Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = generating sinusoidal supply voltages

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 7130 KiB  
Article
Inverter-Fed Motor Stator Insulation System and Partial Discharge-Free Design: Can We Refer to Measurements Under AC Sinusoidal Voltage?
by Gian Carlo Montanari, Muhammad Shafiq, Sukesh Babu Myneni and Zhaowen Chen
Machines 2025, 13(5), 408; https://doi.org/10.3390/machines13050408 - 14 May 2025
Viewed by 475
Abstract
In light of the large and fast-growing use of power electronics in electrical generation, distribution and utilization systems, and with the focus on electrified transportation, evaluating the significance of testing insulation systems for design and quality control under AC sinusoidal or power electronics [...] Read more.
In light of the large and fast-growing use of power electronics in electrical generation, distribution and utilization systems, and with the focus on electrified transportation, evaluating the significance of testing insulation systems for design and quality control under AC sinusoidal or power electronics waveforms is a due knowledge step. This paper has a twofold aim. One is presenting a procedure for the comparison between two insulation system solutions for partial discharge, PD, free design, referring to motorettes of a MV speed-controlled motor. The other is to carry out an evaluation of the most effective testing waveform, from AC sinusoidal to AC modulated (PWM), varying the number of inverter levels and switching the slew rate. It is shown that AC sinusoidal is effective for a qualitative evaluation of insulation system design as regards partial discharge risk, but PD inception voltage can be significantly dependent on supply voltage waveforms. Hence, if quantitative estimation of partial discharge inception voltage is requested, for design and quality control purposes, PWM waveforms as close as possible to those planned under operation should be used. Full article
Show Figures

Figure 1

14 pages, 1203 KiB  
Article
Atmospheric Cold Plasma to Maintain Sea Bass Quality: An Opportunity for International Fish Trade
by Şafak Ulusoy, Tamer Akan, Sehban Kartal, Didem Üçok, Şehnaz Yasemin Tosun, Hande Doğruyol, Serap Coşansu, Kamil Bostan and Sühendan Mol
Processes 2024, 12(11), 2318; https://doi.org/10.3390/pr12112318 - 23 Oct 2024
Viewed by 1374
Abstract
Whole chilled sea bass is an essential product for the European food market, and Türkiye is the foremost supplier. The importance of sea bass in the world food trade reveals the significance of food safety risks that may arise during or after harvest. [...] Read more.
Whole chilled sea bass is an essential product for the European food market, and Türkiye is the foremost supplier. The importance of sea bass in the world food trade reveals the significance of food safety risks that may arise during or after harvest. This study aimed to examine the impact of atmospheric cold plasma (ACP) on delaying the spoilage of sea bass. The ACP is generated by an original device that produces a dielectric barrier discharge plasma using an alternating current (AC) power supply, applying a 30 kV high voltage with a sinusoidal frequency of 20 kHz. Whole sea bass samples were treated for 1 min (ACP1) or 7 min (ACP7), and then stored at 2 ± 1 °C. Sensory scores of plasma-treated sea bass were higher throughout the storage period. Both treatments decreased the initial bacterial load and delayed bacterial growth (p ≤ 0.05) during storage. The mesophilic aerobic bacteria count of control samples exceeded 6 log CFU/g on the second day of storage. However, ACP1 and ACP7 did not reach this value until the third and fourth days. The control samples had higher TMA-N and TBARS (p ≤ 0.05) than plasma-treated groups. The treatment did not significantly change the texture. Although ΔE was higher in ACP samples, a discoloration that could affect acceptability was not reported during the sensory test. Cold plasma can improve the overall market value by maintaining quality, benefiting the global fish trade. It has been shown that cold plasma has promising potential in the fresh fish industry. Full article
(This article belongs to the Special Issue Advances in Seafood Science and Processing)
Show Figures

Graphical abstract

16 pages, 24473 KiB  
Article
Predictive Voltage Control in Multi-Modular Matrix Converters under Load Variation and Fault Scenario
by David Caballero, Sergio Toledo, Edgar Maqueda, Magno Ayala, Raúl Gregor, Marco Rivera and Patrick Wheeler
Technologies 2024, 12(9), 170; https://doi.org/10.3390/technologies12090170 - 19 Sep 2024
Cited by 1 | Viewed by 2503
Abstract
This paper presents a model predictive control (MPC) strategy to regulate output voltages in a multi-modular matrix converter topology for isolated loads. The converter system harnesses power from a six-phase permanent magnet synchronous generator (PMSG) to deliver sinusoidal voltages to a three-phase load, [...] Read more.
This paper presents a model predictive control (MPC) strategy to regulate output voltages in a multi-modular matrix converter topology for isolated loads. The converter system harnesses power from a six-phase permanent magnet synchronous generator (PMSG) to deliver sinusoidal voltages to a three-phase load, with LC filters positioned at the output of each MC module within the multi-modular scheme. The proposed MPC approach ensures that the output voltages remain within acceptable ranges of magnitude, phase, and frequency, even under load variations and system faults. This control strategy is particularly suitable for uninterruptible power supply systems, microgrids or other applications where voltage regulation is critical. Experimental studies validate the effectiveness of the control strategy under various load conditions, reference voltage changes, and simulated system fault scenarios. The results highlight the robustness and reliability of the proposed voltage control using the multi-modular matrix converter. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Figure 1

25 pages, 8095 KiB  
Article
Design and Implementation of Bridgeless Power Factor Corrector with Low Static Losses
by Alexander Chivenkov, Dmitriy Aleshin, Ivan Trofimov and Andrey Shalukho
Energies 2024, 17(17), 4315; https://doi.org/10.3390/en17174315 - 28 Aug 2024
Cited by 1 | Viewed by 851
Abstract
Research and development of power factor corrector (PFC) for AC/DC converters of single-phase AC power supply network are discussed within this article. Two-channel bridgeless PFC is proposed in this paper. The proposed converter allows us to lower current DC component generation in the [...] Read more.
Research and development of power factor corrector (PFC) for AC/DC converters of single-phase AC power supply network are discussed within this article. Two-channel bridgeless PFC is proposed in this paper. The proposed converter allows us to lower current DC component generation in the power network and to reduce static and dynamic losses of semiconductor devices. The suggested solution characteristic features are the absence of a diode bridge while using two identical converters operating in different power network voltage half periods. Due to cumulative chokes in each converter, the function setting the consumption current sinusoidal form is realized with the ability of wide-range output voltage regulation. A number of Simulink-models have been developed in order to study operating modes and to test control algorithms of the proposed bridgeless PFC. The input current harmonic content, efficiency coefficient, passive elements’ electrical parameters, and output voltage pulsation coefficient of the proposed bridgeless PFC were researched by Simulink-models. The results obtained show the efficiency of the proposed solutions regarding PFC. The THD value does not exceed 1.3% in steady state mode and is not over 4% during the voltage stabilization process; the minimal value of the output voltage pulsation coefficient is 3.1%. The suggested solutions can be applied in accumulator batteries’ charging sets and DC motors’ reduced-current start. Full article
(This article belongs to the Special Issue Smart Distributed Generation Systems)
Show Figures

Figure 1

36 pages, 20072 KiB  
Article
Uninterruptible Power Supply Topology Based on Single-Phase Matrix Converter with Active Power Filter Functionality
by Muhammad Shawwal Mohamad Rawi, Rahimi Baharom and Mohd Amran Mohd Radzi
Energies 2024, 17(14), 3441; https://doi.org/10.3390/en17143441 - 12 Jul 2024
Cited by 1 | Viewed by 1453
Abstract
This study introduces a novel uninterruptible power supply (UPS) configuration that integrates active power filter (APF) capabilities within a single-phase matrix converter (SPMC) framework. Power disruptions, particularly affecting critical loads, can lead to substantial economic damages. Historically, conventional UPS systems utilized dual separate [...] Read more.
This study introduces a novel uninterruptible power supply (UPS) configuration that integrates active power filter (APF) capabilities within a single-phase matrix converter (SPMC) framework. Power disruptions, particularly affecting critical loads, can lead to substantial economic damages. Historically, conventional UPS systems utilized dual separate converters to function as a rectifier and an inverter, without incorporating any power factor correction (PFC) mechanisms. Such configurations suffered from diminished power density, compromised reliability, and spatial limitations. To address these issues, this research proposes an enhanced UPS design that incorporates APF features into the SPMC. The focus of this investigation is on the efficiency of alternating current (AC) to direct current (DC) conversion and the reverse process utilizing this advanced UPS model. The SPMC is selected to supplant the rectifier and inverter units traditionally employed in UPS architectures. A novel integrated switching strategy is formulated to facilitate the operation of the UPS in either rectifier (charging) or inverter (discharging) modes, contingent upon the operational state. The performance and efficacy of the devised circuit design and switching technique are substantiated through simulations conducted in MATLAB/Simulink 2019 and empirical evaluations using a test rig. The findings demonstrate that the voltage generated is sinusoidal and synchronized with the supply current, thereby minimizing the total harmonic distortion (THD) and enhancing both the power factor and the transition efficiency of the UPS system between its charging and discharging states. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

25 pages, 7747 KiB  
Article
Disturbance Observer-Based Feedback Linearized Controller for Grid-Forming Four-Leg VSI Supplying Unbalanced and Nonlinear Loads
by Samantha S. Stephen, Hussain Shareef, Rachid Errouissi, Mahdiyeh Eslami and Tuanku Badzlin Hashfi
Energies 2024, 17(13), 3319; https://doi.org/10.3390/en17133319 - 6 Jul 2024
Viewed by 1193
Abstract
This paper presents the design of a disturbance observer-based controller that regulates the output voltage of three-phase four-leg voltage source inverters (VSIs) deployed for grid-forming operation in Renewable Energy-based Distributed Generation (REDG) Systems. The primary objective of the controller is to provide a [...] Read more.
This paper presents the design of a disturbance observer-based controller that regulates the output voltage of three-phase four-leg voltage source inverters (VSIs) deployed for grid-forming operation in Renewable Energy-based Distributed Generation (REDG) Systems. The primary objective of the controller is to provide a symmetric and sinusoidal voltage at the output of the VSI when supplying highly unbalanced and nonlinear loads. The controller employs the feedback linearization (FL) technique and incorporates a disturbance observer (DO) to address a range of disturbances that include oscillations resulting from unbalanced loads, harmonics generated by nonlinear loads, and non-oscillatory disturbances. Notably, the controller adopts a direct control scheme without the need for nested current control loops and does not use any transformation frames. Simulation studies and experimental investigations were conducted to assess the controller’s performance under various load conditions, including both linear and nonlinear types, as well as load transients. The findings demonstrate the controller’s capability to accurately track references while complying with the IEEE power quality standards for the tested conditions. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

20 pages, 5791 KiB  
Article
The Design and the Control Principle of a Direct Low-Speed PMSM Servo-Drive Operating under a Sign-Changing Load on the Shaft
by Oleksandr Makarchuk and Dariusz Całus
Energies 2024, 17(13), 3134; https://doi.org/10.3390/en17133134 - 26 Jun 2024
Cited by 1 | Viewed by 1806
Abstract
The paper relates to the development of an algorithm applicable for maintaining the rotational speed of low-speed drives using PMSM motors and operating under a sign-changing load. The moment of inertia of rotating parts does not play the role of a mechanical stabilizer [...] Read more.
The paper relates to the development of an algorithm applicable for maintaining the rotational speed of low-speed drives using PMSM motors and operating under a sign-changing load. The moment of inertia of rotating parts does not play the role of a mechanical stabilizer for the speeds discussed in the article. Simulation studies are presented with the aim of developing a rotational speed control algorithm that utilizes only positional feedback and the previously assumed sign-changing load on the shaft. For the purposes of this research, a mathematical model was developed to calculate transient processes in a PMSM machine operating in the conditions of a sign-changing load on the shaft. This model assumes a deterministic control principle adapted to the known nature of the load change. In this model, the mutual influence occurring between the phase fluxes, the electromagnetic torque, the electric currents and the rotor position angle are established on the basis of FEM analysis of a two-dimensional magnetic field using a quasi-stationary approximation. Principles applicable for controlling a direct low-speed servo drive based on a PMSM machine operating with a known variable shaft load using only positional feedback and a predetermined shaft load change law are defined. The proposed regulation method is verified in an experimental manner. For this purpose, an experimental setup was built, which includes a PMSM with a load imitator on a variable sign shaft, an inverter providing sine-shaped power supply to the machine and a digital dual-processor control system. The discussed rotational speed stabilization algorithm was implemented in the form of a program for a microcontroller, which forms a part of the control system. The results of experimental tests confirm the adequacy of mathematical modeling and the effectiveness of the proposed rotational speed stabilization algorithm. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

15 pages, 5281 KiB  
Article
Performance Evaluation of Sinusoidal Power Supplies for Ozone Generation in Water Purification Applications
by Mostafa M. Shibl, Omar Shouman, Ahmed Mahmoud and Ahmed M. Massoud
Sensors 2024, 24(13), 4063; https://doi.org/10.3390/s24134063 - 22 Jun 2024
Viewed by 1392
Abstract
Ozone generation is a water disinfection method, superior to chlorine in terms of fewer byproducts and no residual taste. However, its high production cost limits its widespread adoption. This paper designs an ozone generation sinusoidal power supply for water treatment. Ozone generation requires [...] Read more.
Ozone generation is a water disinfection method, superior to chlorine in terms of fewer byproducts and no residual taste. However, its high production cost limits its widespread adoption. This paper designs an ozone generation sinusoidal power supply for water treatment. Ozone generation requires a high-frequency and high-voltage power supply to produce ozone from oxygen molecules. The study evaluates two power supply topologies, one with a parallel LC filter and the other with an LCL filter, assessing their feasibility, effectiveness, and reliability. Theoretically, the LCL filter achieves higher gains than the parallel LC filter. The larger inductance in the parallel LC filter reduces gain, while the larger inductance in the LCL filter increases gain. Simulation and practical results validate these findings, achieving gains of 40 for the parallel LC filter and 150 for the LCL filter. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

15 pages, 3190 KiB  
Article
Novel Integrated Zeta Inverter for Standalone Applications
by Anderson Aparecido Dionizio, Guilherme Masquetti Pelz, Leonardo Poltronieri Sampaio and Sérgio Augusto Oliveira da Silva
Energies 2024, 17(11), 2748; https://doi.org/10.3390/en17112748 - 4 Jun 2024
Cited by 1 | Viewed by 1054
Abstract
In recent years, distributed generation systems based on renewable energy sources have gained increasing prominence. Thus, the DC/AC converters based on power electronics devices have become increasingly important. In this context, this article presents an integrated Zeta inverter for low-power conditions, which operates [...] Read more.
In recent years, distributed generation systems based on renewable energy sources have gained increasing prominence. Thus, the DC/AC converters based on power electronics devices have become increasingly important. In this context, this article presents an integrated Zeta inverter for low-power conditions, which operates in continuous conduction mode (CCM), achieving efficiency greater than 95%. The proposed topology is composed of four power switches, two operating at high frequency and two operating at low frequency, i.e., at the output frequency. Compared with the topologies in the literature, these configurations make it a competitive solution from the point of view of efficiency, number of elements, and, consequently, implementation cost. The proposed converter operates as a sinusoidal voltage source for local loads and is supplied by a DC source, such as batteries or a photovoltaic array. A multi-resonant voltage controller was used to guarantee the sinusoidal voltage provided to the non-linear load while dealing with the complex dynamics of the Zeta converter in the CCM. Experimental results from a 324 W prototype show the converter’s implementation feasibility and the high efficiency of the DC/AC conversion. Full article
(This article belongs to the Special Issue Power Electronic and Power Conversion Systems for Renewable Energy)
Show Figures

Figure 1

19 pages, 6010 KiB  
Article
Modified Efficient Energy Conversion System Based on PMSG with Magnetic Flux Modulation
by Michał Krystkowiak
Energies 2023, 16(21), 7437; https://doi.org/10.3390/en16217437 - 3 Nov 2023
Cited by 3 | Viewed by 984
Abstract
The article presents the solution of a power rectifier system dedicated to cooperating with an electric generator based on a special synchronous generator, which can be used in wind or water energy systems. In this generator, a pair of three-phase windings in a [...] Read more.
The article presents the solution of a power rectifier system dedicated to cooperating with an electric generator based on a special synchronous generator, which can be used in wind or water energy systems. In this generator, a pair of three-phase windings in a stator is utilized. One of the windings is connected in a star, and the second one is connected in a delta configuration. Two six-pulse uncontrolled (diode) rectifiers are included at the outputs of the windings. The rectifiers are coupled by a pulse transformer. The primary windings of this transformer are supplied by a power-electronics current source called a current modulator. With the help of this current modulator, the quasi-sinusoidal magnetomotive force (mmf) in the stator of the machine can be obtained. Additionally, to improve the efficiency of the described system, the low-power transistor rectifier, which is connected to the DC bus of the current modulator, has been used. With the help of this converter, it is possible to control and stabilize the voltage level in a DC circuit. It works, in this case, in inverter mode. The principle of working and elaborated control methods of the current modulator and the additional rectifier are presented. Selected results of simulation and experimental tests are also presented. Full article
Show Figures

Figure 1

25 pages, 13277 KiB  
Article
Alleviation of Power Quality Issues in MVF-DEANF-PLL Based Solar PV Systems under Polluted Grid Conditions
by Balasubramanian Mohan, Saravanan Siddhan and Nagarajan Chinnadurai
Sustainability 2023, 15(21), 15487; https://doi.org/10.3390/su152115487 - 31 Oct 2023
Viewed by 1225
Abstract
Solar energy is a sustainable and environmentally safe power source due to its widespread availability and cleanliness. Nowadays, the grid-integrated solar photovoltaic system (SPVS) has to work with a polluted grid, an imbalanced load, and changing solar irradiation. When the grid is polluted, [...] Read more.
Solar energy is a sustainable and environmentally safe power source due to its widespread availability and cleanliness. Nowadays, the grid-integrated solar photovoltaic system (SPVS) has to work with a polluted grid, an imbalanced load, and changing solar irradiation. When the grid is polluted, it is also crucial to enhance power quality (PQ) at a common coupling point (CCP) while supplying significantly distorted and unreliable loads. For effective synchronization and the production of unit templates, it is necessary to retrieve positive sequence components (PSCs) from distorted/imbalanced grid voltages. In this study, a control algorithm for a grid-integrated SPVS is developed using a multi-variable filter dual-enhanced adaptive notch filter phase-locked loop (MVF-DEANF-PLL) which offers seamless grid synchronization and PQ issue alleviation. In a polluted grid environment, the proposed control approach aids in the reduction in current/voltage harmonics, DC offset, unity power factor (UPF) operation, and rapid estimation of sequence components. Even in unbalanced grid conditions, the proposed control approach efficiently extracts PSCs of both unbalanced load current and polluted CCP grid voltages. These PSCs are utilized to generate unit templates and reference source currents. By using a flexible step-size incremental conductance (FSSINC) maximum power point tracking (MPPT) technique, the highest available power of SPVS is gathered. MATLAB/Simulink is utilized for modelling a 7.22 kW SPV system, and results from simulations which depict that the proposed algorithm efficiently resolves PQ concerns in distribution networks with a polluted grid. Test observations of a 1 kW laboratory-developed SPVS prototype were recorded in compliance with the IEEE-519 standard. The suggested control technique complies with the aforementioned standards by providing a sinusoidal balanced source current that has a THD of 2.5%. Comparisons between the proposed control’s performance and that of a conventional SRF-PLL-based control technique were also performed. Full article
Show Figures

Figure 1

19 pages, 10910 KiB  
Article
Research into a Method of Forming Neutral Point Voltage in a Three-Phase Four-Wire Voltage Inverter
by Andrey Dar’enkov, Andrey Kurkin, Anton Sluzov, Ivan Berdnikov, Anton Khramov and Andrey Shalukho
Energies 2023, 16(15), 5739; https://doi.org/10.3390/en16155739 - 1 Aug 2023
Cited by 1 | Viewed by 1900
Abstract
Three-phase four-wire voltage inverters are commonly used in energy complexes based on distributed generation sources (solar panels, wind power plants, hydrogen fuel cells) and accumulator batteries. They allow to power loads, including single-phase ones, which require neutral point connection. In these cases, phase [...] Read more.
Three-phase four-wire voltage inverters are commonly used in energy complexes based on distributed generation sources (solar panels, wind power plants, hydrogen fuel cells) and accumulator batteries. They allow to power loads, including single-phase ones, which require neutral point connection. In these cases, phase voltage formed by spatial pulse-width modulation (PWM) methods considerably differs from sinusoidal waves and has high total harmonic distortions of voltage and current curves. This article is devoted to research into the authors’ control method of a three-phase four-wire inverter, allowing for the rectification of the form of phase voltage supplying the load when applying the most common PWM (SVPWM, DPWMMIN, DPWMMAX, GDPWM) methods. The description of the method and its research results by simulation modeling and test bench are presented in the article. The simulation modeling was carried out by the developed Simulink-model of the three-phase four-wire inverter and its control system. The modeling results showed that the method application ensures sinusoidal voltage form when applying any PWM method. At this, THDU was reduced from 21.56% to 4.39%, while THDI was reduced from 21.16% to 1.69%. Experimental tests were carried out by a test bench featuring an uninterruptible power supply source. The authors researched the inverter operation as a component of the test bench under the control of the proposed method to form neutral point voltage. The experimental test results coincided with the simulation modeling results. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

20 pages, 6332 KiB  
Article
Design of Cascaded Multilevel Inverter and Enhanced MPPT Method for Large-Scale Photovoltaic System Integration
by Fatima Z. Khemili, Omar Bouhali, Moussa Lefouili, Lakhdar Chaib, Attia A. El-Fergany and Ahmed M. Agwa
Sustainability 2023, 15(12), 9633; https://doi.org/10.3390/su15129633 - 15 Jun 2023
Cited by 13 | Viewed by 2718
Abstract
The key goal of this effort is to develop an efficient control system for a three-phase cascaded H-bridge multilevel inverter powered by the photovoltaic (PV) system. The power for the system is generated through the use of PV modules, which serve as DC [...] Read more.
The key goal of this effort is to develop an efficient control system for a three-phase cascaded H-bridge multilevel inverter powered by the photovoltaic (PV) system. The power for the system is generated through the use of PV modules, which serve as DC inputs for the cascaded H-bridge multilevel inverter. The authors aim to achieve a nearly sinusoidal signal at the voltage level and are specifically focused on minimizing the total harmonic distortion (THD) to the smallest possible value. Hence, an advanced N-level space vector modulation (SVM) is developed to ensure an appropriate control for the cascaded inverter. The aim is to design an effective control strategy to increase inverter efficacy and, thus, supply the best output quality. In addition, a robust approach to the maximum power point (MPP) tracking (MPPT) technique is developed based on an adaptive perturb and observe (P&O) algorithm to ensure superior tracking of the MPP. The developed algorithm eliminates 90% of the power curve area in the search space process and only maintains 10% of the area that includes the MPP. Each PV system employs its own improved MPPT control. The numerical results confirm that the enhanced P&O algorithm attains a precise response with superior efficiency and a fast response under the fast alteration of environmental conditions. Hence, the energy loss is reduced. The simulation results validate the effectiveness of this study, highlighting the high efficiency of the control strategy and the enhanced performance of the proposed scheme with lesser THD values. Full article
Show Figures

Figure 1

17 pages, 4848 KiB  
Article
Alternative Surface-Mounted Permanent Magnet Topology for Reducing Voltage and Torque Harmonics in Shaft Generators
by Rak-Won Son and Ju Lee
Energies 2023, 16(12), 4649; https://doi.org/10.3390/en16124649 - 12 Jun 2023
Cited by 1 | Viewed by 2057
Abstract
Traditional diesel generators on a merchant ship, composed of a wound rotor synchronous generator and a four-stroke diesel engine, supply electrical power for various loads. Recently, shaft generators for merchant ships have been increasingly replacing diesel generators to reduce CO2 emissions through [...] Read more.
Traditional diesel generators on a merchant ship, composed of a wound rotor synchronous generator and a four-stroke diesel engine, supply electrical power for various loads. Recently, shaft generators for merchant ships have been increasingly replacing diesel generators to reduce CO2 emissions through fuel efficiency improvement. In particular, permanent magnet synchronous generators have replaced induction generators due to their high-efficiency characteristics at light loads. The surface-mounted permanent magnet rotor can be a suitable topology owing to the relatively short constant power range. This generator can also operate as a motor according to the propulsion mode, so minimizing the harmonics of the induced voltage with the torque pulsation being essential. This paper proposes an alternative surface permanent magnet topology. Three magnets comprise one pole, with one bread-loaf magnet and two rectangular magnets. It helps to simplify the magnetization and assembly of the rotor because of the flat bottom shape of the magnet. Due to the low remanence of two rectangular magnets at the pole edge, this rotor structure effectively makes the air-gap magnetic flux density sinusoidal with production costs reduced. The step-skew suppresses higher-order harmonics. The total harmonic distortion comparison of the two-dimensional finite element analysis and the no-load test result shows under 6% difference from the interior permanent magnet prototype machine. A comparison of harmonic characteristics with other rotors shows that the proposed modular pole has sufficient competitiveness compared to the tapered bread-loaf type. It can be applied as a substitute for the tapered bread-loaf magnet in direct-drive ship propulsion systems and is expected to shorten the manufacturing process and time. Full article
(This article belongs to the Topic Future Generation Electric Machines and Drives)
Show Figures

Figure 1

22 pages, 4448 KiB  
Article
Enlightening Load Modeling by Means of Power Factor Decompositions
by Helmo K. Morales Paredes, Matheus Branco Arcadepani, Alexandre Candido Moreira, Flávio A. Serrão Gonçalves and Fernando Pinhabel Marafão
Energies 2023, 16(10), 4089; https://doi.org/10.3390/en16104089 - 15 May 2023
Viewed by 1797
Abstract
Considering the proliferation of power electronics applications and distributed energy resources, modern power grids are facing a significant increase in harmonic currents circulation and supply voltage deterioration, occasionally associated with small frequency variations. In such a context, the understanding of power phenomena in [...] Read more.
Considering the proliferation of power electronics applications and distributed energy resources, modern power grids are facing a significant increase in harmonic currents circulation and supply voltage deterioration, occasionally associated with small frequency variations. In such a context, the understanding of power phenomena in circuits with linear and non-linear loads under non-sinusoidal voltage conditions is nontrivial and still does not allow for an easy interpretation of harmonic sources, harmonic power flow or the identification of the parameters of a proper equivalent circuit. The main challenge is to develop modern theoretical approaches for load characterization, modeling, and parameter estimation so that new techniques can be formulated to provide adequate guiding for the analysis, compensation, revenue metering, accountability and other applications of power systems. Thus, based on the Conservative Power Theory (CPT) and further decomposition of its apparent power and power factor definitions, this paper proposes a novel methodology for estimating equivalent parameters and for proposing proper equivalent circuits capable of representing/modeling the main characteristics of single-phase generic loads (black boxes) and the related power phenomena in terms of passive dipoles (linear loads) or of harmonic voltage/current sources and their intrinsic transimpedances/transadmittances (non-linear loads). Simulation and experimental results were depicted to support and validate the proposed approach, showing that it might be a powerful modeling technique to represent generic loads in a modern power grid scenario, while being used for complex applications such as reactive power compensation or accountability in circuits with nonlinear loads and distorted voltages. Full article
Show Figures

Figure 1

Back to TopTop