is generally satisfactory. For polar orbiting satellite, there is information about the aerosol classification in addition to aerosol optical depth, and the classification result is found to be reasonable by comparison with ground-based observation, though some refinements appear to be necessary. The geostationary satellite images provide high spatial coverage and frequently updated air quality data, which are confirmed to be useful in monitoring the southward spread of sand/dust weather to southern China which is a very rare event. The monitoring can be both qualitative and quantitative. The performance of various monitoring and forecasting tools is examined in details based on the cases. It also forms a reference for the use in operation, and opens up a new era for air quality study for southern China. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

24 pages, 26775 KB  
Article
Robust Synthesis Weather Radar from Satellite Imagery: A Light/Dark Classification and Dual-Path Processing Approach
by Wei Zhang, Hongbo Ma, Yanhai Gan, Junyu Dong, Renbo Pang, Xiaojiang Song, Cong Liu and Hongmei Liu
Remote Sens. 2025, 17(21), 3609; https://doi.org/10.3390/rs17213609 - 31 Oct 2025
Viewed by 660
Abstract
Weather radar reflectivity plays a critical role in precipitation estimation and convective storm identification. However, due to terrain limitations and the uneven spatial distribution of radar stations, oceanic regions have long suffered from a lack of radar observations, resulting in extensive monitoring gaps. [...] Read more.
Weather radar reflectivity plays a critical role in precipitation estimation and convective storm identification. However, due to terrain limitations and the uneven spatial distribution of radar stations, oceanic regions have long suffered from a lack of radar observations, resulting in extensive monitoring gaps. Geostationary meteorological satellites have wide-area coverage and near-real-time observation capability, offering a viable solution for synthesizing radar reflectivity in these regions. Most previous synthesis studies have adopted fixed time-window data partitioning, which introduces significant noise into visible-light observations under large-scale, low-illumination conditions, thereby degrading synthesis quality. To address this issue, we propose an integrated deep-learning method that combines illumination-based classification and reflectivity synthesis to enhance the accuracy of radar reflectivity synthesis from geostationary meteorological satellites. This approach integrates a classification network with a synthesis network. First, visible-light observations from the Himawari-8 satellite are classified based on illumination conditions to separate valid signals from noise; then, noise-free infrared observations and multimodal fused data are fed into dedicated synthesis networks to generate composite reflectivity products. In experiments, the proposed method outperformed the baseline approach in regions with strong convection (≥35 dBZ), with a 9.5% improvement in the critical success index, a 7.5% increase in the probability of detection, and a 6.1% reduction in the false alarm rate. Additional experiments confirmed the applicability and robustness of the method across various complex scenarios. Full article
Show Figures

Figure 1

17 pages, 3186 KB  
Article
Geostationary Orbit Target Detection Based on Min-Stacking Method
by Kaiyuan Zheng, Can Xu, Yasheng Zhang, Jiayu Qiu and Xia Wang
Aerospace 2025, 12(9), 834; https://doi.org/10.3390/aerospace12090834 - 17 Sep 2025
Viewed by 604
Abstract
The geostationary orbit (GEO), about 35,786 km above the Earth’s equator, hosts high-value satellites like communication, meteorological, and navigation ones. Real-time detection of geostationary orbit targets is crucial for orbital resource safety and satellite operation. Large field-of-view (FOV) telescopes can observe many such [...] Read more.
The geostationary orbit (GEO), about 35,786 km above the Earth’s equator, hosts high-value satellites like communication, meteorological, and navigation ones. Real-time detection of geostationary orbit targets is crucial for orbital resource safety and satellite operation. Large field-of-view (FOV) telescopes can observe many such targets but face technical bottlenecks due to their optical systems, such as weak light-gathering capability, stellar interference, and complex stray light. This paper analyzes the apparent motion differences between stars and geostationary orbit targets based on the telescope’s staring mode. Stars move overall in images while GEO targets are relatively stationary. A minimum value stacking (Min-Stacking) method is proposed to suppress stars, improving GEO targets’ signal-to-noise ratio. With the global threshold segmentation algorithm, fast and accurate target extraction is achieved. Experiments show the method has high detection rates, overcomes interference, and features simplicity and real-time performance, with important application value. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

Back to TopTop