Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (23,168)

Search Parameters:
Keywords = generalized derivations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 20437 KiB  
Article
Satellite-Derived Bathymetry Using Sentinel-2 and Airborne Hyperspectral Data: A Deep Learning Approach with Adaptive Interpolation
by Seung-Jun Lee, Han-Saem Kim, Hong-Sik Yun and Sang-Hoon Lee
Remote Sens. 2025, 17(15), 2594; https://doi.org/10.3390/rs17152594 - 25 Jul 2025
Abstract
Accurate coastal bathymetry is critical for navigation, environmental monitoring, and marine resource management. This study presents a deep learning-based approach that fuses Sentinel-2 multispectral imagery with airborne hyperspectral-derived reference data to generate high-resolution satellite-derived bathymetry (SDB). To address the spatial resolution mismatch between [...] Read more.
Accurate coastal bathymetry is critical for navigation, environmental monitoring, and marine resource management. This study presents a deep learning-based approach that fuses Sentinel-2 multispectral imagery with airborne hyperspectral-derived reference data to generate high-resolution satellite-derived bathymetry (SDB). To address the spatial resolution mismatch between Sentinel-2 (10 m) and LiDAR reference data (1 m), three interpolation methods—Inverse Distance Weighting (IDW), Natural Neighbor (NN), and Spline—were employed to resample spectral reflectance data to a 1 m grid. Two spectral input configurations were evaluated: the log-ratio of Bands 2 and 3, and raw RGB composite reflectance (Bands 2, 3, and 4). A Fully Convolutional Neural Network (FCNN) was trained under each configuration and validated using LiDAR-based depth. The RGB + NN combination yielded the best performance, achieving an RMSE of 1.2320 m, MAE of 0.9381 m, bias of +0.0315 m, and R2 of 0.6261, while the log-ratio + IDW configuration showed lower accuracy. Visual and statistical analyses confirmed the advantage of the RGB + NN approach in preserving spatial continuity and spectral-depth relationships. This study demonstrates that both interpolation strategy and input configuration critically affect SDB model accuracy and generalizability. The integration of spatially adaptive interpolation with airborne hyperspectral reference data represents a scalable and efficient solution for high-resolution coastal bathymetry mapping. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

12 pages, 1671 KiB  
Article
Antimicrobial and Antibiofilm Activity of Marine Streptomyces sp. NBUD24-Derived Anthraquinones Against MRSA
by Yuxin Yang, Zhiyan Zhou, Guobao Huang, Shuhua Yang, Ruoyu Mao, Lijian Ding and Xiao Wang
Mar. Drugs 2025, 23(8), 298; https://doi.org/10.3390/md23080298 - 25 Jul 2025
Abstract
Antimicrobial resistance (AMR) has emerged as a global health crisis, with methicillin-resistant Staphylococcus aureus (MRSA) representing one of the most clinically significant multidrug-resistant pathogens. In this study, three structurally unique anthracycline derivatives—keto-ester (1), 4-deoxy-ε-pyrromycinone (2), and misamycin (3 [...] Read more.
Antimicrobial resistance (AMR) has emerged as a global health crisis, with methicillin-resistant Staphylococcus aureus (MRSA) representing one of the most clinically significant multidrug-resistant pathogens. In this study, three structurally unique anthracycline derivatives—keto-ester (1), 4-deoxy-ε-pyrromycinone (2), and misamycin (3)—were first isolated and characterized from the fermentation broth of the marine-derived Streptomyces tauricus NBUD24. These compounds exhibited notable antibacterial efficacy against MRSA, with minimum inhibitory concentrations (MICs) ranging from 16 to 32 µg/mL. Cytotoxicity assays confirmed their safety profile at therapeutic concentrations. The biofilm formation assay demonstrated that 4-deoxy-ε-pyrromycinone inhibited biofilm formation of MRSA ATCC43300, with an inhibition rate of 64.4%. Investigations of antibacterial mechanisms revealed that these compounds exert antibacterial effects primarily through disruption of bacterial cell wall integrity and destruction of DNA structure. These findings underscore the potential of marine-derived microbial metabolites as promising scaffolds for developing next-generation antimicrobial candidates to combat drug-resistant infections. Full article
Show Figures

Figure 1

28 pages, 1575 KiB  
Review
Leaf Saponins of Quillaja brasiliensis as Powerful Vaccine Adjuvants
by Víctor Morais, Norma Suarez, Samuel Cibulski and Fernando Silveira
Pharmaceutics 2025, 17(8), 966; https://doi.org/10.3390/pharmaceutics17080966 (registering DOI) - 25 Jul 2025
Abstract
Vaccine adjuvants are non-immunogenic agents that enhance or modulate immune responses to co-administered antigens and are essential to modern vaccines. Despite their importance, few are approved for human use. The rise of new pathogens and limited efficacy of some existing vaccines underscore the [...] Read more.
Vaccine adjuvants are non-immunogenic agents that enhance or modulate immune responses to co-administered antigens and are essential to modern vaccines. Despite their importance, few are approved for human use. The rise of new pathogens and limited efficacy of some existing vaccines underscore the need for more advanced and effective formulations, particularly for vulnerable populations. Aluminum-based adjuvants are commonly used in vaccines and effectively promote humoral immunity. However, they mainly induce a Th2-biased response, making them suboptimal for diseases requiring cell-mediated immunity. In contrast, saponin-based adjuvants from the Quillajaceae family elicit a more balanced Th1/Th2 response and generate antigen-specific cytotoxic T cells (CTL). Due to ecological damage and limited availability caused by overharvesting Quillaja saponaria Molina barks, efforts have intensified to identify alternative plant-derived saponins with enhanced efficacy and lower toxicity. Quillaja brasiliensis (A.St.-Hil. and Tul.) Mart. (syn. Quillaja lancifolia D.Don), a related species native to South America, is considered a promising renewable source of Quillajaceae saponins. In this review, we highlight recent advances in vaccine adjuvant research, with a particular focus on saponins extracted from Q. brasiliensis leaves as a sustainable alternative to Q. saponaria saponins. These saponin fractions are structurally and functionally comparable, exhibiting similar adjuvant activity when they were formulated with different viral antigens. An alternative application involves formulating saponins into nanoparticles known as ISCOMs (immune-stimulating complexes) or ISCOM-matrices. These formulations significantly reduce hemolytic activity while preserving strong immunoadjuvant properties. Therefore, research advances using saponin-based adjuvants (SBA) derived from Q. brasiliensis and their incorporation into new vaccine platforms may represent a viable and sustainable solution for the development of more less reactogenic, safer, and effective vaccines, especially for diseases that require a robust cellular immunity. Full article
(This article belongs to the Special Issue Advances in Vaccine Delivery and Vaccine Administration)
21 pages, 10341 KiB  
Article
Long-Term Engraftment and Satellite Cell Expansion from Human PSC Teratoma-Derived Myogenic Progenitors
by Zahra Khosrowpour, Nivedha Ramaswamy, Elise N. Engquist, Berkay Dincer, Alisha M. Shah, Hossam A. N. Soliman, Natalya A. Goloviznina, Peter I. Karachunski and Michael Kyba
Cells 2025, 14(15), 1150; https://doi.org/10.3390/cells14151150 - 25 Jul 2025
Abstract
Skeletal muscle regeneration requires a reliable source of myogenic progenitor cells capable of forming new fibers and creating a self-renewing satellite cell pool. Human induced pluripotent stem cell (hiPSC)-derived teratomas have emerged as a novel in vivo platform for generating skeletal myogenic progenitors, [...] Read more.
Skeletal muscle regeneration requires a reliable source of myogenic progenitor cells capable of forming new fibers and creating a self-renewing satellite cell pool. Human induced pluripotent stem cell (hiPSC)-derived teratomas have emerged as a novel in vivo platform for generating skeletal myogenic progenitors, although in vivo studies to date have provided only an early single-time-point snapshot. In this study, we isolated a specific population of CD82+ ERBB3+ NGFR+ cells from human iPSC-derived teratomas and verified their long-term in vivo regenerative capacity following transplantation into NSG-mdx4Cv mice. Transplanted cells engrafted, expanded, and generated human Dystrophin+ muscle fibers that increased in size over time and persisted stably long-term. A dynamic population of PAX7+ human satellite cells was established, initially expanding post-transplantation and declining moderately between 4 and 8 months as fibers matured. MyHC isoform analysis revealed a time-based shift from embryonic to neonatal and slow fiber types, indicating a slow progressive maturation of the graft. We further show that these progenitors can be cryopreserved and maintain their engraftment potential. Together, these findings give insight into the evolution of teratoma-derived human myogenic stem cell grafts, and highlight the long-term regenerative potential of teratoma-derived human skeletal myogenic progenitors. Full article
24 pages, 10881 KiB  
Article
Dynamics of Water Quality in the Mirim–Patos–Mangueira Coastal Lagoon System with Sentinel-3 OLCI Data
by Paula Andrea Contreras Rojas, Felipe de Lucia Lobo, Wesley J. Moses, Gilberto Loguercio Collares and Lino Sander de Carvalho
Geomatics 2025, 5(3), 36; https://doi.org/10.3390/geomatics5030036 - 25 Jul 2025
Abstract
The Mirim–Patos–Mangueira coastal lagoon system provides a wide range of ecosystem services. However, its vast territorial extent and the political boundaries that divide it hinder integrated assessments, especially during extreme hydrological events. This study is divided into two parts. First, we assessed the [...] Read more.
The Mirim–Patos–Mangueira coastal lagoon system provides a wide range of ecosystem services. However, its vast territorial extent and the political boundaries that divide it hinder integrated assessments, especially during extreme hydrological events. This study is divided into two parts. First, we assessed the spatial and temporal patterns of water quality in the lagoon system using Sentinel-3/OLCI satellite imagery. Atmospheric correction was performed using ACOLITE, followed by spectral grouping and classification into optical water types (OWTs) using the Sentinel Applications Platform (SNAP). To explore the behavior of water quality parameters across OWTs, Chlorophyll-a and turbidity were estimated using semi-empirical algorithms specifically designed for complex inland and coastal waters. Results showed a gradual increase in mean turbidity from OWT 2 to OWT 6 and a rise in chlorophyll-a from OWT 2 to OWT 4, with a decline at OWT 6. These OWTs correspond, in general terms, to distinct water masses: OWT 2 to clearer waters, OWT 3 and 4 to intermediate/mixed conditions, and OWT 6 to turbid environments. In the second part, we analyzed the response of the Patos Lagoon to flooding in Rio Grande do Sul during an extreme weather event in May 2024. Satellite-derived turbidity estimates were compared with in situ measurements, revealing a systematic underestimation, with a negative bias of 2.6%, a mean relative error of 78%, and a correlation coefficient of 0.85. The findings highlight the utility of OWT classification for tracking changes in water quality and support the use of remote sensing tools to improve environmental monitoring in data-scarce regions, particularly under extreme hydrometeorological conditions. Full article
(This article belongs to the Special Issue Advances in Ocean Mapping and Hydrospatial Applications)
Show Figures

Figure 1

22 pages, 9592 KiB  
Article
A Rotational Order Vibration Reduction Method Using a Regular Non-Circular Pulley
by Shangbin Long, Yu Zhu, Zhihong Zhou, Fangrui Chen and Zisheng Li
Actuators 2025, 14(8), 371; https://doi.org/10.3390/act14080371 - 25 Jul 2025
Abstract
For transmission systems with regular order excitation, the order vibration will be conducted to each component of the system and affect the stability and service life of the system. A method with a regular non-circular active pulley is proposed in this paper, which [...] Read more.
For transmission systems with regular order excitation, the order vibration will be conducted to each component of the system and affect the stability and service life of the system. A method with a regular non-circular active pulley is proposed in this paper, which is used to counteract the regular order excitation and the regular load excitation. A toothed belt drive system with second-order excitation is taken as an example. According to the existing analytical model of the tooth belt drive system, the modeling process and analytical solution algorithm of the system are derived. Based on the coordinate transformation, the algorithms for any position of an elliptical pulley and the common tangent of the circular pulley are given. And the algorithm for the arc length of the elliptical pulley at any arc degree is proposed. The influence of the phase and eccentricity in the elliptical pulley on the dynamic performance of the system is analyzed. Then the experimental verification is carried out. This shows that this system can generate excitation opposite to the main order rotational vibration of the driving pulley and opposite to the load of the driven pulley. Under the combined effect of other load pulleys in the system, there will be an amplification phenomenon in its vibration response. Considering the decrease in the belt span tension and the decline in the performance of energy-absorbing components after long operation, the presented method can better maintain the stability of system performance. This method can provide new ideas for the vibration reduction optimization process of systems with first-order wave excitation. Full article
Show Figures

Figure 1

17 pages, 1706 KiB  
Article
Root-Emitted Volatile Organic Compounds from Daucus carota Modulate Chemotaxis in Phasmarhabditis and Oscheius Nematodes
by Emre Sen, Tamás Lakatos, Tímea Tóth, Stanislav Trdan and Žiga Laznik
Agronomy 2025, 15(8), 1793; https://doi.org/10.3390/agronomy15081793 - 25 Jul 2025
Abstract
Root-emitted volatile organic compounds (VOCs) play a critical role in below-ground ecological interactions by mediating communication between plants, pests, and their natural enemies. This study investigates the chemotactic behavior of three slug-parasitic nematode species—Phasmarhabditis papillosa, Oscheius myriophilus, and Oscheius onirici [...] Read more.
Root-emitted volatile organic compounds (VOCs) play a critical role in below-ground ecological interactions by mediating communication between plants, pests, and their natural enemies. This study investigates the chemotactic behavior of three slug-parasitic nematode species—Phasmarhabditis papillosa, Oscheius myriophilus, and Oscheius onirici—in response to four carrot (Daucus carota) root-derived VOCs: α-pinene, terpinolene, bornyl acetate, and 2-ethyl-1-hexanol. Using a modified Petri dish assay, infective juveniles (IJs) were exposed to each compound across four concentrations (pure, 1000 ppm, 10 ppm, and 0.03 ppm), and their directional movement was quantified using a chemotaxis index (CI). The results revealed strong species-specific and concentration-dependent patterns. O. myriophilus exhibited the highest motility and repellency, particularly toward bornyl acetate and terpinolene, indicating its potential for use in VOC-guided biocontrol strategies. O. onirici showed moderate but consistent attraction to most VOCs, while P. papillosa exhibited generally weak or repellent responses, especially at higher concentrations. None of the compounds tested functioned as strong attractants (CI ≥ 0.2), suggesting that plant-derived VOCs alone may not be sufficient to direct nematode recruitment under field conditions. However, their integration with other biotic cues could enhance nematode-based “lure-and-infect” systems for sustainable slug control in carrot cropping systems. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

26 pages, 657 KiB  
Article
Bayesian Inference for Copula-Linked Bivariate Generalized Exponential Distributions: A Comparative Approach
by Carlos A. dos Santos, Saralees Nadarajah, Fernando A. Moala, Hassan S. Bakouch and Shuhrah Alghamdi
Axioms 2025, 14(8), 574; https://doi.org/10.3390/axioms14080574 - 25 Jul 2025
Abstract
This paper addresses the limitations of existing bivariate generalized exponential (GE) distributions for modeling lifetime data, which often exhibit rigid dependence structures or non-GE marginals. To overcome these limitations, we introduce four new bivariate GE distributions based on the Farlie–Gumbel–Morgenstern, Gumbel–Barnett, Clayton, and [...] Read more.
This paper addresses the limitations of existing bivariate generalized exponential (GE) distributions for modeling lifetime data, which often exhibit rigid dependence structures or non-GE marginals. To overcome these limitations, we introduce four new bivariate GE distributions based on the Farlie–Gumbel–Morgenstern, Gumbel–Barnett, Clayton, and Frank copulas, which allow for more flexible modeling of various dependence structures. We employ a Bayesian framework with Markov Chain Monte Carlo (MCMC) methods for parameter estimation. A simulation study is conducted to evaluate the performance of the proposed models, which are then applied to a real-world dataset of electrical treeing failures. The results from the data application demonstrate that the copula-based models, particularly the one derived from the Frank copula, provide a superior fit compared to existing bivariate GE models. This work provides a flexible and robust framework for modeling dependent lifetime data. Full article
Show Figures

Figure 1

20 pages, 2498 KiB  
Review
CRISPR/Cas-Based Ex Vivo Gene Therapy and Lysosomal Storage Disorders: A Perspective Beyond Cas9
by Andrés Felipe Leal, Luis Eduardo Prieto and Harry Pachajoa
Cells 2025, 14(15), 1147; https://doi.org/10.3390/cells14151147 - 25 Jul 2025
Abstract
Lysosomal storage disorders (LSDs) are inherited metabolic conditions characterized by lysosomal enzyme deficiencies leading to substrate accumulation. As genetic diseases, LSDs can be treated with gene therapies (GT), including the CRISPR/Cas systems. The CRISPR/Cas systems enable precise and programmable genome editing, leading to [...] Read more.
Lysosomal storage disorders (LSDs) are inherited metabolic conditions characterized by lysosomal enzyme deficiencies leading to substrate accumulation. As genetic diseases, LSDs can be treated with gene therapies (GT), including the CRISPR/Cas systems. The CRISPR/Cas systems enable precise and programmable genome editing, leading to targeted modifications at specific genomic loci. While the classical CRISPR/Cas9 system has been extensively used to generate LSD disease models and correct disease-associated genetic alterations through homologous recombination (HR), recently described Cas proteins as well as CRISPR/Cas9-derived strategies such as base editing, prime editing, and homology-independent targeted integration (HITI) offer a novel way to develop innovative treatments for LSDs. The direct administration of the CRISPR/Cas9 system remains the primary strategy evaluated in several LSDs; nevertheless, the ex vivo CRISPR/Cas9-based approach has been recently explored, primarily in central nervous system-affecting LSDs. Ex vivo approaches involve genetically modifying, in theory, any patient cells in the laboratory and reintroducing them into the patient to provide a therapeutic effect. This manuscript reviews the molecular aspects of the CRISPR/Cas technology and its implementation in ex vivo strategies for LSDs while discussing novel approaches beyond the classical CRISPR/Cas9 system. Full article
(This article belongs to the Special Issue Gene Therapy for Rare Diseases)
Show Figures

Figure 1

5 pages, 175 KiB  
Proceeding Paper
General Concepts from the Risk Assessment and Hazard Identification of HTL-Derived Bio-Oil: A Case Study of the MARINES Project
by Nicholas J. Daras, Paraskevi C. Divari, Constantinos C. Karamatsoukis, Konstantinos G. Kolovos, Theodore Liolios, Georgia Melagraki, Christos Michalopoulos and Dionysios E. Mouzakis
Proceedings 2025, 121(1), 12; https://doi.org/10.3390/proceedings2025121012 - 25 Jul 2025
Abstract
This study evaluates the risk assessment and hazard identification of hydrothermal liquefaction (HTL)-derived bio-oil from the MARINES project, which converts military organic waste into fuel. The high oxygen content (35–50 wt%), acidic pH (2–4), and viscosity (10–1000 cP) of bio-oils pose unique challenges, [...] Read more.
This study evaluates the risk assessment and hazard identification of hydrothermal liquefaction (HTL)-derived bio-oil from the MARINES project, which converts military organic waste into fuel. The high oxygen content (35–50 wt%), acidic pH (2–4), and viscosity (10–1000 cP) of bio-oils pose unique challenges, including oxidative polymerization, corrosion, and micro-explosions during combustion. Key hazards include storage instability, particulate emissions (20–30% higher than diesel), and aquatic toxicity (LC50 < 10 mg/L for phenolics). Mitigation strategies such as inert gas blanketing, preheating, and spill containment are proposed. While offering renewable fuel potential, HTL bio-oil demands rigorous safety protocols for military/industrial deployment, warranting further experimental validation. Full article
28 pages, 4702 KiB  
Article
Clinical Failure of General-Purpose AI in Photographic Scoliosis Assessment: A Diagnostic Accuracy Study
by Cemre Aydin, Ozden Bedre Duygu, Asli Beril Karakas, Eda Er, Gokhan Gokmen, Anil Murat Ozturk and Figen Govsa
Medicina 2025, 61(8), 1342; https://doi.org/10.3390/medicina61081342 - 25 Jul 2025
Abstract
Background and Objectives: General-purpose multimodal large language models (LLMs) are increasingly used for medical image interpretation despite lacking clinical validation. This study evaluates the diagnostic reliability of ChatGPT-4o and Claude 2 in photographic assessment of adolescent idiopathic scoliosis (AIS) against radiological standards. This [...] Read more.
Background and Objectives: General-purpose multimodal large language models (LLMs) are increasingly used for medical image interpretation despite lacking clinical validation. This study evaluates the diagnostic reliability of ChatGPT-4o and Claude 2 in photographic assessment of adolescent idiopathic scoliosis (AIS) against radiological standards. This study examines two critical questions: whether families can derive reliable preliminary assessments from LLMs through analysis of clinical photographs and whether LLMs exhibit cognitive fidelity in their visuospatial reasoning capabilities for AIS assessment. Materials and Methods: A prospective diagnostic accuracy study (STARD-compliant) analyzed 97 adolescents (74 with AIS and 23 with postural asymmetry). Standardized clinical photographs (nine views/patient) were assessed by two LLMs and two orthopedic residents against reference radiological measurements. Primary outcomes included diagnostic accuracy (sensitivity/specificity), Cobb angle concordance (Lin’s CCC), inter-rater reliability (Cohen’s κ), and measurement agreement (Bland–Altman LoA). Results: The LLMs exhibited hazardous diagnostic inaccuracy: ChatGPT misclassified all non-AIS cases (specificity 0% [95% CI: 0.0–14.8]), while Claude 2 generated 78.3% false positives. Systematic measurement errors exceeded clinical tolerance: ChatGPT overestimated thoracic curves by +10.74° (LoA: −21.45° to +42.92°), exceeding tolerance by >800%. Both LLMs showed inverse biomechanical concordance in thoracolumbar curves (CCC ≤ −0.106). Inter-rater reliability fell below random chance (ChatGPT κ = −0.039). Universal proportional bias (slopes ≈ −1.0) caused severe curve underestimation (e.g., 10–15° error for 50° deformities). Human evaluators demonstrated superior bias control (0.3–2.8° vs. 2.6–10.7°) but suboptimal specificity (21.7–26.1%) and hazardous lumbar concordance (CCC: −0.123). Conclusions: General-purpose LLMs demonstrate clinically unacceptable inaccuracy in photographic AIS assessment, contraindicating clinical deployment. Catastrophic false positives, systematic measurement errors exceeding tolerance by 480–1074%, and inverse diagnostic concordance necessitate urgent regulatory safeguards under frameworks like the EU AI Act. Neither LLMs nor photographic human assessment achieve reliability thresholds for standalone screening, mandating domain-specific algorithm development and integration of 3D modalities. Full article
(This article belongs to the Special Issue Diagnosis and Treatment of Adolescent Idiopathic Scoliosis)
Show Figures

Figure 1

12 pages, 299 KiB  
Article
On the Algebraic Independence of the Values of Functions That Are Certain Integrals Involving the 1F1(1; λ + 1; z) Hypergeometric Function
by Vasily Gorelov and Gennady Voronov
Axioms 2025, 14(8), 572; https://doi.org/10.3390/axioms14080572 - 25 Jul 2025
Abstract
Indefinite integrals of products of exponential functions, power functions and generalized hypergeometric functions of some types are considered. Necessary and sufficient conditions are established for the algebraic independence of large sets of such functions (for various parameters) and their derivatives, as well as [...] Read more.
Indefinite integrals of products of exponential functions, power functions and generalized hypergeometric functions of some types are considered. Necessary and sufficient conditions are established for the algebraic independence of large sets of such functions (for various parameters) and their derivatives, as well as their values. All the algebraic relations between these functions are written out explicitly. Full article
(This article belongs to the Section Algebra and Number Theory)
21 pages, 1471 KiB  
Article
Impact of Basalt Rock Powder on Ryegrass Growth and Nutrition on Sandy and Loamy Acid Soils
by Charles Desmalles, Lionel Jordan-Meille, Javier Hernandez, Cathy L. Thomas, Sarah Dunham, Feifei Deng, Steve P. McGrath and Stephan M. Haefele
Agronomy 2025, 15(8), 1791; https://doi.org/10.3390/agronomy15081791 - 25 Jul 2025
Abstract
Enhanced weathering of silicate rocks in agriculture is an option for atmospheric CO2 removal and fertility improvement. The objective of our work is to characterise some of the agricultural consequences of a basaltic powder amendment on soil-crop systems. Two doses of basalt [...] Read more.
Enhanced weathering of silicate rocks in agriculture is an option for atmospheric CO2 removal and fertility improvement. The objective of our work is to characterise some of the agricultural consequences of a basaltic powder amendment on soil-crop systems. Two doses of basalt (80 and 160 t ha−1) were applied to two types of slightly acid soils (sandy or silty clayey), derived from long-term trials at Bordeaux (INRAE, France) and Rothamsted Research (England), respectively. For each soil, half of the pots were planted with ryegrass; the other half were left bare. Thus, the experiment had twelve treatments with four replications per treatment. Soil pH increased with the addition of basalt (+0.8 unit), with a 5% equivalence of that of reactive chalk. The basalt contained macro- and micronutrients. Some cations extractable in the basalt before being mixed to the soil became more extractable with increased weathering, independent of plant cover. Plant uptake generally increased for macronutrients and decreased for micronutrients, due to increased stock (macro) and reduced availability (micronutrients and P), related to pH increases. K supplied in the basalt was responsible for a significant increase in plant yield on the sandy soil, linked to an average basalt K utilisation efficiency of 33%. Our general conclusion is that rock dust applications have to be re-evaluated at each site with differing soil characteristics. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

80 pages, 962 KiB  
Review
Advancements in Hydrogels: A Comprehensive Review of Natural and Synthetic Innovations for Biomedical Applications
by Adina-Elena Segneanu, Ludovic Everard Bejenaru, Cornelia Bejenaru, Antonia Blendea, George Dan Mogoşanu, Andrei Biţă and Eugen Radu Boia
Polymers 2025, 17(15), 2026; https://doi.org/10.3390/polym17152026 - 24 Jul 2025
Abstract
In the rapidly evolving field of biomedical engineering, hydrogels have emerged as highly versatile biomaterials that bridge biology and technology through their high water content, exceptional biocompatibility, and tunable mechanical properties. This review provides an integrated overview of both natural and synthetic hydrogels, [...] Read more.
In the rapidly evolving field of biomedical engineering, hydrogels have emerged as highly versatile biomaterials that bridge biology and technology through their high water content, exceptional biocompatibility, and tunable mechanical properties. This review provides an integrated overview of both natural and synthetic hydrogels, examining their structural properties, fabrication methods, and broad biomedical applications, including drug delivery systems, tissue engineering, wound healing, and regenerative medicine. Natural hydrogels derived from sources such as alginate, gelatin, and chitosan are highlighted for their biodegradability and biocompatibility, though often limited by poor mechanical strength and batch variability. Conversely, synthetic hydrogels offer precise control over physical and chemical characteristics via advanced polymer chemistry, enabling customization for specific biomedical functions, yet may present challenges related to bioactivity and degradability. The review also explores intelligent hydrogel systems with stimuli-responsive and bioactive functionalities, emphasizing their role in next-generation healthcare solutions. In modern medicine, temperature-, pH-, enzyme-, light-, electric field-, magnetic field-, and glucose-responsive hydrogels are among the most promising “smart materials”. Their ability to respond to biological signals makes them uniquely suited for next-generation therapeutics, from responsive drug systems to adaptive tissue scaffolds. Key challenges such as scalability, clinical translation, and regulatory approval are discussed, underscoring the need for interdisciplinary collaboration and continued innovation. Overall, this review fosters a comprehensive understanding of hydrogel technologies and their transformative potential in enhancing patient care through advanced, adaptable, and responsive biomaterial systems. Full article
18 pages, 6818 KiB  
Article
Deep Learning-Based Min-Entropy-Accelerated Evaluation for High-Speed Quantum Random Number Generation
by Xiaomin Guo, Wenhe Zhou, Yue Luo, Xiangyu Meng, Jiamin Li, Yaoxing Bian, Yanqiang Guo and Liantuan Xiao
Entropy 2025, 27(8), 786; https://doi.org/10.3390/e27080786 - 24 Jul 2025
Abstract
Secure communication is critically dependent on high-speed and high-security quantum random number generation (QRNG). In this work, we present a responsive approach to enhance the efficiency and security of QRNG by leveraging polarization-controlled heterodyne detection to simultaneously measure the quadrature amplitude and phase [...] Read more.
Secure communication is critically dependent on high-speed and high-security quantum random number generation (QRNG). In this work, we present a responsive approach to enhance the efficiency and security of QRNG by leveraging polarization-controlled heterodyne detection to simultaneously measure the quadrature amplitude and phase fluctuations of vacuum shot noise. To address the practical non-idealities inherent in QRNG systems, we investigate the critical impacts of imbalanced heterodyne detection, amplitude–phase overlap, finite-size effects, and security parameters on quantum conditional min-entropy derived from the entropy uncertainty principle. It effectively mitigates the overestimation of randomness and fortifies the system against potential eavesdropping attacks. For a high-security parameter of 1020, QRNG achieves a true random bit extraction ratio of 83.16% with a corresponding real-time speed of 37.25 Gbps following a 16-bit analog-to-digital converter quantization and 1.4 GHz bandwidth extraction. Furthermore, we develop a deep convolutional neural network for rapid and accurate entropy evaluation. The entropy evaluation of 13,473 sets of quadrature data is processed in 68.89 s with a mean absolute percentage error of 0.004, achieving an acceleration of two orders of magnitude in evaluation speed. Extracting the shot noise with full detection bandwidth, the generation rate of QRNG using dual-quadrature heterodyne detection exceeds 85 Gbps. The research contributes to advancing the practical deployment of QRNG and expediting rapid entropy assessment. Full article
(This article belongs to the Section Quantum Information)
Back to TopTop