AI-Driven Advances in Precision Oncology: Toward Optimizing Cancer Diagnostics and Personalized Treatment
Abstract
1. Introduction
2. Foundations of AI in Oncology
2.1. Core Concepts in Machine Learning
2.2. Multimodal Data in Clinical Oncology
3. AI in Cancer Diagnostics, Prognostics and Risk Stratification
3.1. Radiology and Image-Based Diagnostics
3.2. Digital Pathology and Histopathology-Based Diagnostics
3.3. Molecular and Genomics-Based Diagnostics
3.4. Risk Assessment and AI-Guided Prevention
4. AI in Cancer Treatment Planning and Clinical Decision Making
4.1. Clinical Decision-Support Systems and EBRT Planning
4.2. Balancing Automation and Clinical Oversight in AI Systems
5. AI in Cancer Drug Discovery and Development
5.1. Molecular Design, Target Identification and Tumor Vaccines
5.2. AI in Trial Design and Patient Stratification
6. Ethical Concerns and Translational Challenges
6.1. Algorithmic Bias and Data Underrepresentation
6.2. Lack of Model Interpretability and Explainability
6.3. Data Security and Integrity
6.4. Regulatory Implementation Barriers
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Global Cancer Burden Growing, Amidst Mounting Need for Services. 2024. Available online: https://www.who.int/news/item/01-02-2024-global-cancer-burden-growing--amidst-mounting-need-for-services (accessed on 15 October 2025).
- Horgan, D.; Tanner, M.; Aggarwal, C.; Thomas, D.; Grover, S.; Basel-Salmon, L.; Dienstmann, R.; Jing Ying Tan, T.; Park, W.Y.; Mohmad Abu Rasheed, H.; et al. Precision Oncology: A Global Perspective on Implementation and Policy Development. JCO Glob. Oncol. 2025, 11, e2400416. [Google Scholar] [CrossRef]
- Nakagawa, H.; Fujita, M. Whole genome sequencing analysis for cancer genomics and precision medicine. Cancer Sci. 2018, 109, 513–522. [Google Scholar] [CrossRef]
- Barker, A.D.; Lee, J.S.H. Translating “Big Data” in Oncology for Clinical Benefit: Progress or Paralysis. Cancer Res. 2022, 82, 2072–2075. [Google Scholar] [CrossRef]
- Rahmani, A.M.; Yousefpoor, E.; Yousefpoor, M.S.; Mehmood, Z.; Haider, A.; Hosseinzadeh, M.; Ali Naqvi, R. Machine Learning (ML) in Medicine: Review, Applications, and Challenges. Mathematics 2021, 9, 2970. [Google Scholar] [CrossRef]
- Huhulea, E.N.; Huang, L.; Eng, S.; Sumawi, B.; Huang, A.; Aifuwa, E.; Hirani, R.; Tiwari, R.K.; Etienne, M. Artificial Intelligence Advancements in Oncology: A Review of Current Trends and Future Directions. Biomedicines 2025, 13, 951. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.; Wu, Q.; Wu, Y.; Zheng, B.; Wang, B.; Chen, Y.; Du, L.; Zhou, J.; Fu, F.; Guo, H.; et al. Mammography-based artificial intelligence for breast cancer detection, diagnosis, and BI-RADS categorization using multi-view and multi-level convolutional neural networks. Insights Imaging 2025, 16, 109. [Google Scholar] [CrossRef]
- Ono, S.; Goto, T. Introduction to supervised machine learning in clinical epidemiology. Ann. Clin. Epidemiol. 2022, 4, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Gradus, J.L.; Rosellini, A.J. Supervised Machine Learning: A Brief Primer. Behav. Ther. 2020, 51, 675–687. [Google Scholar] [CrossRef]
- Brenner, E.; Bulić, L.; Milković-Periša, M. Breast cancer neoadjuvant therapy outcome prediction based on clinical patient and tumor features: A cross-sectional study. Curr. Probl. Cancer 2025, 57, 101220. [Google Scholar] [CrossRef]
- Bera, K.; Braman, N.; Gupta, A.; Velcheti, V.; Madabhushi, A. Predicting cancer outcomes with radiomics and artificial intelligence in radiology. Nat. Rev. Clin. Oncol. 2022, 19, 132–146. [Google Scholar] [CrossRef]
- Brlek, P.; Bulić, L.; Mršić, L.; Sokač, M.; Brenner, E.; Matišić, V.; Skelin, A.; Bach-Rojecky, L.; Primorac, D. Exploring the Pharmacogenomic Map of Croatia: PGx Clustering of 522-Patient Cohort Based on UMAP + HDBSCAN Algorithm. Int. J. Mol. Sci. 2025, 26, 589. [Google Scholar] [CrossRef]
- Xu, H.; Mohamed, M.; Flannery, M.; Peppone, L.; Ramsdale, E.; Poh Loh, K.; Wells, M.; Jamieson, L.; Vogel, V.G.; Hall, B.A.; et al. An Unsupervised Machine Learning Approach to Evaluating the Association of Symptom Clusters with Adverse Outcomes Among Older Adults with Advanced Cancer: A Secondary Analysis of a Randomized Clinical Trial. JAMA Netw. Open 2023, 6, e234198. [Google Scholar] [CrossRef]
- Al Mahamid, F.; Grolinger, K. Reinforcement Learning Algorithms: An Overview and Classification. In Proceedings of the 2021 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), Ontario, ON, Canada, 12–17 September 2021; IEEE: New York, NY, USA, 2021; pp. 1–7. [Google Scholar]
- Lopez, R.G. Reinforcement Learning in Oncology: A Comprehensive Review. Utrecht University. 2024. Available online: https://studenttheses.uu.nl/handle/20.500.12932/47144 (accessed on 15 October 2025).
- Tran, K.A.; Kondrashova, O.; Bradley, A.; Williams, E.D.; Pearson, J.V.; Waddell, N. Deep learning in cancer diagnosis, prognosis and treatment selection. Genome Med. 2021, 13, 152. [Google Scholar] [CrossRef] [PubMed]
- Ganesh, S.; Gomathi, R.; Kannadhasan, S. Brain tumor segmentation and detection in MRI using convolutional neural networks and VGG16. Cancer Biomark. 2025, 42, 18758592241311184. [Google Scholar] [CrossRef] [PubMed]
- Mayerhoefer, M.E.; Materka, A.; Langs, G.; Häggström, I.; Szczypiński, P.; Gibbs, P.; Cook, G. Introduction to Radiomics. J. Nucl. Med. 2020, 61, 488–495. [Google Scholar] [CrossRef] [PubMed]
- Sadaghiani, M.S.; Rowe, S.P.; Sheikhbahaei, S. Applications of artificial intelligence in oncologic 18F-FDG PET/CT imaging: A systematic review. Ann. Transl. Med. 2021, 9, 823. [Google Scholar] [CrossRef]
- Greeley, C.; Holder, L.; Nilsson, E.E.; Skinner, M.K. Scalable deep learning artificial intelligence histopathology slide analysis and validation. Sci. Rep. 2024, 14, 26748. [Google Scholar] [CrossRef]
- Brattoli, B.; Mostafavi, M.; Lee, T.; Jung, W.; Ryu, J.; Park, S.; Park, J.; Pereira, S.; Shin, S.; Choi, S.; et al. A universal immunohistochemistry analyzer for generalizing AI-driven assessment of immunohistochemistry across immunostains and cancer types. npj Precis. Onc. 2024, 8, 277. [Google Scholar] [CrossRef]
- Lianas, L.; Del Rio, M.; Pireddu, L.; Aspegren, O.; Giunchi, F.; Fiorentino, M.; Leo, S.; Zelic, R.; Vincent, P.H.; Destefanis, N.; et al. An open-source platform for structured annotation and computational workflows in digital pathology research. Sci. Rep. 2025, 15, 28910. [Google Scholar] [CrossRef]
- Brlek, P.; Bulić, L.; Bračić, M.; Projić, P.; Škaro, V.; Shah, N.; Shah, P.; Primorac, D. Implementing Whole Genome Sequencing (WGS) in Clinical Practice: Advantages, Challenges, and Future Perspectives. Cells 2024, 13, 504. [Google Scholar] [CrossRef]
- Brlek, P.; Bulić, L.; Shah, N.; Shah, P.; Primorac, D. In Silico Validation of OncoOrigin: An Integrative AI Tool for Primary Cancer Site Prediction with Graphical User Interface to Facilitate Clinical Application. Int. J. Mol. Sci. 2025, 26, 2568. [Google Scholar] [CrossRef]
- Bulić, L. Leukemia and Brain Tumor Classification Using Gene Expression Profiles. Bachelor’s Thesis, University of Zagreb, Faculty of Electrical Engineering and Computing, Zagreb, Croatia, 2025. Available online: https://urn.nsk.hr/urn:nbn:hr:168:256064 (accessed on 10 October 2025).
- Guo, Y.; Jia, W.; Yang, J.; Zhan, X. Cancer glycomics offers potential biomarkers and therapeutic targets in the framework of 3P medicine. Front. Endocrinol. 2022, 13, 970489. [Google Scholar] [CrossRef] [PubMed]
- Birla, M.; Rajan Roy, P.G.; Gupta, I.; Malik, P.S. Integrating Artificial Intelligence-Driven Wearable Technology in Oncology Decision-Making: A Narrative Review. Oncology 2025, 103, 69–82. [Google Scholar] [CrossRef] [PubMed]
- Khoury, M.J.; Iademarco, M.F.; Riley, W.T. Precision Public Health for the Era of Precision Medicine. Am. J. Prev. Med. 2016, 50, 398–401. [Google Scholar] [CrossRef]
- Puco, K.; Fagereng, G.L.; Brabrand, S.; Niehusmann, P.; Støre Blix, E.; Samdal Steinskog, E.S.; Haug, Å.; Fredvik Torkildsen, C.; Oppedal, I.A.; Meltzer, S.; et al. IMPRESS-Norway: Improving public cancer care by implementing precision medicine in Norway; inclusion rates and preliminary results. Acta Oncol. 2024, 63, 379–384. [Google Scholar] [CrossRef]
- Khosravi, P.; Fuchs, T.J.; Ho, D.J. Artificial Intelligence-Driven Cancer Diagnostics: Enhancing Radiology and Pathology through Reproducibility, Explainability, and Multimodality. Cancer Res. 2025, 85, 2356–2367. [Google Scholar] [CrossRef]
- Salim, M.; Liu, Y.; Sorkhei, M.; Ntoula, D.; Foukakis, T.; Fredriksson, I.; Wang, Y.; Eklund, M.; Azizpour, H.; Smith, K.; et al. AI-based selection of individuals for supplemental MRI in population-based breast cancer screening: The randomized ScreenTrustMRI trial. Nat. Med. 2024, 30, 2623–2630. [Google Scholar] [CrossRef]
- Oviedo, F.; Kazerouni, A.S.; Liznerski, P.; Xu, Y.; Hirano, M.; Vandermeulen, R.A.; Kloft, M.; Blum, E.; Alessio, A.M.; Li, C.I.; et al. Cancer Detection in Breast MRI Screening via Explainable AI Anomaly Detection. Radiology 2025, 316, e241629. [Google Scholar] [CrossRef] [PubMed]
- Quanyang, W.; Yao, H.; Sicong, W.; Linlin, Q.; Zewei, Z.; Donghui, H.; Hongjia, L.; Shijun, Z. Artificial intelligence in lung cancer screening: Detection, classification, prediction, and prognosis. Cancer Med. 2024, 13, e7140. [Google Scholar] [CrossRef]
- Jiang, B.; Li, N.; Shi, X.; Zhang, S.; Li, J.; de Bock, G.H.; Vliegenthart, R.; Xie, X. Deep Learning Reconstruction Shows Better Lung Nodule Detection for Ultra-Low-Dose Chest CT. Radiology 2022, 303, 202–212. [Google Scholar] [CrossRef]
- Shah, A.A.; Malik, H.A.M.; Muhammad, A.; Alourani, A.; Butt, Z.A. Deep learning ensemble 2D CNN approach towards the detection of lung cancer. Sci. Rep. 2023, 13, 2987. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Young, G.S.; Chen, H.; Li, J.; Qin, L.; McFaline-Figueroa, J.R.; Reardon, D.A.; Cao, X.; Wu, X.; Xu, X. Deep-Learning Detection of Cancer Metastases to the Brain on MRI. J. Magn. Reson. Imaging 2020, 52, 1227–1236. [Google Scholar] [CrossRef]
- Huang, Y.; Bert, C.; Sommer, P.; Frey, B.; Gaipl, U.; Distel, L.V.; Weissmann, T.; Uder, M.; Schmidt, M.A.; Dörfler, A.; et al. Deep learning for brain metastasis detection and segmentation in longitudinal MRI data. Med Phys. 2022, 49, 5773–5786. [Google Scholar] [CrossRef]
- Wang, T.W.; Hsu, M.S.; Lee, W.K.; Pan, H.C.; Yang, H.C.; Lee, C.C.; Wu, Y.T. Brain metastasis tumor segmentation and detection using deep learning algorithms: A systematic review and meta-analysis. Radiother. Oncol. 2024, 190, 110007. [Google Scholar] [CrossRef]
- Turkbey, B.; Huisman, H.; Fedorov, A.; Macura, K.J.; Margolis, D.J.; Panebianco, V.; Oto, A.; Schoots, I.G.; Siddiqui, M.M.; Moore, C.M.; et al. Requirements for AI Development and Reporting for MRI Prostate Cancer Detection in Biopsy-Naive Men: PI-RADS Steering Committee, Version 1.0. Radiology 2025, 315, e240140. [Google Scholar] [CrossRef] [PubMed]
- Rompianesi, G.; Pegoraro, F.; Ceresa, C.D.; Montalti, R.; Troisi, R.I. Artificial intelligence in the diagnosis and management of colorectal cancer liver metastases. World J. Gastroenterol. 2022, 28, 108–122. [Google Scholar] [CrossRef] [PubMed]
- Rao, B.D.; Madhavi, K. Enhancing bone cancer detection through optimized pre trained deep learning models and explainable AI using the osteosarcoma tumor assessment dataset. Sci. Rep. 2025, 15, 39104. [Google Scholar] [CrossRef] [PubMed]
- Feretzakis, G.; Juliebø-Jones, P.; Tsaturyan, A.; Sener, T.E.; Verykios, V.S.; Karapiperis, D.; Bellos, T.; Katsimperis, S.; Angelopoulos, P.; Varkarakis, I.; et al. Emerging Trends in AI and Radiomics for Bladder, Kidney, and Prostate Cancer: A Critical Review. Cancers 2024, 16, 810. [Google Scholar] [CrossRef]
- Tarai, S.; Lundström, E.; Sjöholm, T.; Jönsson, H.; Korenyushkin, A.; Ahmad, N.; Pedersen, M.A.; Molin, D.; Enblad, G.; Strand, R.; et al. Improved automated tumor segmentation in whole-body 3D scans using multi-directional 2D projection-based priors. Heliyon 2024, 10, e26414. [Google Scholar] [CrossRef]
- Jafari, E.; Zarei, A.; Dadgar, H.; Keshavarz, A.; Manafi-Farid, R.; Rostami, H.; Assadi, M. A convolutional neural network–based system for fully automatic segmentation of whole-body [68Ga]Ga-PSMA PET images in prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 2024, 51, 1476–1487. [Google Scholar] [CrossRef]
- Girum, K.B.; Rebaud, L.; Cottereau, A.S.; Meignan, M.; Clerc, J.; Vercellino, L.; Casasnovas, O.; Morschhauser, F.; Thieblemont, C.; Buvat, I. 18F-FDG PET maximum-intensity projections and artificial intelligence: A win-win combination to easily measure prognostic biomarkers in DLBCL patients. J. Nucl. Med. 2022, 63, 1925–1932. [Google Scholar] [CrossRef]
- Cottereau, A.S.; Nioche, C.; Dirand, A.S.; Clerc, J.; Morschhauser, F.; Casasnovas, O.; Meignan, M.; Buvat, I. 18F-FDG PET dissemination features in diffuse large B-cell lymphoma are predictive of outcome. J. Nucl. Med. 2020, 61, 40–45. [Google Scholar] [CrossRef]
- Constantino, C.D.; Oliveira, F.P.M.; Machado, M.; Vinga, S.; Costa, D.C. The Use of Maximum-Intensity Projections and Deep Learning Adds Value to the Fully Automatic Segmentation of Lesions Avid for [18F]FDG and [68Ga]Ga-PSMA in PET/CT. J. Nucl. Med. 2025, 66, 795–801. [Google Scholar] [CrossRef] [PubMed]
- Xiong, D.D.; He, R.Q.; Huang, Z.G.; Wu, K.J.; Mo, Y.Y.; Liang, Y.; Yang, D.P.; Wu, Y.H.; Tang, Z.Q.; Liao, Z.T.; et al. Global bibliometric mapping of the research trends in artificial intelligence-based digital pathology for lung cancer over the past two decades. Digit. Health 2024, 10, 20552076241277735. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Xiong, S.; Ren, Q.; Wang, J.; Li, M.; Yang, L.; Wu, D.; Tang, K.; Pan, X.; Chen, F.; et al. Deep learning using histological images for gene mutation prediction in lung cancer: A multicentre retrospective study. Lancet Oncol. 2025, 26, 136–146. [Google Scholar] [CrossRef]
- Brlek, P.; Škaro, V.; Hrvatin, N.; Bulić, L.; Petrović, A.; Projić, P.; Smolić, M.; Shah, P.; Primorac, D. Advances in Precision Oncology: From Molecular Profiling to Regulatory-Approved Targeted Therapies. Cancers 2025, 17, 3500. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, E.; Fayzullin, A.; Grinin, V.; Ermilov, D.; Arutyunyan, A.; Timashev, P.; Shekhter, A. Empowering Renal Cancer Management with AI and Digital Pathology: Pathology, Diagnostics and Prognosis. Biomedicines 2023, 11, 2875. [Google Scholar] [CrossRef]
- Soliman, A.; Li, Z.; Parwani, A.V. Artificial intelligence’s impact on breast cancer pathology: A literature review. Diagn. Pathol. 2024, 19, 38. [Google Scholar] [CrossRef]
- Bilal, M.; Nimir, M.; Snead, D.; Taylor, G.S.; Rajpoot, N. Role of AI and digital pathology for colorectal immuno-oncology. Br. J. Cancer 2023, 128, 3–11. [Google Scholar] [CrossRef]
- Lu, M.Y.; Chen, T.Y.; Williamson, D.F.K.; Zhao, M.; Shady, M.; Lipkova, J.; Mahmood, F. AI-based pathology predicts origins for cancers of unknown primary. Nature 2021, 594, 106–110. [Google Scholar] [CrossRef]
- Tian, F.; Liu, D.; Wei, N.; Fu, Q.; Sun, L.; Liu, W.; Sui, X.; Tian, K.; Nemeth, G.; Feng, J.; et al. Prediction of tumor origin in cancers of unknown primary origin with cytology-based deep learning. Nat. Med. 2024, 30, 1309–1319. [Google Scholar] [CrossRef]
- Wang, J.M.; Hong, R.; Demicco, E.G.; Tan, J.; Lazcano, R.; Moreira, A.L.; Li, Y.; Calinawan, A.; Razavian, N.; Schraink, T.; et al. Deep learning integrates histopathology and proteogenomics at a pan-cancer level. Cell Rep. Med. 2023, 4, 101173. [Google Scholar] [CrossRef] [PubMed]
- Darmofal, M.; Suman, S.; Atwal, G.; Toomey, M.; Chen, J.F.; Chang, J.C.; Vakiani, E.; Varghese, A.M.; Balakrishnan Rema, A.; Syed, A.; et al. Deep-Learning Model for Tumor-Type Prediction Using Targeted Clinical Genomic Sequencing Data. Cancer Discov. 2024, 14, 1064–1081. [Google Scholar] [CrossRef]
- Zhao, Y.; Pan, Z.; Namburi, S.; Pattison, A.; Posner, A.; Balachander, S.; Paisie, C.A.; Reddi, H.V.; Rueter, J.; Gill, A.J.; et al. CUP-AI-Dx: A tool for inferring cancer tissue of origin and molecular subtype using RNA gene-expression data and artificial intelligence. EBioMedicine 2020, 61, 103030. [Google Scholar] [CrossRef]
- Moon, I.; LoPiccolo, J.; Baca, S.C.; Sholl, L.M.; Kehl, K.L.; Hassett, M.J.; Liu, D.; Schrag, D.; Gusev, A. Machine learning for genetics-based classification and treatment response prediction in cancer of unknown primary. Nat. Med. 2023, 29, 2057–2067. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, C.; Zhou, S. Artificial intelligence-based risk stratification, accurate diagnosis and treatment prediction in gynecologic oncology. Semin. Cancer Biol. 2023, 96, 82–99. [Google Scholar] [CrossRef]
- Mishra, A.K.; Chong, B.; Arunachalam, S.P.; Oberg, A.L.; Majumder, S. Machine Learning Models for Pancreatic Cancer Risk Prediction Using Electronic Health Record Data-A Systematic Review and Assessment. Am. J. Gastroenterol. 2024, 119, 1466–1482. [Google Scholar] [CrossRef] [PubMed]
- Ingman, W.V.; Britt, K.L.; Stone, J.; Nguyen, T.L.; Hopper, J.L.; Thompson, E.W. Artificial intelligence improves mammography-based breast cancer risk prediction. Trends Cancer 2025, 11, 188–191. [Google Scholar] [CrossRef]
- Nfor, O.N.; Huang, P.M.; Wu, M.F.; Chen, K.C.; Chou, Y.H.; Lin, M.W.; Zhong, J.H.; Kuo, S.W.; Lee, Y.K.; Hsu, C.H.; et al. Personalized prediction of esophageal cancer risk based on virtually generated alcohol data. J. Transl. Med. 2025, 23, 379. [Google Scholar] [CrossRef] [PubMed]
- Novielli, P.; Baldi, S.; Romano, D.; Magarelli, M.; Diacono, D.; Di Bitonto, P.; Nannini, G.; Di Gloria, L.; Bellotti, R.; Amedei, A.; et al. Personalized colorectal cancer risk assessment through explainable AI and Gut microbiome profiling. Gut Microbes 2025, 17, 2543124. [Google Scholar] [CrossRef]
- Lee, J.H.; Chae, K.J.; Lu, M.T.; Chang, Y.C.; Lee, S.; Goo, J.M.; Choi, S.H.; Kim, H. External Testing of a Deep Learning Model for Lung Cancer Risk from Low-Dose Chest CT. Radiology 2025, 316, e243393. [Google Scholar] [CrossRef] [PubMed]
- Eckardt, J.N.; Wendt, K.; Bornhäuser, M.; Middeke, J.M. Reinforcement Learning for Precision Oncology. Cancers 2021, 13, 4624. [Google Scholar] [CrossRef]
- Bongurala, A.R.; Save, D.; Virmani, A. Progressive role of artificial intelligence in treatment decision-making in the field of medical oncology. Front. Med. 2025, 12, 1533910. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, Q.; Lam, S.; Cai, J.; Yang, R. A Review on Application of Deep Learning Algorithms in External Beam Radiotherapy Automated Treatment Planning. Front. Oncol. 2020, 10, 580919. [Google Scholar] [CrossRef]
- Valdes, G.; Simone, C.B., II; Chen, J.; Lin, A.; Yom, S.S.; Pattison, A.J.; Carpenter, C.M.; Solberg, T.D. Clinical decision support of radiotherapy treatment planning: A data-driven machine learning strategy for patient-specific dosimetric decision making. Radiother. Oncol. 2017, 125, 392–397. [Google Scholar] [CrossRef]
- Tsang, D.S.; Tsui, G.; Santiago, A.T.; Keller, H.; Purdie, T.; Mcintosh, C.; Bauman, G.; La Macchia, N.; Parent, A.; Dama, H.; et al. A Prospective Study of Machine Learning-Assisted Radiation Therapy Planning for Patients Receiving 54 Gy to the Brain. Int. J. Radiat. Oncol. Biol. Phys. 2024, 119, 1429–1436. [Google Scholar] [CrossRef]
- Conroy, L.; Winter, J.; Kalifa, A.; Tsui, G.; Berlin, A.; Purdie, T.G. Artificial Intelligence for Radiation Treatment Planning: Bridging Gaps From Retrospective Promise to Clinical Reality. Clin. Oncol. 2025, 37, 103630. [Google Scholar] [CrossRef] [PubMed]
- Ferber, D.; El Nahhas, O.S.M.; Wölflein, G.; Wiest, I.C.; Clusmann, J.; Leßmann, M.E.; Foersch, S.; Lammert, J.; Tschochohei, M.; Jäger, D.; et al. Development and validation of an autonomous artificial intelligence agent for clinical decision-making in oncology. Nat. Cancer 2025, 6, 1337–1349. [Google Scholar] [CrossRef]
- Zhu, H.; Chua, M.L.K.; Chitapanarux, I.; Kaidar-Person, O.; Mwaba, C.; Alghamdi, M.; Rodríguez Mignola, A.; Amrogowicz, N.; Yazici, G.; Bourhaleb, Z.; et al. Global Radiotherapy Demands and Corresponding Radiotherapy-Professional Workforce Requirements in 2022 and predicted to 2050: A Population-Based Study. Lancet Glob. Health 2024, 12, e1945–e1953. [Google Scholar] [CrossRef]
- van de Sande, D.; Sharabiani, M.; Bluemink, H.; Kneepkens, E.; Bakx, N.; Hagelaar, E.; van der Sangen, M.; Theuws, J.; Hurkmans, C. Artificial intelligence based treatment planning of radiotherapy for locally advanced breast cancer. Phys. Imaging Radiat. Oncol. 2021, 20, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, Y.; Xie, H.; Luo, L.; Tang, Q. Evaluation of auto-segmentation for EBRT planning structures using deep learning-based workflow on cervical cancer. Sci. Rep. 2022, 12, 13650. [Google Scholar] [CrossRef]
- Majumder, S.; Katz, S.; Kontos, D.; Roshkovan, L. State of the art: Radiomics and Radiomics-Related Artificial Intelligence on the Road to Clinical Translation. BJR Open 2024, 6, tzad004. [Google Scholar] [CrossRef]
- Brouwer, C.L.; Dinkla, A.M.; Vandewinckele, L.; Crijns, W.; Claessens, M.; Verellen, D.; van Elmpt, W. Machine learning applications in radiation oncology: Current use and needs to support clinical implementation. Phys. Imaging Radiat. Oncol. 2020, 16, 144–148. [Google Scholar] [CrossRef] [PubMed]
- Bignami, E.G.; Russo, M.; Semeraro, F.; Bellini, V. Balancing Innovation and Control: The European Union Act in an Era of Global Uncertainty. JMIR AI 2025, 4, e75527. [Google Scholar] [CrossRef]
- Callens, D.; Malone, C.; Carver, A.; Fiandra, C.; Gooding, M.J.; Korreman, S.S.; Matos Dias, J.; Popple, R.A.; Rocha, H.; Crijns, W.; et al. Is full-automation in radiotherapy treatment planning ready for take off? Radiother. Oncol. 2024, 201, 110546. [Google Scholar] [CrossRef] [PubMed]
- Owens, K.; Griffen, Z.; Damaraju, L. Managing a “responsibility vacuum” in AI monitoring and governance in healthcare: A qualitative study. BMC Health Serv. Res. 2025, 25, 1217. [Google Scholar] [CrossRef]
- Joshi, R.P.; Kumar, N. Artificial Intelligence for Autonomous Molecular Design: A Perspective. Molecules 2021, 26, 6761. [Google Scholar] [CrossRef]
- Dewaker, V.; Morya, V.K.; Kim, Y.H.; Park, S.T.; Kim, H.S.; Koh, Y.H. Revolutionizing oncology: The role of Artificial Intelligence (AI) as an antibody design, and optimization tools. Biomark. Res. 2025, 13, 52. [Google Scholar] [CrossRef] [PubMed]
- Rajaei, F.; Minoccheri, C.; Wittrup, E.; Wilson, R.C.; Athey, B.D.; Omenn, G.S.; Najarian, K. AI-Based Computational Methods in Early Drug Discovery and Post Market Drug Assessment: A Survey. IEEE Trans. Comput. Biol. Bioinform. 2025, 22, 97–115. [Google Scholar] [CrossRef]
- Abdul Raheem, A.K.; Dhannoon, B.N. Automating Drug Discovery using Machine Learning. Curr. Drug Discov. Technol. 2023, 20, 79–86. [Google Scholar] [CrossRef]
- Fan, T.; Zhang, M.; Yang, J.; Zhu, Z.; Cao, W.; Dong, C. Therapeutic cancer vaccines: Advancements, challenges, and prospects. Signal Transduct. Target. Ther. 2023, 8, 450. [Google Scholar] [CrossRef]
- Latzer, P.; Zelba, H.; Battke, F.; Reinhardt, A.; Shao, B.; Bartsch, O.; Rabsteyn, A.; Harter, J.; Schulze, M.; Okech, T.; et al. A real-world observation of patients with glioblastoma treated with a personalized peptide vaccine. Nat. Commun. 2024, 15, 6870. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, L.; Chen, Q.; Jin, Z.; Liu, S.; Zhang, S. Harnessing artificial intelligence to improve clinical trial design. Commun. Med. 2023, 3, 191. [Google Scholar] [CrossRef]
- Chow, R.; Midroni, J.; Kaur, J.; Boldt, G.; Liu, G.; Eng, L.; Liu, F.F.; Haibe-Kains, B.; Lock, M.; Raman, S. Use of artificial intelligence for cancer clinical trial enrollment: A systematic review and meta-analysis. J. Natl. Cancer Inst. 2023, 115, 365–374. [Google Scholar] [CrossRef]
- Azenkot, T.; Rivera, D.R.; Stewart, M.D.; Patel, S.P. Artificial Intelligence and Machine Learning Innovations to Improve Design and Representativeness in Oncology Clinical Trials. Am. Soc. Clin. Oncol. Educ. Book 2025, 45, e473590. [Google Scholar] [CrossRef]
- Farhud, D.D.; Zokaei, S. Ethical Issues of Artificial Intelligence in Medicine and Healthcare. Iran. J. Public. Health 2021, 50, i–v. [Google Scholar] [CrossRef]
- Norori, N.; Hu, Q.; Aellen, F.M.; Faraci, F.D.; Tzovara, A. Addressing bias in big data and AI for health care: A call for open science. Patterns 2021, 2, 100347. [Google Scholar] [CrossRef] [PubMed]
- Mittermaier, M.; Raza, M.M.; Kvedar, J.C. Bias in AI-based models for medical applications: Challenges and mitigation strategies. NPJ Digit. Med. 2023, 6, 113. [Google Scholar] [CrossRef] [PubMed]
- Cross, J.L.; Choma, M.A.; Onofrey, J.A. Bias in medical AI: Implications for clinical decision-making. PLoS Digit. Health 2024, 3, e0000651. [Google Scholar] [CrossRef] [PubMed]
- Ratwani, R.M.; Sutton, K.; Galarraga, J.E. Addressing AI Algorithmic Bias in Health Care. JAMA 2024, 332, 1051–1052. [Google Scholar] [CrossRef]
- Pean, C.A.; Buddhiraju, A.; Chen, T.L.W.; Seo, H.H.; Shimizu, M.R.; Esposito, J.G.; Kwon, Y.M. Racial and Ethnic Disparities in Predictive Accuracy of Machine Learning Algorithms Developed Using a National Database for 30-Day Complications Following Total Joint Arthroplasty. J. Arthroplast. 2025, 40, 1139–1147. [Google Scholar] [CrossRef]
- Alipour, N.; Burke, T.; Courtney, J. Skin Type Diversity in Skin Lesion Datasets: A Review. Curr. Dermatol. Rep. 2024, 13, 198–210. [Google Scholar] [CrossRef]
- Hildt, E. What Is the Role of Explainability in Medical Artificial Intelligence? A Case-Based Approach. Bioengineering 2025, 12, 375. [Google Scholar] [CrossRef]
- Frasca, M.; La Torre, D.; Pravettoni, G.; Cutica, I. Explainable and interpretable artificial intelligence in medicine: A systematic bibliometric review. Discov. Artif. Intell. 2024, 4, 15. [Google Scholar] [CrossRef]
- Ennab, M.; Mcheick, H. Enhancing interpretability and accuracy of AI models in healthcare: A comprehensive review on challenges and future directions. Front. Robot. AI 2024, 11, 1444763. [Google Scholar] [CrossRef]
- Cui, S.; Traverso, A.; Niraula, D.; Zou, J.; Luo, Y.; Owen, D.; El Naqa, I.; Wei, L. Interpretable artificial intelligence in radiology and radiation oncology. Br. J. Radiol. 2023, 96, 20230142. [Google Scholar] [CrossRef] [PubMed]
- Kothari, S.; Sharma, S.; Shejwal, S.; Kazi, A.; D’Silva, M.; Karthikeyan, M. An explainable AI-assisted web application in cancer drug value prediction. MethodsX 2024, 12, 102696. [Google Scholar] [CrossRef]
- Jeelani, O.F.; Njie, M.; Korzhuk, V. Methods and Algorithms of Ensuring Data Privacy in AI-Based Healthcare Systems and Technologies. Stud. Health Technol. Inform. 2024, 316, 1260–1261. [Google Scholar] [CrossRef]
- Li, N.; Lewin, A.; Ning, S.; Waito, M.; Zeller, M.P.; Tinmouth, A.; Shih, A.W.; Canadian Transfusion Trials Group. Privacy-preserving federated data access and federated learning: Improved data sharing and AI model development in transfusion medicine. Transfusion 2025, 65, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Mehrtabar, S.; Marey, A.; Desai, A.; Saad, A.M.; Desai, V.; Goñi, J.; Pal, B.; Umair, M. Ethical Considerations in Patient Privacy and Data Handling for AI in Cardiovascular Imaging and Radiology. J. Imaging Inform. Med. 2025. [Google Scholar] [CrossRef] [PubMed]
- Gerido, L.H.; Ayday, E. An Ethical Approach to Genomic Privacy Preserving Technology Development. In Proceedings of the 2024 IEEE 12th International Conference on Healthcare Informatics (ICHI), Orlando, FL, USA, 3–6 June 2024; Volume 2024, pp. 638–641. [Google Scholar] [CrossRef]
- García-Lezana, T.; Bobowicz, M.; Frid, S.; Rutherford, M.; Recuero, M.; Riklund, K.; Cabrelles, A.; Rygusik, M.; Fromont, L.; Francischello, R.; et al. New implementation of data standards for AI in oncology: Experience from the EuCanImage project. Gigascience 2025, 14, giae101. [Google Scholar] [CrossRef]
- Palaniappan, K.; Lin, E.Y.T.; Vogel, S. Global Regulatory Frameworks for the Use of Artificial Intelligence (AI) in the Healthcare Services Sector. Healthcare 2024, 12, 562. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Bapna, M.; Diab, A.R.; Ruiz, E.S.; Lotter, W. How AI is used in FDA-authorized medical devices: A taxonomy across 1,016 authorizations. NPJ Digit. Med. 2025, 8, 388. [Google Scholar] [CrossRef] [PubMed]
- Lenarczyk, G.; Minssen, T.; Price, N.; Rai, A. The future of AI regulation in drug development: A comparative analysis. J. Law. Biosci. 2025, 12, lsaf028. [Google Scholar] [CrossRef] [PubMed]
- Windecker, D.; Baj, G.; Shiri, I.; Kazaj, P.M.; Kaesmacher, J.; Gräni, C.; Siontis, G.C.M. Generalizability of FDA-Approved AI-Enabled Medical Devices for Clinical Use. JAMA Netw. Open 2025, 8, e258052. [Google Scholar] [CrossRef]
- Sivakumar, R.; Lue, B.; Kundu, S. FDA Approval of Artificial Intelligence and Machine Learning Devices in Radiology: A Systematic Review. JAMA Netw. Open 2025, 8, e2542338. [Google Scholar] [CrossRef]
- U.S. Food & Drug Administration. Transparency for Machine Learning-Enabled Medical Devices: Guiding Principles. 2024. Available online: https://www.fda.gov/medical-devices/software-medical-device-samd/transparency-machine-learning-enabled-medical-devices-guiding-principles (accessed on 12 December 2025).
- U.S. Food & Drug Administration. Methods and Tools for Effective Postmarket Monitoring of Artificial Intelligence (AI)-Enabled Medical Devices. 2024. Available online: https://www.fda.gov/medical-devices/medical-device-regulatory-science-research-programs-conducted-osel/methods-and-tools-effective-postmarket-monitoring-artificial-intelligence-ai-enabled-medical-devices (accessed on 12 December 2025).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Bulić, L.; Brlek, P.; Hrvatin, N.; Brenner, E.; Škaro, V.; Projić, P.; Rogan, S.A.; Bebek, M.; Shah, P.; Primorac, D. AI-Driven Advances in Precision Oncology: Toward Optimizing Cancer Diagnostics and Personalized Treatment. AI 2026, 7, 11. https://doi.org/10.3390/ai7010011
Bulić L, Brlek P, Hrvatin N, Brenner E, Škaro V, Projić P, Rogan SA, Bebek M, Shah P, Primorac D. AI-Driven Advances in Precision Oncology: Toward Optimizing Cancer Diagnostics and Personalized Treatment. AI. 2026; 7(1):11. https://doi.org/10.3390/ai7010011
Chicago/Turabian StyleBulić, Luka, Petar Brlek, Nenad Hrvatin, Eva Brenner, Vedrana Škaro, Petar Projić, Sunčica Andreja Rogan, Marko Bebek, Parth Shah, and Dragan Primorac. 2026. "AI-Driven Advances in Precision Oncology: Toward Optimizing Cancer Diagnostics and Personalized Treatment" AI 7, no. 1: 11. https://doi.org/10.3390/ai7010011
APA StyleBulić, L., Brlek, P., Hrvatin, N., Brenner, E., Škaro, V., Projić, P., Rogan, S. A., Bebek, M., Shah, P., & Primorac, D. (2026). AI-Driven Advances in Precision Oncology: Toward Optimizing Cancer Diagnostics and Personalized Treatment. AI, 7(1), 11. https://doi.org/10.3390/ai7010011

