Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,447)

Search Parameters:
Keywords = genome evolution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 5439 KB  
Brief Report
Emergence and Phylodynamics of Influenza D Virus in Northeast China Reveal Sporadic Detection and Predominance of the D/Yamagata/2019 Lineage in Cattle
by Hongjin Li, Weiwen Yan, Xinxin Liu, Bing Gao, Jiahuizi Peng, Feng Jiang, Qixun Cui, Che Song, Xianyuan Kong, Hongli Li, Tobias Stoeger, Abdul Wajid, Aleksandar Dodovski, Chao Gao, Maria Inge Lusida, Claro N. Mingala, Dmitry B. Andreychuk and Renfu Yin
Viruses 2026, 18(1), 93; https://doi.org/10.3390/v18010093 - 9 Jan 2026
Abstract
Influenza D virus (IDV), an emerging orthomyxovirus with zoonotic potential, infects diverse hosts, causes respiratory disease, and remains poorly characterized in China despite its global expansion. From October 2023 to January 2025, we collected 563 nasal swabs from cattle across 28 farms in [...] Read more.
Influenza D virus (IDV), an emerging orthomyxovirus with zoonotic potential, infects diverse hosts, causes respiratory disease, and remains poorly characterized in China despite its global expansion. From October 2023 to January 2025, we collected 563 nasal swabs from cattle across 28 farms in Jilin Province, Northeast China, and identified seven IDV-positive samples (1.2%), recovering two viable isolates (JL/YB2024 and JL/CC2024). Full-genome sequencing revealed complete, stable seven-segment genomes with high nucleotide identity (up to 99.9%) to contemporary Chinese D/Yamagata/2019 strains and no evidence of reassortment. Maximum-likelihood and time-resolved Bayesian phylogenies of 231 global hemagglutinin-esterase-fusion (HEF) sequences placed the Jilin isolates within the East Asian D/Yamagata/2019 clade and traced their most recent common ancestor to approximately 2017 (95% highest posterior density: 2016–2018), suggesting a cross-border introduction likely associated with regional cattle movement. No IDV was detected in parallel surveillance of swine, underscoring cattle as the principal reservoir and amplifying host. Bayesian skyline analysis demonstrated a marked decline in global IDV genetic diversity during 2020–2022, coinciding with livestock-movement restrictions imposed during the COVID-19 pandemic. Collectively, these findings indicate that IDV circulation in China is sporadic and geographically localized, dominated by the D/Yamagata/2019 lineage, and shaped by multiple independent incursions rather than a single emergence. Both the incorporation of IDV diagnostics into routine bovine respiratory disease surveillance and cattle-import quarantine programs, and the adoption of a One Health framework to monitor potential human spillover and future viral evolution, were recommend. Full article
(This article belongs to the Special Issue Emerging and Re-Emerging Viral Zoonoses)
Show Figures

Figure 1

32 pages, 4378 KB  
Review
Precision, Reproducibility, and Validation in Zebrafish Genome Editing: A Critical Review of CRISPR, Base, and Prime Editing Technologies
by Meher un Nissa, Yidong Feng, Shahid Ali and Baolong Bao
Fishes 2026, 11(1), 41; https://doi.org/10.3390/fishes11010041 - 9 Jan 2026
Abstract
The rapid evolution of CRISPR/Cas technology has transformed genome editing across biological systems in which zebrafish have emerged as a powerful vertebrate model for functional genomics and disease research. Due to its transparency, genetic similarity to humans, and suitability for large-scale screening, zebrafish [...] Read more.
The rapid evolution of CRISPR/Cas technology has transformed genome editing across biological systems in which zebrafish have emerged as a powerful vertebrate model for functional genomics and disease research. Due to its transparency, genetic similarity to humans, and suitability for large-scale screening, zebrafish is an appropriate system for translating molecular discoveries into biomedical and environmental applications. Thereby, this review highlights the recent progress in zebrafish gene editing, targeting innovations in ribonucleoprotein delivery, PAM-flexible Cas variants, and precision editors. These approaches have greatly improved editing accuracy, reduced mosaicism, and enabled efficient F0 phenotyping. In the near future, automated microinjections, optimized guide RNA design, and multi-omics validation pipelines are expected to enhance reproducibility and scalability. Although recent innovations such as ribonucleoprotein delivery, PAM-flexible Cas variants, and precision editors have expanded the zebrafish genome-editing toolkit, their benefits are often incremental and context-dependent. Mosaicism, allele complexity, and variable germline transmission remain common, particularly in F0 embryos. Precision editors enable defined nucleotide changes but typically exhibit modest efficiencies and locus-specific constraints in zebrafish. Consequently, rigorous validation, standardized workflows, and careful interpretation of F0 phenotypes remain essential. This review critically examines both the capabilities and limitations of current zebrafish gene-editing technologies, emphasizing experimental trade-offs, reproducibility challenges, and realistic use cases. Full article
(This article belongs to the Section Genetics and Biotechnology)
Show Figures

Figure 1

13 pages, 2502 KB  
Article
Comparative Transcriptome Analysis Reveals the Seawater Adaptation Mechanism in Pseudaspius hakonensis
by Ziyue Xu, Wen Zheng, Wenjun Chen, Min Zhou, Dongdong Zhai, Ming Xia, Hongyan Liu, Fei Xiong and Ying Wang
Genes 2026, 17(1), 76; https://doi.org/10.3390/genes17010076 - 9 Jan 2026
Abstract
Background: The family Cyprinidae is predominantly restricted to freshwater habitats, making the evolution of diadromy and seawater adaptation exceptionally rare within this group. Pseudaspius hakonensis, a rare anadromous cyprinid, and its strictly freshwater congener P. leptocephalus, provide an ideal comparative model [...] Read more.
Background: The family Cyprinidae is predominantly restricted to freshwater habitats, making the evolution of diadromy and seawater adaptation exceptionally rare within this group. Pseudaspius hakonensis, a rare anadromous cyprinid, and its strictly freshwater congener P. leptocephalus, provide an ideal comparative model to investigate the molecular mechanisms underlying salinity adaptation. This study aimed to elucidate the tissue-specific transcriptional reprogramming, identify candidate genes and key pathways, and explore their association with seawater acclimation in P. hakonensis. Methods: We performed comparative transcriptomic analyses of gill, liver, and kidney tissues from both species using RNA-Seq. Sequencing reads were aligned to a high-quality reference genome of P. hakonensis. Differential expression analysis was conducted using DESeq2, followed by functional enrichment analyses (GO and KEGG) to identify significant biological processes and pathways. Results: A total of 8784, 5965, and 5719 differentially expressed genes (DEGs) were identified in gill, kidney, and liver tissues, respectively, with the gill showing the highest differences. Functional enrichment revealed tissue-specific roles: gill DEGs were associated with protein synthesis and energy metabolism; kidney DEGs with transport and detoxification; and liver DEGs with metabolic regulation and stress signaling. Cross-tissue analysis highlighted three core pathways consistently enriched: MAPK signaling, ABC transporters, and glutathione metabolism. Key candidate genes, including DUSP10, SLC38A2, ATP8B1, GSTA4, and MGST1, were significantly upregulated in P. hakonensis. Conclusions: This first multi-tissue transcriptomic comparison of an anadromous and a freshwater cyprinid reveals pervasive, tissue-specific molecular reprogramming underlying seawater adaptation in P. hakonensis. The coordinated activation of MAPK signaling, glutathione metabolism, and transporter pathways suggests an integrated regulatory network for osmoregulation and stress resistance. These findings provide novel insights into the genetic basis of salinity adaptation in cyprinids and identify candidate genes for future functional validation. Full article
(This article belongs to the Special Issue Innovations in Aquaculture Breeding via Genetic Technologies)
Show Figures

Figure 1

21 pages, 2923 KB  
Article
Enhancing the Signature Rose Aroma of Kluyveromyces marxianus-Fermented Milk Beer via Adaptive Laboratory Evolution
by Chen Xing, Youming Tan, Xinchi Jiang, Wenlu Li, Qihao Wang, Zihao Liu, Hong Zeng and Yanbo Wang
Foods 2026, 15(2), 229; https://doi.org/10.3390/foods15020229 - 8 Jan 2026
Viewed by 16
Abstract
Milk beer, a modern Chinese dairy beverage, is usually fermented by the co-culture of lactic acid bacteria (LAB) and Kluyveromyces marxianus (K. marxianus), with the latter known for its ability to produce aroma compounds. However, the accumulation of lactic acid produced [...] Read more.
Milk beer, a modern Chinese dairy beverage, is usually fermented by the co-culture of lactic acid bacteria (LAB) and Kluyveromyces marxianus (K. marxianus), with the latter known for its ability to produce aroma compounds. However, the accumulation of lactic acid produced by LAB can inhibit the growth of K. marxianus, which inevitably hinders the diversity and intensity of flavor compounds in milk beer. In this study, adaptive laboratory evolution (ALE) was applied to the parental strain Kluyveromyces marxianus CICC1953 (Km-P) under different concentrations of lactic acid to obtain an evolved strain Km-ALE-X20 with enhanced acid tolerance and increased titer of phenylethyl alcohol, which has a floral, rose-like aroma. Km-ALE-X20 demonstrated a 16-fold increase in OD600 and a 28-fold increase in phenylethyl alcohol production compared with Km-P in chemically defined medium (CDM) containing 20 g/L lactic acid. Comparative genomics analysis suggested that mutated genes CTA1, TSL1, ERG2 were related to enhanced acid tolerance, while ARO8, ARO9, FKS2 were related to increased production of aroma compounds. Furthermore, Km-ALE-X20-fermented milk beer showed 33.87% and 32.43% higher production in alcohol and ester compounds than that of Km-P-fermented milk beer. Interestingly, sensory analysis showed that while Km-ALE-X20-fermented milk beer had higher sensory scores for rose and fruity aroma attributes, Km-P-fermented milk beer possessed a more balanced aroma profile. This paper highlights the first application of ALE to enhance the signature rose aroma of K. marxianus-fermented milk beer and provides an efficient framework for ALE-based breeding of aroma-producing food microorganisms. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

22 pages, 6894 KB  
Article
Genome-Wide Characterization of Four Gastropod Species Ionotropic Receptors Reveals Diet-Linked Evolutionary Patterns of Functional Divergence
by Gang Wang, Yi-Qi Sun, Fang Wang, Zhi-Yong Wang, Ni-Ying Sun, Meng-Jun Wei, Yu-Tong Shen, Yi-Jia Li, Quan-Qing Sun, Yushinta Fujaya, Xun-Guang Bian, Wen-Qi Yang and Kianann Tan
Animals 2026, 16(2), 172; https://doi.org/10.3390/ani16020172 - 7 Jan 2026
Viewed by 150
Abstract
Ionotropic receptors (IRs) are a divergent subfamily of ionotropic glutamate receptors (iGluRs) that detect olfactory and environmental cues, influencing behaviors such as foraging and adaptation. To explore the evolution of IRs in relation to feeding ecology, we identified IRs and iGluRs from the [...] Read more.
Ionotropic receptors (IRs) are a divergent subfamily of ionotropic glutamate receptors (iGluRs) that detect olfactory and environmental cues, influencing behaviors such as foraging and adaptation. To explore the evolution of IRs in relation to feeding ecology, we identified IRs and iGluRs from the genomes of four gastropods with distinct diets: Pomacea canaliculata (9 IRs/18 iGluRs), Bellamya purificata (10/22), Cipangopaludina chinensis (11/23), and Babylonia areolata (22/41). IRs were markedly expanded in B. areolata, suggesting lineage-specific diversification. Phylogenetic analysis grouped IRs and iGluRs into three clades, with IRs clustered with GluD, supporting early functional divergence following gene duplication. In all species, IR25b showed tandem duplication and played a central role in protein–protein interaction (PPI) networks. Most IRs were acidic, whereas IR-A and IR-C subgroups were basic, suggesting functional specialization among subfamilies. Structural analysis showed that IRs share conserved domains and motifs across species. Most IRs experienced purifying selection, while P. canaliculata showed relaxed constraints, suggesting weaker functional limitation. Collinearity analysis identified conserved genes, such as BarIR-A.6 and BarIR-D.1, across species. qPCR confirmed tissue-specific expression of IRs in multiple organs. Together, these results reveal the molecular features and evolutionary patterns of IRs in gastropods, highlighting their potential roles in olfaction and dietary adaptation. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

15 pages, 3121 KB  
Article
Genome-Wide Identification of the FKBP Gene Family in Rice and Its Potential Roles in Blast Resistance
by Jiazong Liu, Xin Wang, Wendi Li, Qiyue Xu, Xinhua Ding and Ziyi Yin
Agronomy 2026, 16(2), 149; https://doi.org/10.3390/agronomy16020149 - 7 Jan 2026
Viewed by 131
Abstract
Rice (Oryza sativa L.) is a major global staple crop, yet its productivity is severely constrained by rice blast disease caused by Magnaporthe oryzae. FK506-binding proteins (FKBPs) are peptidyl-prolyl cis-trans isomerases involved in protein folding, stress response, and signaling regulation, but [...] Read more.
Rice (Oryza sativa L.) is a major global staple crop, yet its productivity is severely constrained by rice blast disease caused by Magnaporthe oryzae. FK506-binding proteins (FKBPs) are peptidyl-prolyl cis-trans isomerases involved in protein folding, stress response, and signaling regulation, but their roles in rice blast resistance remain unclear. In this study, we performed a comprehensive identification and characterization of FKBP gene family members in two rice cultivars, Nipponbare (NIP) and Zhonghua 11 (ZH11), based on the latest T2T (telomere-to-telomere) genome assembly of ZH11 and the reference genome of NIP. A total of 24 and 29 FKBP genes were detected in NIP and ZH11, respectively, indicating a slight expansion in ZH11. Phylogenetic and collinearity analyses revealed strong conservation of FKBP family members between the two cultivars, while several ZH11-specific genes likely resulted from recent duplication events. Promoter analysis showed that FKBP genes are enriched in stress and hormone responsive cis-elements, particularly those related to ABA, MeJA, and SA signaling. Transcriptomic and RT-qPCR analyses demonstrated that multiple FKBP genes were significantly regulated during M. oryzae infection, suggesting their potential involvement in defense signaling pathways. This study provides a comprehensive overview of FKBP gene family evolution and expression in rice, identifies candidate genes potentially associated with blast resistance, and offers valuable insights for molecular breeding aimed at improving disease resistance in rice. Full article
Show Figures

Figure 1

15 pages, 716 KB  
Article
Comprehensive Genomic Characterization of 102 Cervical Adenocarcinoma Tumors
by Gejla Toromani, Grace S. Saglimbeni, Bhanu Surabi Upadhyayula, Eugene Manu, Tyson J. Morris, Beau Hsia and Abubakar Tauseef
Medicina 2026, 62(1), 123; https://doi.org/10.3390/medicina62010123 - 7 Jan 2026
Viewed by 71
Abstract
Background and Objectives: Cervical adenocarcinoma (CAC) is a histologically distinct subtype of cervical cancer with a rising incidence in many regions. While the roles of key driver mutations are known, a comprehensive understanding of its genomic landscape, particularly variations across different populations and [...] Read more.
Background and Objectives: Cervical adenocarcinoma (CAC) is a histologically distinct subtype of cervical cancer with a rising incidence in many regions. While the roles of key driver mutations are known, a comprehensive understanding of its genomic landscape, particularly variations across different populations and tumor stages, remains incomplete. This study aims to characterize the somatic genomic landscape of CAC by identifying recurrent mutations, copy number alterations (CNAs), and patterns of co-occurrence, with a focus on variations across racial groups and between primary and metastatic tumors. Materials and Methods: We conducted a comprehensive genomic analysis of 102 tumor samples from 99 patients diagnosed with cervical adenocarcinoma using data from the American Association for Cancer Research (AACR) Project Genomics Evidence Neoplasia Information Exchange (GENIE) database. Results: The most frequently mutated genes were PIK3CA (25.5%), TP53 (21.6%), ARID1A (20.6%), and KRAS (16.7%). Significant amplification of ERBB2 was also observed (n = 3; 4.83%). Our analysis revealed notable genomic disparities across racial groups, with TP53 mutations being significantly more frequent in White patients compared to Asian and Black patients (p = 0.0236). Furthermore, we identified significant co-occurrence between mutations in KRAS and MSH2 (p = 0.011) as well as ATM and STK11 (p = 0.037). In comparing tumor types, mutations in BCL6 were found to be significantly enriched in metastatic samples. Conclusions: This study validates the primary drivers of cervical adenocarcinoma and reveals novel findings, including notable racial disparities in TP53 mutation frequency and unique patterns of co-occurring mutations. These findings highlight the genomic heterogeneity of the disease and suggest that ancestry and tumor evolution may influence its molecular pathogenesis, offering potential avenues for the development of targeted therapies and personalized biomarkers. Full article
(This article belongs to the Special Issue Diagnosis and Treatment of Cervical Cancer: Second Edition)
Show Figures

Figure 1

13 pages, 3995 KB  
Article
Genomic Identification and Characterization of the Cotton YABBY Gene Family
by Guoqiang Zhang, Zhen Liu, Mingli Xia, Sainan Zhang, Zhixian Li and Quanwei Lu
Genes 2026, 17(1), 64; https://doi.org/10.3390/genes17010064 - 6 Jan 2026
Viewed by 107
Abstract
Background: YABBY transcription factors play important roles in plant growth and development. Although this gene family has been characterized in many plant species, a comprehensive analysis in cotton remains unavailable. Methods: In this study, we investigated the YABBY gene family in [...] Read more.
Background: YABBY transcription factors play important roles in plant growth and development. Although this gene family has been characterized in many plant species, a comprehensive analysis in cotton remains unavailable. Methods: In this study, we investigated the YABBY gene family in cotton by integrating multiple bioinformatics methods. Results: YABBY genes were identified in the genomes of four cotton species (Gossypium hirsutum, Gossypium barbadense, Gossypium arboretum and Gossypium raimondii) and these identified genes were further classified into six groups. Following this classification, the expansion of the cotton YABBY gene family was examined, and we found that the family exhibits diverse expansion patterns during evolution, with segmental duplication acting as the primary driving force. In contrast, the notably larger repertoire of YABBY genes in G. raimondii is likely attributable to transposon activity. Regarding their evolutionary trajectory, Ka/Ks analysis showed that the YABBY gene family has undergone purifying selection. Beyond evolution, expression and cis-element analyses further demonstrated that YABBY genes possess diverse functions. In addition, we identified YABBY genes involved in different developmental stages of cotton fibers. Conclusions: We clarify the function and evolution of the cotton YABBY gene family in this work, and these results will provide a critical resource for further research on YABBY genes. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

15 pages, 4868 KB  
Article
Phylostratigraphic Analysis Reveals the Evolutionary Origins and Potential Role of New Genes in the Adaptive Evolution of Spodoptera frugiperda
by Yi Yang, Bo Zhang, Yaobin Lu and Xinyang Zhang
Int. J. Mol. Sci. 2026, 27(1), 549; https://doi.org/10.3390/ijms27010549 - 5 Jan 2026
Viewed by 127
Abstract
The fall armyworm, Spodoptera frugiperda, has become one of the most damaging agricultural pests worldwide, yet the genetic basis of its extraordinary adaptability remains elusive. Recent studies have highlighted the pivotal role of newly evolved genes in adaptive evolution, and phylostratigraphy has [...] Read more.
The fall armyworm, Spodoptera frugiperda, has become one of the most damaging agricultural pests worldwide, yet the genetic basis of its extraordinary adaptability remains elusive. Recent studies have highlighted the pivotal role of newly evolved genes in adaptive evolution, and phylostratigraphy has emerged as a powerful conceptual framework to trace their origins. Here, we adopt this framework to investigate how new genes have contributed to the rapid adaptive evolution of S. frugiperda. Using high-quality genomic data, we inferred gene ages across evolutionary phylostrata and identified 277 newly evolved genes that originated after the divergence of Spodoptera. These new genes exhibit hallmark genomic signatures of recent origin, including shorter coding regions, simplified structures, and relaxed evolutionary constraints. Interestingly, transcriptomic analyses revealed strong tissue specificity, with pronounced enrichment in the antenna and brain, indicating possible involvement in chemosensory and neural functions essential for environmental and behavioral adaptation. Under diverse environmental challenges such as pesticide and parasitoid wasp exposure, and virus infection, we found many of the new genes acted as hubs in the regulatory networks associated with pesticide response. Together, our findings suggest that the emergence of new genes has played a critical role in shaping the rapid adaptive evolution of S. frugiperda and provide broader insights into how newly evolved genes contribute to species adaptation. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

11 pages, 1276 KB  
Article
Genetic Evolution of Melanoma: Comparative Analysis of Candidate Gene Mutations in Healthy Skin, Nevi, and Tumors from the Same Patients
by Marta Gil-Barrachina, Barbara Hernando, Gemma Perez-Pastor, Victor Alegre-de-Miquel, Cristian Valenzuela-Oñate, Sandra Minguez-Lujan, Pablo Monfort-Lanzas, Elena Tomas-Bort, Maria Angeles Marques-Torrejon and Conrado Martinez-Cadenas
Int. J. Mol. Sci. 2026, 27(1), 532; https://doi.org/10.3390/ijms27010532 - 5 Jan 2026
Viewed by 114
Abstract
Melanocytic tumorigenesis is thought to occur through stepwise genomic evolution from normal skin to nevi and, ultimately, melanoma. To investigate this progression, we performed targeted deep sequencing of a 46-gene panel in matched healthy skin, nevus, and melanoma samples from 15 patients, including [...] Read more.
Melanocytic tumorigenesis is thought to occur through stepwise genomic evolution from normal skin to nevi and, ultimately, melanoma. To investigate this progression, we performed targeted deep sequencing of a 46-gene panel in matched healthy skin, nevus, and melanoma samples from 15 patients, including 14 complete tissue trios. Mutation burden increased progressively across tissues, with median mutation counts rising from benign skin to nevi and showing the highest levels in melanoma, consistent with cumulative somatic alterations. Canonical MAPK pathway mutations were common: BRAF V600E and NRAS Q61 variants were detected in many nevi and melanomas and were shared between lesions in 8 of 15 patients, providing direct evidence of clonal continuity. Variant allele frequencies for driver and nonsynonymous mutations were higher than those of passenger and synonymous mutations, reflecting selective expansion of functionally relevant clones. UV-signature substitutions were abundant, particularly among synonymous variants, suggesting background mutagenesis without clonal advantage. Melanoma-private mutations in genes such as ARID1A, ARID2, PIK3CA, and CDKN2A indicated additional late events contributing to malignant progression. Overall, this study supports a model in which many melanomas evolve from pre-existing nevi through sequential acquisition and clonal amplification of somatic mutations, while also revealing heterogeneous evolutionary trajectories. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

34 pages, 2079 KB  
Review
Propagation of Emerging and Re-Emerging Infectious Disease Pathogens in Africa: The Role of Migratory Birds
by Babatunde Ibrahim Olowu, Maryam Ebunoluwa Zakariya, Abdulhakeem Opeyemi Azeez, Abdullah Adedeji Al-Awal, Kehinde Samuel Adebayo, Nahimah Opeyemi Idris, Halima Idris Muhammad, Blessing Chizaram Ukauwa and Al-Amin Adebare Olojede
Bacteria 2026, 5(1), 2; https://doi.org/10.3390/bacteria5010002 - 4 Jan 2026
Viewed by 174
Abstract
Migratory birds have been implicated in the spread of diverse emerging infectious pathogens, including West Nile virus, Usutu virus, Avian influenza viruses, Salmonella, Campylobacter, antimicrobial-resistant (AMR) bacteria, and antibiotic resistance genes (ARGs). Beyond their roles as vectors and reservoirs, migratory birds [...] Read more.
Migratory birds have been implicated in the spread of diverse emerging infectious pathogens, including West Nile virus, Usutu virus, Avian influenza viruses, Salmonella, Campylobacter, antimicrobial-resistant (AMR) bacteria, and antibiotic resistance genes (ARGs). Beyond their roles as vectors and reservoirs, migratory birds are also susceptible hosts whose own health may be compromised by these infections, reflecting their dual position in the ecology of pathogens. As facilitators of pathogen transmission during their long-distance migrations, often spanning thousands of kilometres and connecting ecosystems across continents, these birds can easily cross-national borders and circumvent traditional biosecurity measures, thereby acting as primary or secondary vectors in the transmission of cross-species diseases among wildlife, livestock, and humans. Africa occupies a pivotal position in global migratory bird networks, yet comprehensive data on pathogen carriage remain limited. Gaps in knowledge of pathogen diversity constrain current surveillance systems, resulting in insufficient genomic monitoring of pathogen evolution and a weak integration of avian ecology with veterinary and human health. These limitations hinder early detection of novel pathogens and reduce the continent’s preparedness to manage outbreaks. Therefore, this review provides a holistic assessment of these challenges by consolidating existing knowledge concerning the pathogens transmitted by migratory birds in Africa, while recognizing the adverse effect of pathogens, which potentiates population decline, extinction, and ecological imbalance. It further advocates for the adoption of a comprehensive One Health-omics approach that not only strengthens surveillance and technological capacity but also prioritizes the protection of avian health as an integral component of ecosystem and public health. Full article
Show Figures

Graphical abstract

20 pages, 4538 KB  
Article
Telomere-to-Telomere Genome Assembly of Two Hemiculter Species Provide Insights into the Genomic and Morphometric Bases of Adaptation to Flow Velocity
by Jie Liu, Denghua Yin, Fengjiao Ma, Min Jiang, Xinyue Wang, Pan Wang and Kai Liu
Biomolecules 2026, 16(1), 83; https://doi.org/10.3390/biom16010083 - 4 Jan 2026
Viewed by 266
Abstract
Flow velocity is a key environmental factor that exerts multifaceted effects on fish growth and adaptation. Through long-term natural selection, fish have evolved adaptability to specific flow conditions, which not only relate to oxygen supply and food acquisition but also play a decisive [...] Read more.
Flow velocity is a key environmental factor that exerts multifaceted effects on fish growth and adaptation. Through long-term natural selection, fish have evolved adaptability to specific flow conditions, which not only relate to oxygen supply and food acquisition but also play a decisive role in reproduction, development, and population maintenance. To investigate the genomic mechanisms through which hydrodynamic environments drive divergence in closely related species, we focused on two sister species, Hemiculter bleekeri and Hemiculter leucisculus, which are adapted to contrasting flow regimes. We generated high-quality, chromosome level telomere-to-telomere (T2T) genomes and integrated comparative genomic analyses, we investigated the genetic basis underlying body shape regulation and reproductive strategies, aiming to decipher the adaptive evolutionary patterns of these species in response to differing hydrodynamic conditions from an integrated genotype phenotype perspective. We integrated PacBio HiFi, Hi-C, and Oxford Nanopore Technologies (ONT) ultra-long read sequencing data to construct high-quality T2T reference genomes for both species. The final genome assemblies are 0.998 Gb for H. bleekeri and 1.05 Gb for H. leucisculus, with each species possessing 24 chromosomes and all chromosomal sequences assembled into single contigs. Contig N50 values reached 40.45 Mb and 40.66 Mb, respectively, and both assemblies are gap-free. BUSCO assessments yielded completeness scores of 99.34% for both genomes, confirming their high continuity and accuracy. Integrated morphometric and genomic analyses revealed distinct adaptive strategies in two Hemiculter Species. H. bleekeri has evolved a streamlined body, underpinned by expansions in body shape related genes, and a pelagic egg strategy. In contrast, the adhesive egg strategy of H. leucisculus is supported by expansions in adhesion-related gene families. This divergence reflects adaptation to distinct flow velocity. By combining high-quality chromosome-level T2T genomes with morphometric and comparative genomic approaches, this study establishes a comprehensive framework for understanding the molecular mechanisms underlying adaptive evolution in freshwater fishes inhabiting contrasting flow velocity. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

20 pages, 823 KB  
Review
The Role of Genomics in Advancing and Standardising Bacteriophage Therapy
by Narina Abdraimova, Egor Shitikov and Maria Kornienko
Antibiotics 2026, 15(1), 55; https://doi.org/10.3390/antibiotics15010055 - 4 Jan 2026
Viewed by 221
Abstract
Bacteriophage therapy, which employs bacterial viruses to selectively eliminate pathogenic bacteria, has re-emerged as a promising strategy in the face of increasing antimicrobial resistance. However, its widespread clinical implementation is constrained by concerns regarding safety, standardisation, and predictable efficacy. In this review, we [...] Read more.
Bacteriophage therapy, which employs bacterial viruses to selectively eliminate pathogenic bacteria, has re-emerged as a promising strategy in the face of increasing antimicrobial resistance. However, its widespread clinical implementation is constrained by concerns regarding safety, standardisation, and predictable efficacy. In this review, we examine the key role of genomics in transforming phage therapy from an empirical practice into a standardised and personalised modality of contemporary medicine. We describe how whole-genome sequencing (WGS) provides a basis for safety assessment by enabling systematic screening to exclude virulence factors, antibiotic resistance genes, and markers of lysogeny. WGS also facilitates the prediction of therapeutic efficacy and supports more rational phage selection by identifying receptor-binding proteins and characterising bacterial defence systems. In clinical settings, WGS data are increasingly used to monitor the evolution of bacterial populations and to adapt phage cocktails during treatment, thereby supporting personalised, adaptive phage therapy. Looking ahead, further progress is likely to come from integrating synthetic biology and artificial intelligence to engineer phage-based therapeutics with programmable specificity and predictable properties. Together, these developments are shaping a new paradigm of phage therapy as a scientifically grounded, standardised and controlled strategy to treat infections caused by antibiotic-resistant bacteria. Full article
(This article belongs to the Special Issue Phage Therapy and Antimicrobial Innovation)
Show Figures

Figure 1

21 pages, 1190 KB  
Review
AI-Driven Advances in Precision Oncology: Toward Optimizing Cancer Diagnostics and Personalized Treatment
by Luka Bulić, Petar Brlek, Nenad Hrvatin, Eva Brenner, Vedrana Škaro, Petar Projić, Sunčica Andreja Rogan, Marko Bebek, Parth Shah and Dragan Primorac
AI 2026, 7(1), 11; https://doi.org/10.3390/ai7010011 - 4 Jan 2026
Viewed by 297
Abstract
Cancer remains one of the main global public health challenges, with rising incidence and mortality rates demanding more effective diagnostic and therapeutic approaches. Recent advances in artificial intelligence (AI) have positioned it as a transformative force in oncology, offering the ability to process [...] Read more.
Cancer remains one of the main global public health challenges, with rising incidence and mortality rates demanding more effective diagnostic and therapeutic approaches. Recent advances in artificial intelligence (AI) have positioned it as a transformative force in oncology, offering the ability to process vast and complex datasets that extend beyond human analytic capabilities. By integrating radiological, histopathological, genomic, and clinical data, AI enables more precise tumor characterization, including refined molecular classification, thereby improving risk stratification and facilitating individualized therapeutic decisions. In diagnostics, AI-driven image analysis platforms have demonstrated excellent performance, particularly in radiology and pathology. Prognostic algorithms are increasingly applied to predict survival, recurrence, and treatment response, while reinforcement learning models are being explored for dynamic radiotherapy and optimization of complex treatment regimens. Beyond direct patient care, AI is accelerating drug discovery and clinical trial design, reducing costs and timelines associated with translating novel therapies into clinical practice. Clinical decision support systems are gradually being integrated into practice, assisting physicians in managing the growing complexity of cancer care. Despite this progress, challenges such as data quality, interoperability, algorithmic bias, and the opacity of complex models limit widespread integration. Additionally, ethical and regulatory hurdles must be addressed to ensure that AI applications are safe, equitable, and clinically effective. Nevertheless, the trajectory of current research suggests that AI will play an increasingly important role in the evolution of precision oncology, complementing human expertise and improving patient outcomes. Full article
Show Figures

Figure 1

19 pages, 10603 KB  
Article
Genome-Wide Identification and Systematic Analysis of the HSF Gene Family in Capparis spinosa and Its Expression Under High Temperature
by Li Li, Ruiqi Zhang, Aybulan Tuohtarbek and Cong Cheng
Int. J. Mol. Sci. 2026, 27(1), 497; https://doi.org/10.3390/ijms27010497 - 3 Jan 2026
Viewed by 218
Abstract
The heat shock transcription factor is a critical transcription factor gene family in plant response to biotic and abiotic stress, especially in regulating high-temperature stress. While this gene family has been extensively characterized and investigated across a broad range of plant species, research [...] Read more.
The heat shock transcription factor is a critical transcription factor gene family in plant response to biotic and abiotic stress, especially in regulating high-temperature stress. While this gene family has been extensively characterized and investigated across a broad range of plant species, research focusing on desert plants with extreme stress tolerance remains relatively scarce. Therefore, this study aimed at the desert plant Capparis spinosa, conducted the whole genome identification of its HSF gene family, and performed a comprehensive systematic analysis including gene structure, chromosome localization, systematic evolution, gene collinearity, and other characteristics. The results showed that the CsHSF family contains 24 genes that are distributed on 14 chromosomes. It has three types, as usual, and different types of genes contain specific conserved motifs. The CsHSF genes exhibit concentrated collinearity with Arabidopsis thaliana, and upstream of the genes, there are 605 cis-elements in response to growth and development, stress, and hormones. On this basis, heatmaps and co-expression networks were drawn based on the reported gene expression in different growth regions of the Capparis spinosa genome. The results demonstrated that certain genes exhibit distinct expression patterns across different growth regions and have close interrelationships with each other. Further transcriptome sequencing and analysis were performed on the leaves of wild Capparis spinosa exposed to high-temperature stress, and the exploration of differential expression of the CsHSF genes revealed that 8 genes play significant regulatory roles in response to heat stress. The results of this research can provide valuable insights into the function and mechanism of the HSF gene family in desert plants, as well as a reference for the analysis of stress resistance mechanisms in desert plants. The obtained genes can supply candidate genes for subsequent functional verification and mechanism analysis. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

Back to TopTop